glycosyl transferase family 2 [Capnocytophaga endodontalis]
glycosyltransferase family 2 protein( domain architecture ID 10135561)
glycosyltransferase family 2 protein catalyzes the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds
List of domain hits
Name | Accession | Description | Interval | E-value | ||||
GT_2_like_c | cd04186 | Subfamily of Glycosyltransferase Family GT2 of unknown function; GT-2 includes diverse ... |
17-229 | 2.87e-41 | ||||
Subfamily of Glycosyltransferase Family GT2 of unknown function; GT-2 includes diverse families of glycosyltransferases with a common GT-A type structural fold, which has two tightly associated beta/alpha/beta domains that tend to form a continuous central sheet of at least eight beta-strands. These are enzymes that catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. Glycosyltransferases have been classified into more than 90 distinct sequence based families. : Pssm-ID: 133029 [Multi-domain] Cd Length: 166 Bit Score: 140.00 E-value: 2.87e-41
|
||||||||
Glyco_tranf_GTA_type super family | cl11394 | Glycosyltransferase family A (GT-A) includes diverse families of glycosyl transferases with a ... |
164-274 | 2.07e-04 | ||||
Glycosyltransferase family A (GT-A) includes diverse families of glycosyl transferases with a common GT-A type structural fold; Glycosyltransferases (GTs) are enzymes that synthesize oligosaccharides, polysaccharides, and glycoconjugates by transferring the sugar moiety from an activated nucleotide-sugar donor to an acceptor molecule, which may be a growing oligosaccharide, a lipid, or a protein. Based on the stereochemistry of the donor and acceptor molecules, GTs are classified as either retaining or inverting enzymes. To date, all GT structures adopt one of two possible folds, termed GT-A fold and GT-B fold. This hierarchy includes diverse families of glycosyl transferases with a common GT-A type structural fold, which has two tightly associated beta/alpha/beta domains that tend to form a continuous central sheet of at least eight beta-strands. The majority of the proteins in this superfamily are Glycosyltransferase family 2 (GT-2) proteins. But it also includes families GT-43, GT-6, GT-8, GT13 and GT-7; which are evolutionarily related to GT-2 and share structure similarities. The actual alignment was detected with superfamily member cd02525: Pssm-ID: 472172 [Multi-domain] Cd Length: 249 Bit Score: 41.83 E-value: 2.07e-04
|
||||||||
Name | Accession | Description | Interval | E-value | |||||
GT_2_like_c | cd04186 | Subfamily of Glycosyltransferase Family GT2 of unknown function; GT-2 includes diverse ... |
17-229 | 2.87e-41 | |||||
Subfamily of Glycosyltransferase Family GT2 of unknown function; GT-2 includes diverse families of glycosyltransferases with a common GT-A type structural fold, which has two tightly associated beta/alpha/beta domains that tend to form a continuous central sheet of at least eight beta-strands. These are enzymes that catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. Glycosyltransferases have been classified into more than 90 distinct sequence based families. Pssm-ID: 133029 [Multi-domain] Cd Length: 166 Bit Score: 140.00 E-value: 2.87e-41
|
|||||||||
WcaE | COG1216 | Glycosyltransferase, GT2 family [Carbohydrate transport and metabolism]; |
1-258 | 1.62e-34 | |||||
Glycosyltransferase, GT2 family [Carbohydrate transport and metabolism]; Pssm-ID: 440829 [Multi-domain] Cd Length: 202 Bit Score: 123.56 E-value: 1.62e-34
|
|||||||||
Glycos_transf_2 | pfam00535 | Glycosyl transferase family 2; Diverse family, transferring sugar from UDP-glucose, ... |
17-189 | 3.06e-09 | |||||
