Chain C, Programmed cell death protein 1
IgV_PD1 domain-containing protein( domain architecture ID 11610716)
IgV_PD1 domain-containing protein
List of domain hits
Name | Accession | Description | Interval | E-value | |||
IgV_PD1 | cd16088 | Immunoglobulin (Ig)-like domain of Programmed Cell Death 1 (PD1); The members here are ... |
5-116 | 5.75e-79 | |||
Immunoglobulin (Ig)-like domain of Programmed Cell Death 1 (PD1); The members here are composed of the immunoglobulin (Ig)-like domain of Programmed Cell Death 1 (PD1; also known as CD279/cluster of differentiation 279). PD1 is a cell surface receptor that is expressed on T cells and pro-B cells. The protein's structure includes an extracellular IgV domain followed by a transmembrane region and an intracellular tail. Activation of CD4+ T cells, CD8+ T cells, NKT cells, B cells, and monocytes induces PD-1 expression, immediately after which it binds two distinct ligands, PD-L1 (also known as B7-H1 or CD274/cluster of differentiation 274) and PD-L2, also known as B7-DC. PD-1 plays an important role in down regulating the immune system by preventing the activation of T-cells, reducing autoimmunity and promoting self-tolerance. The inhibitory effect of PD-1 is accomplished by promoting apoptosis in antigen specific T-cells in lymph nodes while simultaneously reducing apoptosis in regulatory T cells. A class of drugs that target PD-1, known as the PD-1 inhibitors, activate the immune system to attack tumors and treat cancer. Comparisons between the mouse PD-1 (mPD-1) and human PD-1 (hPD-1) reveals that unlike the mPD-1 which has a conventional IgSF V-set domain, hPD-1 lacks a C" strand, and instead the C' and D strands are connected by a long and flexible loop. In addition, the BC loop is not stabilized by disulfide bonding to the F strand of the ligand binding beta sheet. These differences result in different binding affinities of human and mouse PD-1 for their ligands. : Pssm-ID: 409509 Cd Length: 112 Bit Score: 228.54 E-value: 5.75e-79
|
|||||||
Name | Accession | Description | Interval | E-value | |||
IgV_PD1 | cd16088 | Immunoglobulin (Ig)-like domain of Programmed Cell Death 1 (PD1); The members here are ... |
5-116 | 5.75e-79 | |||
Immunoglobulin (Ig)-like domain of Programmed Cell Death 1 (PD1); The members here are composed of the immunoglobulin (Ig)-like domain of Programmed Cell Death 1 (PD1; also known as CD279/cluster of differentiation 279). PD1 is a cell surface receptor that is expressed on T cells and pro-B cells. The protein's structure includes an extracellular IgV domain followed by a transmembrane region and an intracellular tail. Activation of CD4+ T cells, CD8+ T cells, NKT cells, B cells, and monocytes induces PD-1 expression, immediately after which it binds two distinct ligands, PD-L1 (also known as B7-H1 or CD274/cluster of differentiation 274) and PD-L2, also known as B7-DC. PD-1 plays an important role in down regulating the immune system by preventing the activation of T-cells, reducing autoimmunity and promoting self-tolerance. The inhibitory effect of PD-1 is accomplished by promoting apoptosis in antigen specific T-cells in lymph nodes while simultaneously reducing apoptosis in regulatory T cells. A class of drugs that target PD-1, known as the PD-1 inhibitors, activate the immune system to attack tumors and treat cancer. Comparisons between the mouse PD-1 (mPD-1) and human PD-1 (hPD-1) reveals that unlike the mPD-1 which has a conventional IgSF V-set domain, hPD-1 lacks a C" strand, and instead the C' and D strands are connected by a long and flexible loop. In addition, the BC loop is not stabilized by disulfide bonding to the F strand of the ligand binding beta sheet. These differences result in different binding affinities of human and mouse PD-1 for their ligands. Pssm-ID: 409509 Cd Length: 112 Bit Score: 228.54 E-value: 5.75e-79
