hydroxysteroid dehydrogenase-like protein 2 isoform X2 [Homo sapiens]
hydroxysteroid dehydrogenase-like protein 2( domain architecture ID 10395550)
hydroxysteroid dehydrogenase-like protein 2 (HSDL2) may be involved in in fatty acid metabolism, as well as in cholesterol metabolism and homeostasis
List of domain hits
Name | Accession | Description | Interval | E-value | |||
NADB_Rossmann super family | cl21454 | Rossmann-fold NAD(P)(+)-binding proteins; A large family of proteins that share a ... |
1-100 | 2.41e-40 | |||
Rossmann-fold NAD(P)(+)-binding proteins; A large family of proteins that share a Rossmann-fold NAD(P)H/NAD(P)(+) binding (NADB) domain. The NADB domain is found in numerous dehydrogenases of metabolic pathways such as glycolysis, and many other redox enzymes. NAD binding involves numerous hydrogen-bonds and van der Waals contacts, in particular H-bonding of residues in a turn between the first strand and the subsequent helix of the Rossmann-fold topology. Characteristically, this turn exhibits a consensus binding pattern similar to GXGXXG, in which the first 2 glycines participate in NAD(P)-binding, and the third facilitates close packing of the helix to the beta-strand. Typically, proteins in this family contain a second domain in addition to the NADB domain, which is responsible for specifically binding a substrate and catalyzing a particular enzymatic reaction. The actual alignment was detected with superfamily member PRK08278: Pssm-ID: 473865 [Multi-domain] Cd Length: 273 Bit Score: 139.65 E-value: 2.41e-40
|
|||||||
SCP2 | COG3255 | Putative sterol carrier protein, contains SCP2 domain [Lipid transport and metabolism]; |
137-240 | 1.32e-24 | |||
Putative sterol carrier protein, contains SCP2 domain [Lipid transport and metabolism]; : Pssm-ID: 442486 [Multi-domain] Cd Length: 104 Bit Score: 93.82 E-value: 1.32e-24
|
|||||||
Name | Accession | Description | Interval | E-value | |||
PRK08278 | PRK08278 | SDR family oxidoreductase; |
1-100 | 2.41e-40 | |||
SDR family oxidoreductase; Pssm-ID: 181349 [Multi-domain] Cd Length: 273 Bit Score: 139.65 E-value: 2.41e-40
|
|||||||
HSDL2_SDR_c | cd09762 | human hydroxysteroid dehydrogenase-like protein 2 (HSDL2), classical (c) SDRs; This subgroup ... |
1-74 | 2.09e-39 | |||
human hydroxysteroid dehydrogenase-like protein 2 (HSDL2), classical (c) SDRs; This subgroup includes human HSDL2 and related protens. These are members of the classical SDR family, with a canonical Gly-rich NAD-binding motif and the typical YXXXK active site motif. However, the rest of the catalytic tetrad is not strongly conserved. HSDL2 may play a part in fatty acid metabolism, as it is found in peroxisomes. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRS are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes have a 3-glycine N-terminal NAD(P)(H)-binding pattern (typically, TGxxxGxG in classical SDRs and TGxxGxxG in extended SDRs), while substrate binding is in the C-terminal region. A critical catalytic Tyr residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering), is often found in a conserved YXXXK pattern. In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) or additional Ser, contributing to the active site. Substrates for these enzymes include sugars, steroids, alcohols, and aromatic compounds. The standard reaction mechanism is a proton relay involving the conserved Tyr and Lys, as well as Asn (or Ser). Some SDR family members, including 17 beta-hydroxysteroid dehydrogenase contain an additional helix-turn-helix motif that is not generally found among SDRs. Pssm-ID: 187663 [Multi-domain] Cd Length: 243 Bit Score: 136.42 E-value: 2.09e-39
|
|||||||
SCP2 | COG3255 | Putative sterol carrier protein, contains SCP2 domain [Lipid transport and metabolism]; |
137-240 | 1.32e-24 | |||
Putative sterol carrier protein, contains SCP2 domain [Lipid transport and metabolism]; Pssm-ID: 442486 [Multi-domain] Cd Length: 104 Bit Score: 93.82 E-value: 1.32e-24
|
|||||||
SCP2 | pfam02036 | SCP-2 sterol transfer family; This domain is involved in binding sterols. It is found in the ... |
144-237 | 6.81e-24 | |||
SCP-2 sterol transfer family; This domain is involved in binding sterols. It is found in the SCP2 protein as well as the C terminus of the enzyme estradiol 17 beta-dehydrogenase EC:1.1.1.62. The UNC-24 protein contains an SPFH domain pfam01145. Pssm-ID: 460423 [Multi-domain] Cd Length: 100 Bit Score: 91.93 E-value: 6.81e-24
|
|||||||
Name | Accession | Description | Interval | E-value | |||
PRK08278 | PRK08278 | SDR family oxidoreductase; |
1-100 | 2.41e-40 | |||
SDR family oxidoreductase; Pssm-ID: 181349 [Multi-domain] Cd Length: 273 Bit Score: 139.65 E-value: 2.41e-40
|
|||||||
HSDL2_SDR_c | cd09762 | human hydroxysteroid dehydrogenase-like protein 2 (HSDL2), classical (c) SDRs; This subgroup ... |
1-74 | 2.09e-39 | |||