Glycosyl transferase family 2; Diverse family, transferring sugar from UDP-glucose, UDP-N-acetyl- galactosamine, GDP-mannose or CDP-abequose, to a range of substrates including cellulose, dolichol phosphate and teichoic acids. Pssm-ID: 425738 [Multi-domain] Cd Length: 166 Bit Score: 54.71 E-value: 3.06e-09
|
|||||||||
Succinoglycan_BP_ExoA | cd02525 | ExoA is involved in the biosynthesis of succinoglycan; Succinoglycan Biosynthesis Protein ExoA ... |
164-274 | 2.07e-04 | |||||
ExoA is involved in the biosynthesis of succinoglycan; Succinoglycan Biosynthesis Protein ExoA catalyzes the formation of a beta-1,3 linkage of the second sugar (glucose) of the succinoglycan with the galactose on the lipid carrie. Succinoglycan is an acidic exopolysaccharide that is important for invasion of the nodules. Succinoglycan is a high-molecular-weight polymer composed of repeating octasaccharide units. These units are synthesized on membrane-bound isoprenoid lipid carriers, beginning with galactose followed by seven glucose molecules, and modified by the addition of acetate, succinate, and pyruvate. ExoA is a membrane protein with a transmembrance domain at c-terminus. Pssm-ID: 133016 [Multi-domain] Cd Length: 249 Bit Score: 41.83 E-value: 2.07e-04
|
|||||||||
Name | Accession | Description | Interval | E-value | |||||
GT_2_like_c | cd04186 | Subfamily of Glycosyltransferase Family GT2 of unknown function; GT-2 includes diverse ... |
17-229 | 2.87e-41 | |||||
Subfamily of Glycosyltransferase Family GT2 of unknown function; GT-2 includes diverse families of glycosyltransferases with a common GT-A type structural fold, which has two tightly associated beta/alpha/beta domains that tend to form a continuous central sheet of at least eight beta-strands. These are enzymes that catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. Glycosyltransferases have been classified into more than 90 distinct sequence based families. Pssm-ID: 133029 [Multi-domain] Cd Length: 166 Bit Score: 140.00 E-value: 2.87e-41
|
|||||||||
WcaE | COG1216 | Glycosyltransferase, GT2 family [Carbohydrate transport and metabolism]; |
1-258 | 1.62e-34 | |||||
Glycosyltransferase, GT2 family [Carbohydrate transport and metabolism]; Pssm-ID: 440829 [Multi-domain] Cd Length: 202 Bit Score: 123.56 E-value: 1.62e-34
|
|||||||||
GT2_RfbF_like | cd02526 | RfbF is a putative dTDP-rhamnosyl transferase; Shigella flexneri RfbF protein is a putative ... |
5-251 | 8.58e-20 | |||||
RfbF is a putative dTDP-rhamnosyl transferase; Shigella flexneri RfbF protein is a putative dTDP-rhamnosyl transferase. dTDP rhamnosyl transferases of Shigella flexneri add rhamnose sugars to N-acetyl-glucosamine in the O-antigen tetrasaccharide repeat. Lipopolysaccharide O antigens are important virulence determinants for many bacteria. The variations of sugar composition, the sequence of the sugars and the linkages in the O antigen provide structural diversity of the O antigen. Pssm-ID: 133017 [Multi-domain] Cd Length: 237 Bit Score: 85.41 E-value: 8.58e-20
|
|||||||||
BcsA | COG1215 | Glycosyltransferase, catalytic subunit of cellulose synthase and poly-beta-1, ... |
17-262 | 1.11e-15 | |||||
Glycosyltransferase, catalytic subunit of cellulose synthase and poly-beta-1,6-N-acetylglucosamine synthase [Cell motility]; Pssm-ID: 440828 [Multi-domain] Cd Length: 303 Bit Score: 75.16 E-value: 1.11e-15
|
|||||||||
WcaA | COG0463 | Glycosyltransferase involved in cell wall bisynthesis [Cell wall/membrane/envelope biogenesis]; ... |
17-241 | 3.79e-11 | |||||
Glycosyltransferase involved in cell wall bisynthesis [Cell wall/membrane/envelope biogenesis]; Pssm-ID: 440231 [Multi-domain] Cd Length: 208 Bit Score: 61.26 E-value: 3.79e-11
|
|||||||||
GT_2_like_b | cd04185 | Subfamily of Glycosyltransferase Family GT2 of unknown function; GT-2 includes diverse ... |
17-252 | 3.81e-11 | |||||
