glycosyl transferase, partial [Streptococcus sp. HMSC065H07]
bifunctional glycosyltransferase family 2/GtrA family protein( domain architecture ID 10135401)
bifunctional glycosyltransferase family 2/GtrA family protein
List of domain hits
Name | Accession | Description | Interval | E-value | ||||
DPM_DPG-synthase_like | cd04179 | DPM_DPG-synthase_like is a member of the Glycosyltransferase 2 superfamily; DPM1 is the ... |
1-155 | 1.40e-25 | ||||
DPM_DPG-synthase_like is a member of the Glycosyltransferase 2 superfamily; DPM1 is the catalytic subunit of eukaryotic dolichol-phosphate mannose (DPM) synthase. DPM synthase is required for synthesis of the glycosylphosphatidylinositol (GPI) anchor, N-glycan precursor, protein O-mannose, and C-mannose. In higher eukaryotes,the enzyme has three subunits, DPM1, DPM2 and DPM3. DPM is synthesized from dolichol phosphate and GDP-Man on the cytosolic surface of the ER membrane by DPM synthase and then is flipped onto the luminal side and used as a donor substrate. In lower eukaryotes, such as Saccharomyces cerevisiae and Trypanosoma brucei, DPM synthase consists of a single component (Dpm1p and TbDpm1, respectively) that possesses one predicted transmembrane region near the C terminus for anchoring to the ER membrane. In contrast, the Dpm1 homologues of higher eukaryotes, namely fission yeast, fungi, and animals, have no transmembrane region, suggesting the existence of adapter molecules for membrane anchoring. This family also includes bacteria and archaea DPM1_like enzymes. However, the enzyme structure and mechanism of function are not well understood. The UDP-glucose:dolichyl-phosphate glucosyltransferase (DPG_synthase) is a transmembrane-bound enzyme of the endoplasmic reticulum involved in protein N-linked glycosylation. This enzyme catalyzes the transfer of glucose from UDP-glucose to dolichyl phosphate. This protein family belongs to Glycosyltransferase 2 superfamily. : Pssm-ID: 133022 [Multi-domain] Cd Length: 185 Bit Score: 100.73 E-value: 1.40e-25
|
||||||||
GtrA | COG2246 | Putative flippase GtrA (transmembrane translocase of bactoprenol-linked glucose) [Lipid ... |
188-312 | 9.76e-14 | ||||
Putative flippase GtrA (transmembrane translocase of bactoprenol-linked glucose) [Lipid transport and metabolism]; : Pssm-ID: 441847 Cd Length: 133 Bit Score: 67.15 E-value: 9.76e-14
|
||||||||
Name | Accession | Description | Interval | E-value | ||||
DPM_DPG-synthase_like | cd04179 | DPM_DPG-synthase_like is a member of the Glycosyltransferase 2 superfamily; DPM1 is the ... |
1-155 | 1.40e-25 | ||||
DPM_DPG-synthase_like is a member of the Glycosyltransferase 2 superfamily; DPM1 is the catalytic subunit of eukaryotic dolichol-phosphate mannose (DPM) synthase. DPM synthase is required for synthesis of the glycosylphosphatidylinositol (GPI) anchor, N-glycan precursor, protein O-mannose, and C-mannose. In higher eukaryotes,the enzyme has three subunits, DPM1, DPM2 and DPM3. DPM is synthesized from dolichol phosphate and GDP-Man on the cytosolic surface of the ER membrane by DPM synthase and then is flipped onto the luminal side and used as a donor substrate. In lower eukaryotes, such as Saccharomyces cerevisiae and Trypanosoma brucei, DPM synthase consists of a single component (Dpm1p and TbDpm1, respectively) that possesses one predicted transmembrane region near the C terminus for anchoring to the ER membrane. In contrast, the Dpm1 homologues of higher eukaryotes, namely fission yeast, fungi, and animals, have no transmembrane region, suggesting the existence of adapter molecules for membrane anchoring. This family also includes bacteria and archaea DPM1_like enzymes. However, the enzyme structure and mechanism of function are not well understood. The UDP-glucose:dolichyl-phosphate glucosyltransferase (DPG_synthase) is a transmembrane-bound enzyme of the endoplasmic reticulum involved in protein N-linked glycosylation. This enzyme catalyzes the transfer of glucose from UDP-glucose to dolichyl phosphate. This protein family belongs to Glycosyltransferase 2 superfamily. Pssm-ID: 133022 [Multi-domain] Cd Length: 185 Bit Score: 100.73 E-value: 1.40e-25