|
|||||||
V-set | pfam07686 | Immunoglobulin V-set domain; This domain is found in antibodies as well as neural protein P0 ... |
9-98 | 3.96e-15 | |||
Immunoglobulin V-set domain; This domain is found in antibodies as well as neural protein P0 and CTL4 amongst others. Pssm-ID: 462230 Cd Length: 109 Bit Score: 66.33 E-value: 3.96e-15
|
|||||||
IGv | smart00406 | Immunoglobulin V-Type; |
20-94 | 2.30e-10 | |||
Immunoglobulin V-Type; Pssm-ID: 214650 Cd Length: 81 Bit Score: 53.15 E-value: 2.30e-10
|
|||||||
Name | Accession | Description | Interval | E-value | |||
IgV_PD1 | cd16088 | Immunoglobulin (Ig)-like domain of Programmed Cell Death 1 (PD1); The members here are ... |
5-116 | 5.75e-79 | |||
Immunoglobulin (Ig)-like domain of Programmed Cell Death 1 (PD1); The members here are composed of the immunoglobulin (Ig)-like domain of Programmed Cell Death 1 (PD1; also known as CD279/cluster of differentiation 279). PD1 is a cell surface receptor that is expressed on T cells and pro-B cells. The protein's structure includes an extracellular IgV domain followed by a transmembrane region and an intracellular tail. Activation of CD4+ T cells, CD8+ T cells, NKT cells, B cells, and monocytes induces PD-1 expression, immediately after which it binds two distinct ligands, PD-L1 (also known as B7-H1 or CD274/cluster of differentiation 274) and PD-L2, also known as B7-DC. PD-1 plays an important role in down regulating the immune system by preventing the activation of T-cells, reducing autoimmunity and promoting self-tolerance. The inhibitory effect of PD-1 is accomplished by promoting apoptosis in antigen specific T-cells in lymph nodes while simultaneously reducing apoptosis in regulatory T cells. A class of drugs that target PD-1, known as the PD-1 inhibitors, activate the immune system to attack tumors and treat cancer. Comparisons between the mouse PD-1 (mPD-1) and human PD-1 (hPD-1) reveals that unlike the mPD-1 which has a conventional IgSF V-set domain, hPD-1 lacks a C" strand, and instead the C' and D strands are connected by a long and flexible loop. In addition, the BC loop is not stabilized by disulfide bonding to the F strand of the ligand binding beta sheet. These differences result in different binding affinities of human and mouse PD-1 for their ligands. Pssm-ID: 409509 Cd Length: 112 Bit Score: 228.54 E-value: 5.75e-79
|
|||||||
V-set | pfam07686 | Immunoglobulin V-set domain; This domain is found in antibodies as well as neural protein P0 ... |
9-98 | 3.96e-15 | |||
Immunoglobulin V-set domain; This domain is found in antibodies as well as neural protein P0 and CTL4 amongst others. Pssm-ID: 462230 Cd Length: 109 Bit Score: 66.33 E-value: 3.96e-15
|
|||||||
IgV | cd00099 | Immunoglobulin variable domain (IgV); The members here are composed of the immunoglobulin ... |
7-94 | 1.33e-10 | |||
Immunoglobulin variable domain (IgV); The members here are composed of the immunoglobulin variable domain (IgV). The IgV family contains the standard Ig superfamily V-set AGFCC'C"/DEB domain topology, and are components of immunoglobulin (Ig) and T cell receptors. The basic structure of Ig molecules is a tetramer of two light chains and two heavy chains linked by disulfide bonds. In Ig, each chain is composed of one variable domain (IgV) and one or more constant domains (IgC); these names reflect the fact that the variability in sequences is higher in the variable domain than in the constant domain. Within the variable domain, there are regions of even more variability called the hypervariable or complementarity-determining regions (CDRs) which are responsible