Subfamily of Glycosyltransferase Family GT2 of unknown function; GT-2 includes diverse families of glycosyltransferases with a common GT-A type structural fold, which has two tightly associated beta/alpha/beta domains that tend to form a continuous central sheet of at least eight beta-strands. These are enzymes that catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. Glycosyltransferases have been classified into more than 90 distinct sequence based families. Pssm-ID: 133028 [Multi-domain] Cd Length: 202 Bit Score: 61.11 E-value: 3.81e-11
|
|||||||||
Glycos_transf_2 | pfam00535 | Glycosyl transferase family 2; Diverse family, transferring sugar from UDP-glucose, ... |
17-189 | 3.06e-09 | |||||
Glycosyl transferase family 2; Diverse family, transferring sugar from UDP-glucose, UDP-N-acetyl- galactosamine, GDP-mannose or CDP-abequose, to a range of substrates including cellulose, dolichol phosphate and teichoic acids. Pssm-ID: 425738 [Multi-domain] Cd Length: 166 Bit Score: 54.71 E-value: 3.06e-09
|
|||||||||
Glyco_tranf_GTA_type | cd00761 | Glycosyltransferase family A (GT-A) includes diverse families of glycosyl transferases with a ... |
17-220 | 2.09e-08 | |||||
Glycosyltransferase family A (GT-A) includes diverse families of glycosyl transferases with a common GT-A type structural fold; Glycosyltransferases (GTs) are enzymes that synthesize oligosaccharides, polysaccharides, and glycoconjugates by transferring the sugar moiety from an activated nucleotide-sugar donor to an acceptor molecule, which may be a growing oligosaccharide, a lipid, or a protein. Based on the stereochemistry of the donor and acceptor molecules, GTs are classified as either retaining or inverting enzymes. To date, all GT structures adopt one of two possible folds, termed GT-A fold and GT-B fold. This hierarchy includes diverse families of glycosyl transferases with a common GT-A type structural fold, which has two tightly associated beta/alpha/beta domains that tend to form a continuous central sheet of at least eight beta-strands. The majority of the proteins in this superfamily are Glycosyltransferase family 2 (GT-2) proteins. But it also includes families GT-43, GT-6, GT-8, GT13 and GT-7; which are evolutionarily related to GT-2 and share structure similarities. Pssm-ID: 132997 [Multi-domain] Cd Length: 156 Bit Score: 52.51 E-value: 2.09e-08
|
|||||||||
CESA_like | cd06423 | CESA_like is the cellulose synthase superfamily; The cellulose synthase (CESA) superfamily ... |
31-204 | 2.76e-08 | |||||
CESA_like is the cellulose synthase superfamily; The cellulose synthase (CESA) superfamily includes a wide variety of glycosyltransferase family 2 enzymes that share the common characteristic of catalyzing the elongation of polysaccharide chains. The members include cellulose synthase catalytic subunit, chitin synthase, glucan biosynthesis protein and other families of CESA-like proteins. Cellulose synthase catalyzes the polymerization reaction of cellulose, an aggregate of unbranched polymers of beta-1,4-linked glucose residues in plants, most algae, some bacteria and fungi, and even some animals. In bacteria, algae and lower eukaryotes, there is a second unrelated type of cellulose synthase (Type II), which produces acylated cellulose, a derivative of cellulose. Chitin synthase catalyzes the incorporation of GlcNAc from substrate UDP-GlcNAc into chitin, which is a linear homopolymer of beta-(1,4)-linked GlcNAc residues and Glucan Biosynthesis protein catalyzes the elongation of beta-1,2 polyglucose chains of Glucan. Pssm-ID: 133045 [Multi-domain] Cd Length: 180 Bit Score: 52.23 E-value: 2.76e-08
|
|||||||||
Glyco_tranf_2_3 | pfam13641 | Glycosyltransferase like family 2; Members of this family of prokaryotic proteins include ... |
35-236 | 9.81e-08 | |||||