|
||||||||
WcaA | COG0463 | Glycosyltransferase involved in cell wall bisynthesis [Cell wall/membrane/envelope biogenesis]; ... |
1-190 | 3.16e-15 | ||||
Glycosyltransferase involved in cell wall bisynthesis [Cell wall/membrane/envelope biogenesis]; Pssm-ID: 440231 [Multi-domain] Cd Length: 208 Bit Score: 73.20 E-value: 3.16e-15
|
||||||||
GtrA | COG2246 | Putative flippase GtrA (transmembrane translocase of bactoprenol-linked glucose) [Lipid ... |
188-312 | 9.76e-14 | ||||
Putative flippase GtrA (transmembrane translocase of bactoprenol-linked glucose) [Lipid transport and metabolism]; Pssm-ID: 441847 Cd Length: 133 Bit Score: 67.15 E-value: 9.76e-14
|
||||||||
GtrA | pfam04138 | GtrA-like protein; Members of this family are predicted to be integral membrane proteins with ... |
195-312 | 4.91e-12 | ||||
GtrA-like protein; Members of this family are predicted to be integral membrane proteins with three or four transmembrane spans. They are involved in the synthesis of cell surface polysaccharides. The GtrA family are a subset of this family. GtrA is predicted to be an integral membrane protein with 4 transmembrane spans. It is involved is in O antigen modification by Shigella flexneri bacteriophage X (SfX), but does not determine the specificity of glucosylation. Its function remains unknown, but it may play a role in translocation of undecaprenyl phosphate linked glucose (UndP-Glc) across the cytoplasmic membrane. Another member of this family is a DTDP-glucose-4-keto-6-deoxy-D-glucose reductase, which catalyzes the conversion of dTDP-4-keto-6-deoxy-D-glucose to dTDP-D-fucose, which is involved in the biosynthesis of the serotype-specific polysaccharide antigen of Actinobacillus actinomycetemcomitans Y4 (serotype b). This family also includes the teichoic acid glycosylation protein, GtcA, which is a serotype-specific protein in some Listeria innocua and monocytogenes strains. Its exact function is not known, but it is essential for decoration of cell wall teichoic acids with glucose and galactose. Pssm-ID: 427738 Cd Length: 116 Bit Score: 61.80 E-value: 4.91e-12
|
||||||||
PTZ00260 | PTZ00260 | dolichyl-phosphate beta-glucosyltransferase; Provisional |
1-194 | 2.90e-08 | ||||
dolichyl-phosphate beta-glucosyltransferase; Provisional Pssm-ID: 240336 [Multi-domain] Cd Length: 333 Bit Score: 54.39 E-value: 2.90e-08
|
||||||||
Glycos_transf_2 | pfam00535 | Glycosyl transferase family 2; Diverse family, transferring sugar from UDP-glucose, ... |
1-90 | 3.53e-08 | ||||
Glycosyl transferase family 2; Diverse family, transferring sugar from UDP-glucose, UDP-N-acetyl- galactosamine, GDP-mannose or CDP-abequose, to a range of substrates including cellulose, dolichol phosphate and teichoic acids. Pssm-ID: 425738 [Multi-domain] Cd Length: 166 Bit Score: 52.01 E-value: 3.53e-08
|
||||||||
Name | Accession | Description | Interval | E-value | ||||
DPM_DPG-synthase_like | cd04179 | DPM_DPG-synthase_like is a member of the Glycosyltransferase 2 superfamily; DPM1 is the ... |
1-155 | 1.40e-25 | ||||
DPM_DPG-synthase_like is a member of the Glycosyltransferase 2 superfamily; DPM1 is the catalytic subunit of eukaryotic dolichol-phosphate mannose (DPM) synthase. DPM synthase is required for synthesis of the glycosylphosphatidylinositol (GPI) anchor, N-glycan precursor, protein O-mannose, and C-mannose. In higher eukaryotes,the enzyme has three subunits, DPM1, DPM2 and DPM3. DPM is synthesized from dolichol phosphate and GDP-Man on the cytosolic surface of the ER membrane by DPM synthase and then is flipped onto the luminal side and used as a donor substrate. In lower eukaryotes, such as Saccharomyces cerevisiae and Trypanosoma brucei, DPM synthase consists