integral membrane protein DGCR2/IDD isoform X1 [Leucoraja erinacea]
C-type lectin domain-containing protein( domain architecture ID 10060209)
C-type lectin (CTL)/C-type lectin-like (CTLD) domain-containing protein similar to Manduca sexta immunolectin-A that stimulates activation of plasma prophenol oxidase
List of domain hits
Name | Accession | Description | Interval | E-value | |||
CLECT super family | cl02432 | C-type lectin (CTL)/C-type lectin-like (CTLD) domain; CLECT: C-type lectin (CTL)/C-type ... |
120-276 | 2.32e-96 | |||
C-type lectin (CTL)/C-type lectin-like (CTLD) domain; CLECT: C-type lectin (CTL)/C-type lectin-like (CTLD) domain; protein domains homologous to the carbohydrate-recognition domains (CRDs) of the C-type lectins. This group is chiefly comprised of eukaryotic CTLDs, but contains some, as yet functionally uncharacterized, bacterial CTLDs. Many CTLDs are calcium-dependent carbohydrate binding modules; other CTLDs bind protein ligands, lipids, and inorganic surfaces, including CaCO3 and ice. Animal C-type lectins are involved in such functions as extracellular matrix organization, endocytosis, complement activation, pathogen recognition, and cell-cell interactions. For example: mannose-binding lectin and lung surfactant proteins A and D bind carbohydrates on surfaces (e.g. pathogens, allergens, necrotic, and apoptotic cells) and mediate functions associated with killing and phagocytosis; P (platlet)-, E (endothelial)-, and L (leukocyte)- selectins (sels) mediate the initial attachment, tethering, and rolling of lymphocytes on inflamed vascular walls enabling subsequent lymphocyte adhesion and transmigration. CTLDs may bind a variety of carbohydrate ligands including mannose, N-acetylglucosamine, galactose, N-acetylgalactosamine, and fucose. Several CTLDs bind to protein ligands, and only some of these binding interactions are Ca2+-dependent; including the CTLDs of Coagulation Factors IX/X (IX/X) and Von Willebrand Factor (VWF) binding proteins, and natural killer cell receptors. C-type lectins, such as lithostathine, and some type II antifreeze glycoproteins function in a Ca2+-independent manner to bind inorganic surfaces. Many proteins in this group contain a single CTLD; these CTLDs associate with each other through several different surfaces to form dimers, trimers, or tetramers, from which ligand-binding sites project in different orientations. Various vertebrate type 1 transmembrane proteins including macrophage mannose receptor, endo180, phospholipase A2 receptor, and dendritic and epithelial cell receptor (DEC205) have extracellular domains containing 8 or more CTLDs; these CTLDs remain in the parent model. In some members (IX/X and VWF binding proteins), a loop extends to the adjoining domain to form a loop-swapped dimer. A similar conformation is seen in the macrophage mannose receptor CRD4's putative non-sugar bound form of the domain in the acid environment of the endosome. Lineage specific expansions of CTLDs have occurred in several animal lineages including Drosophila melanogaster and Caenorhabditis elegans; these CTLDs also remain in the parent model. The actual alignment was detected with superfamily member cd03599: Pssm-ID: 470576 Cd Length: 153 Bit Score: 289.51 E-value: 2.32e-96
|
|||||||
LDLa | cd00112 | Low Density Lipoprotein Receptor Class A domain, a cysteine-rich repeat that plays a central ... |
38-74 | 1.40e-10 | |||
Low Density Lipoprotein Receptor Class A domain, a cysteine-rich repeat that plays a central role in mammalian cholesterol metabolism; the receptor protein binds LDL and transports it into cells by endocytosis; 7 successive cysteine-rich repeats of about 40 amino acids are present in the N-terminal of this multidomain membrane protein; other homologous domains occur in related receptors, including the very low-density lipoprotein receptor and the LDL receptor-related protein/alpha 2-macroglobulin receptor, and in proteins which are functionally unrelated, such as the C9 component of complement; the binding of calcium is required for in vitro formation of the native disulfide isomer and is necessary in establishing and maintaining the modular structure : Pssm-ID: 238060 Cd Length: 35 Bit Score: 56.06 E-value: 1.40e-10
|
|||||||
VWC | smart00214 | von Willebrand factor (vWF) type C domain; |
280-338 | 2.05e-08 | |||