Glycosyltransferase like family 2; Members of this family of prokaryotic proteins include putative glucosyltransferase, which are involved in bacterial capsule biosynthesis. Pssm-ID: 433372 [Multi-domain] Cd Length: 230 Bit Score: 51.60 E-value: 9.81e-08
|
|||||||||
GT_2_like_a | cd02522 | GT_2_like_a represents a glycosyltransferase family-2 subfamily with unknown function; ... |
181-226 | 4.62e-05 | |||||
GT_2_like_a represents a glycosyltransferase family-2 subfamily with unknown function; Glycosyltransferase family 2 (GT-2) subfamily of unknown function. GT-2 includes diverse families of glycosyltransferases with a common GT-A type structural fold, which has two tightly associated beta/alpha/beta domains that tend to form a continuous central sheet of at least eight beta-strands. These are enzymes that catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. Glycosyltransferases have been classified into more than 90 distinct sequence based families. Pssm-ID: 133013 [Multi-domain] Cd Length: 221 Bit Score: 43.33 E-value: 4.62e-05
|
|||||||||
Succinoglycan_BP_ExoA | cd02525 | ExoA is involved in the biosynthesis of succinoglycan; Succinoglycan Biosynthesis Protein ExoA ... |
164-274 | 2.07e-04 | |||||
ExoA is involved in the biosynthesis of succinoglycan; Succinoglycan Biosynthesis Protein ExoA catalyzes the formation of a beta-1,3 linkage of the second sugar (glucose) of the succinoglycan with the galactose on the lipid carrie. Succinoglycan is an acidic exopolysaccharide that is important for invasion of the nodules. Succinoglycan is a high-molecular-weight polymer composed of repeating octasaccharide units. These units are synthesized on membrane-bound isoprenoid lipid carriers, beginning with galactose followed by seven glucose molecules, and modified by the addition of acetate, succinate, and pyruvate. ExoA is a membrane protein with a transmembrance domain at c-terminus. Pssm-ID: 133016 [Multi-domain] Cd Length: 249 Bit Score: 41.83 E-value: 2.07e-04
|
|||||||||
Glyco_trans_2_3 | pfam13632 | Glycosyl transferase family group 2; Members of this family of prokaryotic proteins include ... |
156-228 | 3.16e-03 | |||||
Glycosyl transferase family group 2; Members of this family of prokaryotic proteins include putative glucosyltransferases, which are involved in bacterial capsule biosynthesis. Pssm-ID: 433365 [Multi-domain] Cd Length: 192 Bit Score: 37.70 E-value: 3.16e-03
|
|||||||||
CESA_like_2 | cd06427 | CESA_like_2 is a member of the cellulose synthase superfamily; The cellulose synthase (CESA) ... |
171-217 | 3.44e-03 | |||||
CESA_like_2 is a member of the cellulose synthase superfamily; The cellulose synthase (CESA) superfamily includes a wide variety of glycosyltransferase family 2 enzymes that share the common characteristic of catalyzing the elongation of polysaccharide chains. The members include cellulose synthase catalytic subunit, chitin synthase, Glucan Biosynthesis protein and other families of CESA-like proteins. Cellulose synthase catalyzes the polymerization reaction of cellulose, an aggregate of unbranched polymers of beta-1,4-linked glucose residues in plants, most algae, some bacteria and fungi, and even some animals. In bacteria, algae and lower eukaryotes, there is a second unrelated type of cellulose synthase (Type II), which produces acylated cellulose, a derivative of cellulose. Chitin synthase catalyzes the incorporation of GlcNAc from substrate UDP-GlcNAc into chitin, which is a linear homopolymer of beta-(1,4)-linked GlcNAc residues and Glucan Biosynthesis protein catalyzes the elongation of beta-1,2 polyglucose chains of glucan. Pssm-ID: 133049 [Multi-domain] Cd Length: 241 Bit Score: 38.00 E-value: 3.44e-03
|
|||||||||
Blast search parameters | ||||
|