of a single component (Dpm1p and TbDpm1, respectively) that possesses one predicted transmembrane region near the C terminus for anchoring to the ER membrane. In contrast, the Dpm1 homologues of higher eukaryotes, namely fission yeast, fungi, and animals, have no transmembrane region, suggesting the existence of adapter molecules for membrane anchoring. This family also includes bacteria and archaea DPM1_like enzymes. However, the enzyme structure and mechanism of function are not well understood. The UDP-glucose:dolichyl-phosphate glucosyltransferase (DPG_synthase) is a transmembrane-bound enzyme of the endoplasmic reticulum involved in protein N-linked glycosylation. This enzyme catalyzes the transfer of glucose from UDP-glucose to dolichyl phosphate. This protein family belongs to Glycosyltransferase 2 superfamily. Pssm-ID: 133022 [Multi-domain] Cd Length: 185 Bit Score: 100.73 E-value: 1.40e-25
|
||||||||
WcaA | COG0463 | Glycosyltransferase involved in cell wall bisynthesis [Cell wall/membrane/envelope biogenesis]; ... |
1-190 | 3.16e-15 | ||||
Glycosyltransferase involved in cell wall bisynthesis [Cell wall/membrane/envelope biogenesis]; Pssm-ID: 440231 [Multi-domain] Cd Length: 208 Bit Score: 73.20 E-value: 3.16e-15
|
||||||||
GtrA | COG2246 | Putative flippase GtrA (transmembrane translocase of bactoprenol-linked glucose) [Lipid ... |
188-312 | 9.76e-14 | ||||
Putative flippase GtrA (transmembrane translocase of bactoprenol-linked glucose) [Lipid transport and metabolism]; Pssm-ID: 441847 Cd Length: 133 Bit Score: 67.15 E-value: 9.76e-14
|
||||||||
GtrA | pfam04138 | GtrA-like protein; Members of this family are predicted to be integral membrane proteins with ... |
195-312 | 4.91e-12 | ||||
GtrA-like protein; Members of this family are predicted to be integral membrane proteins with three or four transmembrane spans. They are involved in the synthesis of cell surface polysaccharides. The GtrA family are a subset of this family. GtrA is predicted to be an integral membrane protein with 4 transmembrane spans. It is involved is in O antigen modification by Shigella flexneri bacteriophage X (SfX), but does not determine the specificity of glucosylation. Its function remains unknown, but it may play a role in translocation of undecaprenyl phosphate linked glucose (UndP-Glc) across the cytoplasmic membrane. Another member of this family is a DTDP-glucose-4-keto-6-deoxy-D-glucose reductase, which catalyzes the conversion of dTDP-4-keto-6-deoxy-D-glucose to dTDP-D-fucose, which is involved in the biosynthesis of the serotype-specific polysaccharide antigen of Actinobacillus actinomycetemcomitans Y4 (serotype b). This family also includes the teichoic acid glycosylation protein, GtcA, which is a serotype-specific protein in some Listeria innocua and monocytogenes strains. Its exact function is not known, but it is essential for decoration of cell wall teichoic acids with glucose and galactose. Pssm-ID: 427738 Cd Length: 116 Bit Score: 61.80 E-value: 4.91e-12
|
||||||||
DPM1_like | cd06442 | DPM1_like represents putative enzymes similar to eukaryotic DPM1; Proteins similar to ... |
1-167 | 6.82e-09 | ||||
DPM1_like represents putative enzymes similar to eukaryotic DPM1; Proteins similar to eukaryotic DPM1, including enzymes from bacteria and archaea; DPM1 is the catalytic subunit of eukaryotic dolichol-phosphate mannose (DPM) synthase. DPM synthase is required for synthesis of the glycosylphosphatidylinositol (GPI) anchor, N-glycan precursor, protein O-mannose, and C-mannose. In higher eukaryotes,the enzyme has three subunits, DPM1, DPM2 and DPM3. DPM is synthesized from dolichol phosphate and GDP-Man on the cytosolic surface of the ER membrane by DPM synthase and then is flipped onto the luminal side and used as a donor substrate. In lower eukaryotes, such as Saccharomyces cerevisiae and Trypanosoma brucei, DPM synthase consists of a single component (Dpm1p