for antigen binding. A predominant feature of most Ig domains is the disulfide bridge connecting 2 beta-sheets with a tryptophan residue packed against the disulfide bond. Ig superfamily (IgSF) domains can be divided into 4 main classes based on their structures and sequences: the Variable (V), Constant 1 (C1), Constant 2 (C2), and Intermediate (I) sets. Typically, the V-set domains have A, B, E and, D strands in one sheet and A', G, F, C, C', and C" strands in the other. Pssm-ID: 409355 [Multi-domain] Cd Length: 111 Bit Score: 54.65 E-value: 1.33e-10
|
|||||||
IGv | smart00406 | Immunoglobulin V-Type; |
20-94 | 2.30e-10 | |||
Immunoglobulin V-Type; Pssm-ID: 214650 Cd Length: 81 Bit Score: 53.15 E-value: 2.30e-10
|
|||||||
IG_like | smart00410 | Immunoglobulin like; IG domains that cannot be classified into one of IGv1, IGc1, IGc2, IG. |
10-96 | 1.52e-09 | |||
Immunoglobulin like; IG domains that cannot be classified into one of IGv1, IGc1, IGc2, IG. Pssm-ID: 214653 [Multi-domain] Cd Length: 85 Bit Score: 51.35 E-value: 1.52e-09
|
|||||||
IgV_L_kappa | cd04980 | Immunoglobulin (Ig) light chain, kappa type, variable (V) domain; The members here are ... |
7-94 | 4.10e-09 | |||
Immunoglobulin (Ig) light chain, kappa type, variable (V) domain; The members here are composed of the immunoglobulin (Ig) light chain, kappa type, variable (V) domain. This group contains the standard Ig superfamily V-set AGFCC'C"/DEB domain topology. The basic structure of Ig molecules is a tetramer of two light chains and two heavy chains linked by disulfide bonds. There are two types of light chains: kappa and lambda, each composed of a constant domain (CL) and a variable domain (VL). There are five types of heavy chains (alpha, gamma, delta, epsilon, and mu), which determines the type of immunoglobulin formed: IgA, IgG, IgD, IgE, and IgM, respectively. In higher vertebrates, there are two types of light chain, designated kappa and lambda, which seem to be functionally identical, and can associate with any of the heavy chains. Pssm-ID: 409369 Cd Length: 106 Bit Score: 50.85 E-value: 4.10e-09
|
|||||||
IgV_TCR_alpha | cd04983 | Immunoglobulin (Ig) variable (V) domain of T-cell receptor (TCR) alpha chain and similar ... |
9-94 | 1.09e-07 | |||
Immunoglobulin (Ig) variable (V) domain of T-cell receptor (TCR) alpha chain and similar proteins; The members here are composed of the immunoglobulin (Ig) variable domain of the alpha chain of alpha/beta T-cell antigen receptors (TCRs). TCRs mediate antigen recognition by T lymphocytes, and are composed of alpha and beta, or gamma and delta polypeptide chains with variable (V) and constant (C) regions. This group represents the variable domain of the alpha chain of TCRs and also includes the variable domain of delta chains of TCRs. Alpha/beta TCRs recognize antigen as peptide fragments presented by major histocompatibility complex (MHC) molecules. The variable domain of TCRs is responsible for antigen recognition, and is located at the N-terminus of the receptor. Gamma/delta TCRs recognize intact protein antigens directly without antigen processing and recognize MHC independently of the bound peptide. Members of this group contain standard Ig superfamily V-set AGFCC'C"/DEB domain topology. Pssm-ID: 409372 [Multi-domain] Cd Length: 109 Bit Score: 46.88 E-value: 1.09e-07
|
|||||||
ig | pfam00047 | Immunoglobulin domain; Members of the immunoglobulin superfamily are found in hundreds of ... |
9-94 | 1.65e-05 | |||
Immunoglobulin domain; Members of the immunoglobulin superfamily are found in hundreds of proteins of different functions. Examples include antibodies, the giant muscle kinase titin and receptor tyrosine kinases. Immunoglobulin-like domains may be involved in protein-protein and protein-ligand interactions. Pssm-ID: 395002 Cd Length: 86 Bit Score: 40.64 E-value: 1.65e-05