von Willebrand factor (vWF) type C domain; : Pssm-ID: 214564 Cd Length: 59 Bit Score: 50.59 E-value: 2.05e-08
|
|||||||
Name | Accession | Description | Interval | E-value | |||
CLECT_DGCR2_like | cd03599 | C-type lectin-like domain (CTLD) of the type found in DGCR2, an integral membrane protein ... |
120-276 | 2.32e-96 | |||
C-type lectin-like domain (CTLD) of the type found in DGCR2, an integral membrane protein deleted in DiGeorge Syndrome (DGS); CLECT_DGCR2_like: C-type lectin-like domain (CTLD) of the type found in DGCR2, an integral membrane protein deleted in DiGeorge Syndrome (DGS). CTLD refers to a domain homologous to the carbohydrate-recognition domains (CRDs) of the C-type lectins. DGS is also known velo-cardio-facial syndrome (VCFS). DGS is a genetic abnormality that results in malformations of the heart, face, and limbs and is associated with schizophrenia and depressive disorders. DGCR2 is a candidate for involvement in the pathogenesis of DGS since the DGCR2 gene lies within the minimal DGS critical region (MDGRC) of 22q11, which when deleted gives rise to DGS, and the DGCR2 gene is in close proximity to the balanced translocation breakpoint in a DGS patient having a balanced translocation. Pssm-ID: 153069 Cd Length: 153 Bit Score: 289.51 E-value: 2.32e-96
|
|||||||
Lectin_C | pfam00059 | Lectin C-type domain; This family includes both long and short form C-type |
140-276 | 7.82e-13 | |||
Lectin C-type domain; This family includes both long and short form C-type Pssm-ID: 459655 [Multi-domain] Cd Length: 105 Bit Score: 64.81 E-value: 7.82e-13
|
|||||||
CLECT | smart00034 | C-type lectin (CTL) or carbohydrate-recognition domain (CRD); Many of these domains function ... |
120-275 | 5.84e-12 | |||
C-type lectin (CTL) or carbohydrate-recognition domain (CRD); Many of these domains function as calcium-dependent carbohydrate binding modules. Pssm-ID: 214480 [Multi-domain] Cd Length: 124 Bit Score: 63.00 E-value: 5.84e-12
|
|||||||
LDLa | cd00112 | Low Density Lipoprotein Receptor Class A domain, a cysteine-rich repeat that plays a central ... |
38-74 | 1.40e-10 | |||
Low Density Lipoprotein Receptor Class A domain, a cysteine-rich repeat that plays a central role in mammalian cholesterol metabolism; the receptor protein binds LDL and transports it into cells by endocytosis; 7 successive cysteine-rich repeats of about 40 amino acids are present in the N-terminal of this multidomain membrane protein; other homologous domains occur in related receptors, including the very low-density lipoprotein receptor and the LDL receptor-related protein/alpha 2-macroglobulin receptor, and in proteins which are functionally unrelated, such as the C9 component of complement; the binding of calcium is required for in vitro formation of the native disulfide isomer and is necessary in establishing and maintaining the modular structure Pssm-ID: 238060 Cd Length: 35 Bit Score: 56.06 E-value: 1.40e-10
|
|||||||
LDLa | smart00192 | Low-density lipoprotein receptor domain class A; Cysteine-rich repeat in the low-density ... |
37-71 | 1.95e-09 | |||
Low-density lipoprotein receptor domain class A; Cysteine-rich repeat in the low-density lipoprotein (LDL) receptor that plays a central role in mammalian cholesterol metabolism. The N-terminal type A repeats in LDL receptor bind the lipoproteins. Other homologous domains occur in related receptors, including the very low-density lipoprotein receptor and the LDL receptor-related protein/alpha 2-macroglobulin receptor, and in proteins which are functionally unrelated, such as the C9 component of complement. Mutations in the LDL receptor gene cause familial hypercholesterolemia. Pssm-ID: 197566 Cd Length: 33 Bit Score: 53.02 E-value: 1.95e-09
|
|||||||
VWC | smart00214 | von Willebrand factor (vWF) type C domain; |
280-338 | 2.05e-08 | |||
von Willebrand factor (vWF) type C domain; Pssm-ID: 214564 Cd Length: 59 Bit Score: 50.59 E-value: 2.05e-08
|
|||||||
Ldl_recept_a | pfam00057 | Low-density lipoprotein receptor domain class A; |
37-74 | 2.57e-08 | |||
Low-density lipoprotein receptor domain class A; Pssm-ID: 395011 Cd Length: 37 Bit Score: 49.94 E-value: 2.57e-08
|
|||||||
Name | Accession | Description | Interval | E-value | ||||
CLECT_DGCR2_like | cd03599 | C-type lectin-like domain (CTLD) of the type found in DGCR2, an integral membrane protein ... |
120-276 | 2.32e-96 | ||||