and TbDpm1, respectively) that possesses one predicted transmembrane region near the C terminus for anchoring to the ER membrane. In contrast, the Dpm1 homologues of higher eukaryotes, namely fission yeast, fungi, and animals, have no transmembrane region, suggesting the existence of adapter molecules for membrane anchoring. This family also includes bacteria and archaea DPM1_like enzymes. However, the enzyme structure and mechanism of function are not well understood. This protein family belongs to Glycosyltransferase 2 superfamily. Pssm-ID: 133062 [Multi-domain] Cd Length: 224 Bit Score: 55.23 E-value: 6.82e-09
|
||||||||
PTZ00260 | PTZ00260 | dolichyl-phosphate beta-glucosyltransferase; Provisional |
1-194 | 2.90e-08 | ||||
dolichyl-phosphate beta-glucosyltransferase; Provisional Pssm-ID: 240336 [Multi-domain] Cd Length: 333 Bit Score: 54.39 E-value: 2.90e-08
|
||||||||
Glycos_transf_2 | pfam00535 | Glycosyl transferase family 2; Diverse family, transferring sugar from UDP-glucose, ... |
1-90 | 3.53e-08 | ||||
Glycosyl transferase family 2; Diverse family, transferring sugar from UDP-glucose, UDP-N-acetyl- galactosamine, GDP-mannose or CDP-abequose, to a range of substrates including cellulose, dolichol phosphate and teichoic acids. Pssm-ID: 425738 [Multi-domain] Cd Length: 166 Bit Score: 52.01 E-value: 3.53e-08
|
||||||||
DPG_synthase | cd04188 | DPG_synthase is involved in protein N-linked glycosylation; UDP-glucose:dolichyl-phosphate ... |
1-167 | 7.28e-08 | ||||
DPG_synthase is involved in protein N-linked glycosylation; UDP-glucose:dolichyl-phosphate glucosyltransferase (DPG_synthase) is a transmembrane-bound enzyme of the endoplasmic reticulum involved in protein N-linked glycosylation. This enzyme catalyzes the transfer of glucose from UDP-glucose to dolichyl phosphate. Pssm-ID: 133031 [Multi-domain] Cd Length: 211 Bit Score: 52.18 E-value: 7.28e-08
|
||||||||
DPM1_like_bac | cd04187 | Bacterial DPM1_like enzymes are related to eukaryotic DPM1; A family of bacterial enzymes ... |
1-129 | 5.86e-06 | ||||
Bacterial DPM1_like enzymes are related to eukaryotic DPM1; A family of bacterial enzymes related to eukaryotic DPM1; Although the mechanism of eukaryotic enzyme is well studied, the mechanism of the bacterial enzymes is not well understood. The eukaryotic DPM1 is the catalytic subunit of eukaryotic Dolichol-phosphate mannose (DPM) synthase. DPM synthase is required for synthesis of the glycosylphosphatidylinositol (GPI) anchor, N-glycan precursor, protein O-mannose, and C-mannose. The enzyme has three subunits, DPM1, DPM2 and DPM3. DPM is synthesized from dolichol phosphate and GDP-Man on the cytosolic surface of the ER membrane by DPM synthase and then is flipped onto the luminal side and used as a donor substrate. This protein family belongs to Glycosyltransferase 2 superfamily. Pssm-ID: 133030 [Multi-domain] Cd Length: 181 Bit Score: 45.93 E-value: 5.86e-06
|
||||||||
BcsA | COG1215 | Glycosyltransferase, catalytic subunit of cellulose synthase and poly-beta-1, ... |
1-83 | 1.17e-04 | ||||
Glycosyltransferase, catalytic subunit of cellulose synthase and poly-beta-1,6-N-acetylglucosamine synthase [Cell motility]; Pssm-ID: 440828 [Multi-domain] Cd Length: 303 Bit Score: 43.19 E-value: 1.17e-04
|
||||||||
GtrA | COG2246 | Putative flippase GtrA (transmembrane translocase of bactoprenol-linked glucose) [Lipid ... |
184-252 | 1.94e-04 | ||||
Putative flippase GtrA (transmembrane translocase of bactoprenol-linked glucose) [Lipid transport and metabolism]; Pssm-ID: 441847 Cd Length: 133 Bit Score: 40.57 E-value: 1.94e-04
|
||||||||
GlcNAc-1-P_transferase | cd06436 | N-acetyl-glucosamine transferase is involved in the synthesis of Poly-beta-1, ... |
1-108 | 3.08e-04 | ||||