|
|||||||
I-set | pfam07679 | Immunoglobulin I-set domain; |
13-96 | 2.55e-04 | |||
Immunoglobulin I-set domain; Pssm-ID: 400151 [Multi-domain] Cd Length: 90 Bit Score: 37.62 E-value: 2.55e-04
|
|||||||
IgV_TCR_beta | cd05899 | Immunoglobulin (Ig) variable (V) domain of T-cell receptor (TCR) beta chain; The members here ... |
9-101 | 2.63e-04 | |||
Immunoglobulin (Ig) variable (V) domain of T-cell receptor (TCR) beta chain; The members here are composed of the immunoglobulin (Ig) variable domain of the beta chain of alpha/beta T-cell antigen receptors (TCRs). TCRs mediate antigen recognition by T lymphocytes, and are composed of alpha and beta, or gamma and delta, polypeptide chains with variable (V) and constant (C) regions. This group includes the variable domain of the alpha chain of alpha/beta TCRs. Alpha/beta TCRs recognize antigen as peptide fragments presented by major histocompatibility complex (MHC) molecules. The variable domain of TCRs is responsible for antigen recognition, and is located at the N-terminus of the receptor. Gamma/delta TCRs recognize intact protein antigens directly without antigen processing and recognize MHC independently of the bound peptide. Members of this group contain standard Ig superfamily V-set AGFCC'C"/DEB domain topology. Pssm-ID: 409480 Cd Length: 110 Bit Score: 38.03 E-value: 2.63e-04
|
|||||||
Ig_3 | pfam13927 | Immunoglobulin domain; This family contains immunoglobulin-like domains. |
5-96 | 3.77e-04 | |||
Immunoglobulin domain; This family contains immunoglobulin-like domains. Pssm-ID: 464046 [Multi-domain] Cd Length: 78 Bit Score: 36.77 E-value: 3.77e-04
|
|||||||
IgV_P0-like | cd05715 | Immunoglobulin (Ig)-like domain of protein zero (P0) and similar proteins; The members here ... |
8-94 | 8.55e-04 | |||
Immunoglobulin (Ig)-like domain of protein zero (P0) and similar proteins; The members here are composed of the immunoglobulin (Ig) domain of protein zero (P0), a myelin membrane adhesion molecule. P0 accounts for over 50% of the total protein in peripheral nervous system (PNS) myelin. P0 is a single-pass transmembrane glycoprotein with a highly basic intracellular domain and an extracellular Ig domain. The extracellular domain of P0 (P0-ED) is similar to the Ig variable domain, carrying one acceptor sequence for N-linked glycosylation. P0 plays a role in membrane adhesion in the spiral wraps of the myelin sheath. The intracellular domain is thought to mediate membrane apposition of the cytoplasmic faces and may, through electrostatic interactions, interact directly with lipid headgroups. It is thought that homophilic interactions of the P0 extracellular domain mediate membrane juxtaposition in the extracellular space of PNS myelin. This group also contains the Ig domain of sodium channel subunit beta-2 (SCN2B), and of epithelial V-like antigen 1 (EVA). EVA, also known as myelin protein zero-like 2, is an adhesion molecule, which may play a role in structural organization of the thymus and early lymphocyte development. SCN2B subunits play a role in determining sodium channel density and function in neurons,and in control of electrical excitability in the brain. Pssm-ID: 409380 Cd Length: 117 Bit Score: 36.64 E-value: 8.55e-04
|
|||||||
IgV_TCR_gamma | cd04982 | Immunoglobulin (Ig) variable (V) domain of T-cell receptor (TCR) gamma chain; The members here ... |
16-94 | 1.20e-03 | |||