C-type lectin-like domain (CTLD) of the type found in DGCR2, an integral membrane protein deleted in DiGeorge Syndrome (DGS); CLECT_DGCR2_like: C-type lectin-like domain (CTLD) of the type found in DGCR2, an integral membrane protein deleted in DiGeorge Syndrome (DGS). CTLD refers to a domain homologous to the carbohydrate-recognition domains (CRDs) of the C-type lectins. DGS is also known velo-cardio-facial syndrome (VCFS). DGS is a genetic abnormality that results in malformations of the heart, face, and limbs and is associated with schizophrenia and depressive disorders. DGCR2 is a candidate for involvement in the pathogenesis of DGS since the DGCR2 gene lies within the minimal DGS critical region (MDGRC) of 22q11, which when deleted gives rise to DGS, and the DGCR2 gene is in close proximity to the balanced translocation breakpoint in a DGS patient having a balanced translocation. Pssm-ID: 153069 Cd Length: 153 Bit Score: 289.51 E-value: 2.32e-96
|
||||||||
Lectin_C | pfam00059 | Lectin C-type domain; This family includes both long and short form C-type |
140-276 | 7.82e-13 | ||||
Lectin C-type domain; This family includes both long and short form C-type Pssm-ID: 459655 [Multi-domain] Cd Length: 105 Bit Score: 64.81 E-value: 7.82e-13
|
||||||||
CLECT | cd00037 | C-type lectin (CTL)/C-type lectin-like (CTLD) domain; CLECT: C-type lectin (CTL)/C-type ... |
132-276 | 4.08e-12 | ||||
C-type lectin (CTL)/C-type lectin-like (CTLD) domain; CLECT: C-type lectin (CTL)/C-type lectin-like (CTLD) domain; protein domains homologous to the carbohydrate-recognition domains (CRDs) of the C-type lectins. This group is chiefly comprised of eukaryotic CTLDs, but contains some, as yet functionally uncharacterized, bacterial CTLDs. Many CTLDs are calcium-dependent carbohydrate binding modules; other CTLDs bind protein ligands, lipids, and inorganic surfaces, including CaCO3 and ice. Animal C-type lectins are involved in such functions as extracellular matrix organization, endocytosis, complement activation, pathogen recognition, and cell-cell interactions. For example: mannose-binding lectin and lung surfactant proteins A and D bind carbohydrates on surfaces (e.g. pathogens, allergens, necrotic, and apoptotic cells) and mediate functions associated with killing and phagocytosis; P (platlet)-, E (endothelial)-, and L (leukocyte)- selectins (sels) mediate the initial attachment, tethering, and rolling of lymphocytes on inflamed vascular walls enabling subsequent lymphocyte adhesion and transmigration. CTLDs may bind a variety of carbohydrate ligands including mannose, N-acetylglucosamine, galactose, N-acetylgalactosamine, and fucose. Several CTLDs bind to protein ligands, and only some of these binding interactions are Ca2+-dependent; including the CTLDs of Coagulation Factors IX/X (IX/X) and Von Willebrand Factor (VWF) binding proteins, and natural killer cell receptors. C-type lectins, such as lithostathine, and some type II antifreeze glycoproteins function in a Ca2+-independent manner to bind inorganic surfaces. Many proteins in this group contain a single CTLD; these CTLDs associate with each other through several different surfaces to form dimers, trimers, or tetramers, from which ligand-binding sites project in different orientations. Various vertebrate type 1 transmembrane proteins including macrophage mannose receptor, endo180, phospholipase A2 receptor, and dendritic and epithelial cell receptor (DEC205) have extracellular domains containing 8 or more CTLDs; these CTLDs remain in the parent model. In some members (IX/X and VWF binding proteins), a loop extends to the adjoining domain to form a loop-swapped dimer. A similar conformation is seen in the macrophage mannose receptor CRD4's putative non-sugar bound form of the domain in the acid environment of the endosome. Lineage specific expansions of CTLDs have occurred in several animal lineages including Drosophila melanogaster and Caenorhabditis elegans; these CTLDs also remain in the parent model. Pssm-ID: 153057 [Multi-domain] Cd Length: 116 Bit Score: 63.02 E-value: 4.08e-12
|
||||||||
CLECT | smart00034 | C-type lectin (CTL) or carbohydrate-recognition domain (CRD); Many of these domains function ... |
120-275 | 5.84e-12 | ||||
C-type lectin (CTL) or carbohydrate-recognition domain (CRD); Many of these domains function as calcium-dependent carbohydrate binding modules. Pssm-ID: 214480 [Multi-domain] Cd Length: 124 Bit Score: 63.00 E-value: 5.84e-12