N-acetyl-glucosamine transferase is involved in the synthesis of Poly-beta-1,6-N-acetyl-D-glucosamine; N-acetyl-glucosamine transferase is responsible for the synthesis of bacteria Poly-beta-1,6-N-acetyl-D-glucosamine (PGA). Poly-beta-1,6-N-acetyl-D-glucosamine is a homopolymer that serves as an adhesion for the maintenance of biofilm structural stability in diverse eubacteria. N-acetyl-glucosamine transferase is the product of gene pgaC. Genetic analysis indicated that all four genes of the pgaABCD locus were required for the PGA production, pgaC being a glycosyltransferase. Pssm-ID: 133058 [Multi-domain] Cd Length: 191 Bit Score: 41.22 E-value: 3.08e-04
|
||||||||
GtrA | pfam04138 | GtrA-like protein; Members of this family are predicted to be integral membrane proteins with ... |
193-250 | 4.35e-04 | ||||
GtrA-like protein; Members of this family are predicted to be integral membrane proteins with three or four transmembrane spans. They are involved in the synthesis of cell surface polysaccharides. The GtrA family are a subset of this family. GtrA is predicted to be an integral membrane protein with 4 transmembrane spans. It is involved is in O antigen modification by Shigella flexneri bacteriophage X (SfX), but does not determine the specificity of glucosylation. Its function remains unknown, but it may play a role in translocation of undecaprenyl phosphate linked glucose (UndP-Glc) across the cytoplasmic membrane. Another member of this family is a DTDP-glucose-4-keto-6-deoxy-D-glucose reductase, which catalyzes the conversion of dTDP-4-keto-6-deoxy-D-glucose to dTDP-D-fucose, which is involved in the biosynthesis of the serotype-specific polysaccharide antigen of Actinobacillus actinomycetemcomitans Y4 (serotype b). This family also includes the teichoic acid glycosylation protein, GtcA, which is a serotype-specific protein in some Listeria innocua and monocytogenes strains. Its exact function is not known, but it is essential for decoration of cell wall teichoic acids with glucose and galactose. Pssm-ID: 427738 Cd Length: 116 Bit Score: 39.45 E-value: 4.35e-04
|
||||||||
GT_2_like_e | cd04192 | Subfamily of Glycosyltransferase Family GT2 of unknown function; GT-2 includes diverse ... |
1-105 | 2.82e-03 | ||||
Subfamily of Glycosyltransferase Family GT2 of unknown function; GT-2 includes diverse families of glycosyltransferases with a common GT-A type structural fold, which has two tightly associated beta/alpha/beta domains that tend to form a continuous central sheet of at least eight beta-strands. These are enzymes that catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. Glycosyltransferases have been classified into more than 90 distinct sequence based families. Pssm-ID: 133035 [Multi-domain] Cd Length: 229 Bit Score: 38.42 E-value: 2.82e-03
|
||||||||
CESA_like | cd06423 | CESA_like is the cellulose synthase superfamily; The cellulose synthase (CESA) superfamily ... |
1-83 | 4.26e-03 | ||||
CESA_like is the cellulose synthase superfamily; The cellulose synthase (CESA) superfamily includes a wide variety of glycosyltransferase family 2 enzymes that share the common characteristic of catalyzing the elongation of polysaccharide chains. The members include cellulose synthase catalytic subunit, chitin synthase, glucan biosynthesis protein and other families of CESA-like proteins. Cellulose synthase catalyzes the polymerization reaction of cellulose, an aggregate of unbranched polymers of beta-1,4-linked glucose residues in plants, most algae, some bacteria and fungi, and even some animals. In bacteria, algae and lower eukaryotes, there is a second unrelated type of cellulose synthase (Type II), which produces acylated cellulose, a derivative of cellulose. Chitin synthase catalyzes the incorporation of GlcNAc from substrate UDP-GlcNAc into chitin, which is a linear homopolymer of beta-(1,4)-linked GlcNAc residues and Glucan Biosynthesis protein catalyzes the elongation of beta-1,2 polyglucose chains of Glucan. Pssm-ID: 133045 [Multi-domain] Cd Length: 180 Bit Score: 37.59 E-value: 4.26e-03
|
||||||||
Blast search parameters | ||||
|