human hydroxysteroid dehydrogenase-like protein 2 (HSDL2), classical (c) SDRs; This subgroup includes human HSDL2 and related protens. These are members of the classical SDR family, with a canonical Gly-rich NAD-binding motif and the typical YXXXK active site motif. However, the rest of the catalytic tetrad is not strongly conserved. HSDL2 may play a part in fatty acid metabolism, as it is found in peroxisomes. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRS are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes have a 3-glycine N-terminal NAD(P)(H)-binding pattern (typically, TGxxxGxG in classical SDRs and TGxxGxxG in extended SDRs), while substrate binding is in the C-terminal region. A critical catalytic Tyr residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering), is often found in a conserved YXXXK pattern. In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) or additional Ser, contributing to the active site. Substrates for these enzymes include sugars, steroids, alcohols, and aromatic compounds. The standard reaction mechanism is a proton relay involving the conserved Tyr and Lys, as well as Asn (or Ser). Some SDR family members, including 17 beta-hydroxysteroid dehydrogenase contain an additional helix-turn-helix motif that is not generally found among SDRs. Pssm-ID: 187663 [Multi-domain] Cd Length: 243 Bit Score: 136.42 E-value: 2.09e-39
|
|||||||
DHRS1_HSDL2-like_SDR_c | cd05338 | human dehydrogenase/reductase (SDR family) member 1 (DHRS1) and human hydroxysteroid ... |
1-74 | 5.91e-27 | |||
human dehydrogenase/reductase (SDR family) member 1 (DHRS1) and human hydroxysteroid dehydrogenase-like protein 2 (HSDL2), classical (c) SDRs; This subgroup includes human DHRS1 and human HSDL2 and related proteins. These are members of the classical SDR family, with a canonical Gly-rich NAD-binding motif and the typical YXXXK active site motif. However, the rest of the catalytic tetrad is not strongly conserved. DHRS1 mRNA has been detected in many tissues, liver, heart, skeletal muscle, kidney and pancreas; a longer transcript is predominantly expressed in the liver , a shorter one in the heart. HSDL2 may play a part in fatty acid metabolism, as it is found in peroxisomes. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRS are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes have a 3-glycine N-terminal NAD(P)(H)-binding pattern (typically, TGxxxGxG in classical SDRs and TGxxGxxG in extended SDRs), while substrate binding is in the C-terminal region. A critical catalytic Tyr residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering), is often found in a conserved YXXXK pattern. In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) or additional Ser, contributing to the active site. Substrates for these enzymes include sugars, steroids, alcohols, and aromatic compounds. The standard reaction mechanism is a proton relay involving the conserved Tyr and Lys, as well as Asn (or Ser). Some SDR family members, including 17 beta-hydroxysteroid dehydrogenase contain an additional helix-turn-helix motif that is not generally found among SDRs. Pssm-ID: 187597 [Multi-domain] Cd Length: 246 Bit Score: 104.01 E-value: 5.91e-27
|
|||||||
SCP2 | COG3255 | Putative sterol carrier protein, contains SCP2 domain [Lipid transport and metabolism]; |
137-240 | 1.32e-24 | |||
Putative sterol carrier protein, contains SCP2 domain [Lipid transport and metabolism]; Pssm-ID: 442486 [Multi-domain] Cd Length: 104 Bit Score: 93.82 E-value: 1.32e-24
|
|||||||
SCP2 | pfam02036 | SCP-2 sterol transfer family; This domain is involved in binding sterols. It is found in the ... |
144-237 | 6.81e-24 | |||
SCP-2 sterol transfer family; This domain is involved in binding sterols. It is found in the SCP2 protein as well as the C terminus of the enzyme estradiol 17 beta-dehydrogenase EC:1.1.1.62. The UNC-24 protein contains an SPFH domain pfam01145. Pssm-ID: 460423 [Multi-domain] Cd Length: 100 Bit Score: 91.93 E-value: 6.81e-24
|
|||||||
BDS1 | COG2015 | Alkyl sulfatase BDS1 and related hydrolases, metallo-beta-lactamase superfamily [Secondary ... |
185-237 | 1.87e-05 | |||
Alkyl sulfatase BDS1 and related hydrolases, metallo-beta-lactamase superfamily [Secondary metabolites biosynthesis, transport and catabolism]; Pssm-ID: 441618 [Multi-domain] Cd Length: 629 Bit Score: 45.22 E-value: 1.87e-05
|
|||||||
Alkyl_sulf_C | pfam14864 | Alkyl sulfatase C-terminal; This domain is found at the C-terminus of alkyl sulfatases. ... |
185-237 | 1.68e-04 | |||
Alkyl sulfatase C-terminal; This domain is found at the C-terminus of alkyl sulfatases. Together with the N-terminal catalytic domain, this domain forms a hydrophobic chute and may recruit hydrophobic substrates. Pssm-ID: 405542 [Multi-domain] Cd Length: 124 Bit Score: 40.25 E-value: 1.68e-04
|
|||||||
Blast search parameters | ||||
|