|
||||||||
LDLa | cd00112 | Low Density Lipoprotein Receptor Class A domain, a cysteine-rich repeat that plays a central ... |
38-74 | 1.40e-10 | ||||
Low Density Lipoprotein Receptor Class A domain, a cysteine-rich repeat that plays a central role in mammalian cholesterol metabolism; the receptor protein binds LDL and transports it into cells by endocytosis; 7 successive cysteine-rich repeats of about 40 amino acids are present in the N-terminal of this multidomain membrane protein; other homologous domains occur in related receptors, including the very low-density lipoprotein receptor and the LDL receptor-related protein/alpha 2-macroglobulin receptor, and in proteins which are functionally unrelated, such as the C9 component of complement; the binding of calcium is required for in vitro formation of the native disulfide isomer and is necessary in establishing and maintaining the modular structure Pssm-ID: 238060 Cd Length: 35 Bit Score: 56.06 E-value: 1.40e-10
|
||||||||
LDLa | smart00192 | Low-density lipoprotein receptor domain class A; Cysteine-rich repeat in the low-density ... |
37-71 | 1.95e-09 | ||||
Low-density lipoprotein receptor domain class A; Cysteine-rich repeat in the low-density lipoprotein (LDL) receptor that plays a central role in mammalian cholesterol metabolism. The N-terminal type A repeats in LDL receptor bind the lipoproteins. Other homologous domains occur in related receptors, including the very low-density lipoprotein receptor and the LDL receptor-related protein/alpha 2-macroglobulin receptor, and in proteins which are functionally unrelated, such as the C9 component of complement. Mutations in the LDL receptor gene cause familial hypercholesterolemia. Pssm-ID: 197566 Cd Length: 33 Bit Score: 53.02 E-value: 1.95e-09
|
||||||||
VWC | smart00214 | von Willebrand factor (vWF) type C domain; |
280-338 | 2.05e-08 | ||||
von Willebrand factor (vWF) type C domain; Pssm-ID: 214564 Cd Length: 59 Bit Score: 50.59 E-value: 2.05e-08
|
||||||||
Ldl_recept_a | pfam00057 | Low-density lipoprotein receptor domain class A; |
37-74 | 2.57e-08 | ||||
Low-density lipoprotein receptor domain class A; Pssm-ID: 395011 Cd Length: 37 Bit Score: 49.94 E-value: 2.57e-08
|
||||||||
CLECT_attractin_like | cd03597 | C-type lectin-like domain (CTLD) of the type found in human and mouse attractin (AtrN) and ... |
120-172 | 9.71e-05 | ||||
C-type lectin-like domain (CTLD) of the type found in human and mouse attractin (AtrN) and attractin-like protein (ALP); CLECT_attractin_like: C-type lectin-like domain (CTLD) of the type found in human and mouse attractin (AtrN) and attractin-like protein (ALP). CTLD refers to a domain homologous to the carbohydrate-recognition domains (CRDs) of the C-type lectins. Mouse AtrN (the product of the mahogany gene) has been shown to bind Agouti protein and to function in agouti-induced pigmentation and obesity. Mutations in AtrN have also been shown to cause spongiform encephalopathy and hypomyelination in rats and hamsters. The cytoplasmic region of mouse ALP has been shown to binds to melanocortin receptor (MCR4). Signaling through MCR4 plays a role in appetite suppression. Attractin may have therapeutic potential in the treatment of obesity. Human attractin (hAtrN) has been shown to be expressed on activated T cells and released extracellularly. The circulating serum attractin induces the spreading of monocytes that become the focus of the clustering of non-proliferating T cells. Pssm-ID: 153067 Cd Length: 129 Bit Score: 42.18 E-value: 9.71e-05
|
||||||||
CLECT_NK_receptors_like | cd03593 | C-type lectin-like domain (CTLD) of the type found in natural killer cell receptors (NKRs); ... |
120-210 | 3.97e-04 | ||||