Immunoglobulin (Ig) variable (V) domain of T-cell receptor (TCR) gamma chain; The members here are composed of the immunoglobulin (Ig) variable (V) domain of the gamma chain of gamma/delta T-cell receptors (TCRs). TCRs mediate antigen recognition by T lymphocytes, and are heterodimers consisting of alpha and beta chains or gamma and delta chains. Each chain contains a variable (V) and a constant (C) region. The majority of T cells contain alpha/beta TCRs, but a small subset contain gamma/delta TCRs. Alpha/beta TCRs recognize antigens as peptide fragments presented by major histocompatibility complex (MHC) molecules. Gamma/delta TCRs recognize intact protein antigens directly without antigen processing and recognize MHC independently of the bound peptide. Gamma/delta T cells can also be stimulated by non-peptide antigens such as small phosphate- or amine-containing compounds. The variable domain of gamma/delta TCRs is responsible for antigen recognition and is located at the N-terminus of the receptor. Members of this group contain the standard Ig superfamily V-set AGFCC'C"/DEB domain topology. Pssm-ID: 409371 Cd Length: 117 Bit Score: 36.19 E-value: 1.20e-03
|
|||||||
IgV_pIgR_like | cd05716 | Immunoglobulin (Ig)-like domain in the polymeric Ig receptor (pIgR) and similar proteins; The ... |
10-96 | 2.27e-03 | |||
Immunoglobulin (Ig)-like domain in the polymeric Ig receptor (pIgR) and similar proteins; The members here are composed of the immunoglobulin (Ig)-like domain in the polymeric Ig receptor (pIgR) and similar proteins. pIgR delivers dimeric IgA and pentameric IgM to mucosal secretions. Polymeric immunoglobulin (pIgs) are the first defense against pathogens and toxins. IgA and IgM can form polymers via an 18-residue extension at their C-termini referred to as the tailpiece. pIgR transports pIgs across mucosal epithelia into mucosal secretions. Human pIgR is a glycosylated type I transmembrane protein, comprised of a 620-residue extracellular region, a 23-residue transmembrane region, and a 103-residue cytoplasmic tail. The extracellular region contains five domains that share sequence similarity with Ig variable (v) regions. This group also contains the Ig-like extracellular domains of other receptors such as NK cell receptor Nkp44 and myeloid receptors, among others. Pssm-ID: 409381 Cd Length: 100 Bit Score: 35.45 E-value: 2.27e-03
|
|||||||
IgI_5_Robo | cd20952 | Fifth Ig-like domain of Roundabout (Robo) homolog 1/2, and similar domains; a member of the ... |
53-103 | 3.44e-03 | |||
Fifth Ig-like domain of Roundabout (Robo) homolog 1/2, and similar domains; a member of the I-set of IgSF domains; The members here are composed of the fifth Ig-like domain of Roundabout (Robo) homolog 1/2 and similar domains. Robo receptors play a role in the development of the central nervous system (CNS), and are receptors of Slit protein. Slit is a repellant secreted by the neural cells in the midline. Slit acts through Robo to prevent most neurons from crossing the midline from either side. Three mammalian Robo homologs (Robo1, -2, and -3), and three mammalian Slit homologs (Slit-1,-2, -3), have been identified. Commissural axons, which cross the midline, express low levels of Robo; longitudinal axons, which avoid the midline, express high levels of Robo. Robo1, -2, and -3 are expressed by commissural neurons in the vertebrate spinal cord and Slits 1, -2, -3 are expressed at the ventral midline. Robo-3 is a divergent member of the Robo family which instead of being a positive regulator of slit responsiveness, antagonizes slit responsiveness in precrossing axons. The Slit-Robo interaction is mediated by the second leucine-rich repeat (LRR) domain of Slit and the two N-terminal Ig domains of Robo, Ig1 and Ig2. The primary Robo binding site for Slit2 has been shown by surface plasmon resonance experiments and mutational analysis to be is the Ig1 domain, while the Ig2 domain has been proposed to harbor a weak secondary binding site. The fifth Ig-like domain of Robo 1 and 2 is a member of the I-set Ig domains, having A-B-E-D strands in one beta-sheet and A'-G-F-C-C' in the other. Like the V-set Ig domains, members of the I-set have a discontinuous A strand but lack a C" strand. I-set domains are found in several cell adhesion molecules (such as VCAM, ICAM, and MADCAM), and are also present in numerous other diverse protein families, including several tyrosine-protein kinase receptors Pssm-ID: 409544 [Multi-domain] Cd Length: 87 Bit Score: 34.39 E-value: 3.44e-03