C-type lectin-like domain (CTLD) of the type found in natural killer cell receptors (NKRs); CLECT_NK_receptors_like: C-type lectin-like domain (CTLD) of the type found in natural killer cell receptors (NKRs), including proteins similar to oxidized low density lipoprotein (OxLDL) receptor (LOX-1), CD94, CD69, NKG2-A and -D, osteoclast inhibitory lectin (OCIL), dendritic cell-associated C-type lectin-1 (dectin-1), human myeloid inhibitory C-type lectin-like receptor (MICL), mast cell-associated functional antigen (MAFA), killer cell lectin-like receptors: subfamily F, member 1 (KLRF1) and subfamily B, member 1 (KLRB1), and lys49 receptors. CTLD refers to a domain homologous to the carbohydrate-recognition domains (CRDs) of the C-type lectins. NKRs are variously associated with activation or inhibition of natural killer (NK) cells. Activating NKRs stimulate cytolysis by NK cells of virally infected or transformed cells; inhibitory NKRs block cytolysis upon recognition of markers of healthy self cells. Most Lys49 receptors are inhibitory; some are stimulatory. OCIL inhibits NK cell function via binding to the receptor NKRP1D. Murine OCIL in addition to inhibiting NK cell function inhibits osteoclast differentiation. MAFA clusters with the type I Fc epsilon receptor (FcepsilonRI) and inhibits the mast cells secretory response to FcepsilonRI stimulus. CD72 is a negative regulator of B cell receptor signaling. NKG2D is an activating receptor for stress-induced antigens; human NKG2D ligands include the stress induced MHC-I homologs, MICA, MICB, and ULBP family of glycoproteins Several NKRs have a carbohydrate-binding capacity which is not mediated through calcium ions (e.g. OCIL binds a range of high molecular weight sulfated glycosaminoglycans including dextran sulfate, fucoidan, and gamma-carrageenan sugars). Dectin-1 binds fungal beta-glucans and in involved in the innate immune responses to fungal pathogens. MAFA binds saccharides having terminal alpha-D mannose residues in a calcium-dependent manner. LOX-1 is the major receptor for OxLDL in endothelial cells and thought to play a role in the pathology of atherosclerosis. Some NKRs exist as homodimers (e.g.Lys49, NKG2D, CD69, LOX-1) and some as heterodimers (e.g. CD94/NKG2A). Dectin-1 can function as a monomer in vitro. Pssm-ID: 153063 Cd Length: 116 Bit Score: 40.39 E-value: 3.97e-04
|
||||||||
CLECT_DC-SIGN_like | cd03590 | C-type lectin-like domain (CTLD) of the type found in human dendritic cell (DC)-specific ... |
120-276 | 1.63e-03 | ||||
C-type lectin-like domain (CTLD) of the type found in human dendritic cell (DC)-specific intercellular adhesion molecule 3-grabbing non-integrin (DC-SIGN) and the related receptor, DC-SIGN receptor (DC-SIGNR); CLECT_DC-SIGN_like: C-type lectin-like domain (CTLD) of the type found in human dendritic cell (DC)-specific intercellular adhesion molecule 3-grabbing non-integrin (DC-SIGN) and the related receptor, DC-SIGN receptor (DC-SIGNR). This group also contains proteins similar to hepatic asialoglycoprotein receptor (ASGP-R) and langerin in human. These proteins are type II membrane proteins with a CTLD ectodomain. CTLD refers to a domain homologous to the carbohydrate-recognition domains (CRDs) of the C-type lectins. DC-SIGN is thought to mediate the initial contact between dendritic cells and resting T cells, and may also mediate the rolling of DCs on epithelium. DC-SIGN and DC-SIGNR bind to oligosaccharides present on human tissues, as well as, on pathogens including parasites, bacteria, and viruses. DC-SIGN and DC-SIGNR bind to HIV enhancing viral infection of T cells. DC-SIGN and DC-SIGNR are homotetrameric, and contain four CTLDs stabilized by a coiled coil of alpha helices. The hepatic ASGP-R is an endocytic recycling receptor which binds and internalizes desialylated glycoproteins having a terminal galactose or N-acetylgalactosamine residues on their N-linked carbohydrate chains, via the clathrin-coated pit mediated endocytic pathway, and delivers them to lysosomes for degradation. It has been proposed that glycoproteins bearing terminal Sia (sialic acid) alpha2, 6GalNAc and Sia alpha2, 6Gal are endogenous ligands for ASGP-R and that ASGP-R participates in regulating the relative concentration of serum glycoproteins bearing alpha 2,6-linked Sia. The human ASGP-R is a hetero-oligomer composed of two subunits, both of which are found within this group. Langerin is expressed in a subset of dendritic leukocytes, the Langerhans cells (LC). Langerin induces the formation of Birbeck Granules (BGs) and associates with these BGs following internalization. Langerin binds, in a calcium-dependent manner, to glyco-conjugates containing mannose and related sugars mediating their uptake and degradation. Langerin molecules oligomerize as trimers with three CTLDs held together by a coiled-coil of alpha helices. Pssm-ID: 153060 [Multi-domain] Cd Length: 126 Bit Score: 38.82 E-value: 1.63e-03
|
||||||||
Blast search parameters | ||||
|