|
|||||||
IgI_1_MuSK | cd20970 | agrin-responsive first immunoglobulin-like domains (Ig1) of the MuSK ectodomain; a member of ... |
14-101 | 4.71e-03 | |||
agrin-responsive first immunoglobulin-like domains (Ig1) of the MuSK ectodomain; a member of the I-set of IgSF domains; The members here are composed of the first immunoglobulin-like domains (Ig1) of the Muscle-specific kinase (MuSK). MuSK is a receptor tyrosine kinase specifically expressed in skeletal muscle, where it plays a central role in the formation and maintenance of the neuromuscular junction (NMJ). MuSK is activated by agrin, a neuron-derived heparan sulfate proteoglycan. The activation of MUSK in myotubes regulates the formation of NMJs through the regulation of different processes including the specific expression of genes in subsynaptic nuclei, the reorganization of the actin cytoskeleton and the clustering of the acetylcholine receptors (AChR) in the postsynaptic membrane. The Ig superfamily (IgSF) is a heterogenous group of proteins, built on a common fold comprised of a sandwich of two beta sheets. IgSF domains can be divided into 4 main classes based on their structures and sequences: the Variable (V), Constant 1 (C1), Constant 2 (C2), and Intermediate (I) sets. Unlike the V-set, one of the distinctive features of I-set domains is the lack of a C" strand. The structure of the MuSK lacks this strand and thus it belongs to the I-set of the IgSF. I-set domains are found in several cell adhesion molecules (such as VCAM, ICAM, and MADCAM), and are also present in numerous other diverse protein families, including several tyrosine-protein kinase receptors, the hemolymph protein hemolin, the muscle proteins titin, telokin, and twitchin, the neuronal adhesion molecule axonin-1, and the signaling molecule semaphorin 4D that is involved in axonal guidance, immune function and angiogenesis. Pssm-ID: 409562 [Multi-domain] Cd Length: 92 Bit Score: 34.41 E-value: 4.71e-03
|
|||||||
IgV_CD33 | cd05712 | Immunoglobulin Variable (IgV) domain at the N-terminus of CD33 and related Siglecs (sialic ... |
25-92 | 8.50e-03 | |||
Immunoglobulin Variable (IgV) domain at the N-terminus of CD33 and related Siglecs (sialic acid-binding Ig-like lectins); The members here are composed of the immunoglobulin (Ig) domain at the N-terminus of Cluster of Differentiation (CD) 33 and related Siglecs (sialic acid-binding Ig-like lectins). Siglec refers to a structurally related protein family that specifically recognizes sialic acid in oligosaccharide chains of glycoproteins and glycolipids. Siglecs are type I transmembrane proteins, organized as an extracellular module composed of Ig-like domains, an N-terminal variable set of Ig-like carbohydrate recognition domains, and 1 to 16 constant Ig-like domains, followed by transmembrane and short cytoplasmic domains. Human Siglecs are classified into two subgroups, one subgroup is comprised of sialoadhesin (Siglec-1), CD22 (Siglec-2), and MAG, the other subgroup is comprised of CD33-related Siglecs which include CD33 (Siglec-3) and human Siglecs 5-11. Pssm-ID: 409377 Cd Length: 119 Bit Score: 33.90 E-value: 8.50e-03
|
|||||||
Blast search parameters | ||||
|