NCBI Home Page NCBI Site Search page NCBI Guide that lists and describes the NCBI resources
Conserved domains on  [gi|2217307126|ref|XP_047290462|]
View 

methenyltetrahydrofolate synthase domain-containing protein isoform X14 [Homo sapiens]

Protein Classification

methenyltetrahydrofolate synthase domain-containing protein( domain architecture ID 18091043)

methenyltetrahydrofolate synthase domain-containing protein (MTHFSD) is a novel RNA-binding protein abnormally regulated in amyotrophic lateral sclerosis

Gene Symbol:  MTHFSD
PubMed:  26525917|8522195

Graphical summary

 Zoom to residue level

show extra options »

Show site features     Horizontal zoom: ×

List of domain hits

Name Accession Description Interval E-value
RRM_MTHFSD cd12270
RNA recognition motif (RRM) found in vertebrate methenyltetrahydrofolate synthetase ...
144-215 2.78e-36

RNA recognition motif (RRM) found in vertebrate methenyltetrahydrofolate synthetase domain-containing proteins; This subfamily corresponds to methenyltetrahydrofolate synthetase domain (MTHFSD), a putative RNA-binding protein found in various vertebrate species. It contains an N-terminal 5-formyltetrahydrofolate cyclo-ligase domain and a C-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). The biological role of MTHFSD remains unclear.


:

Pssm-ID: 409713 [Multi-domain]  Cd Length: 72  Bit Score: 122.04  E-value: 2.78e-36
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 2217307126 144 DVYVGNLPGDARVSDLKRALRELGSVPLRLTWQGPRRRAFLHYPDSAAAQQAVSCLQGLRLGTDTLRVALAR 215
Cdd:cd12270     1 TVYVGNIPRSVRVSDLKSALRERGINPLRITWQGARGKAFLHYSDMADADSAVSSLQGLRIGGNTLTVELAK 72
FAU1 super family cl43064
5-formyltetrahydrofolate cyclo-ligase [Coenzyme transport and metabolism];
7-47 6.49e-07

5-formyltetrahydrofolate cyclo-ligase [Coenzyme transport and metabolism];


The actual alignment was detected with superfamily member COG0212:

Pssm-ID: 439982 [Multi-domain]  Cd Length: 186  Bit Score: 47.84  E-value: 6.49e-07
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|..
gi 2217307126   7 AVSKETPVVTIVHDCQVVD-IPeelVEEHDITVDYILTPTRV 47
Cdd:COG0212   148 RLRPRPLTIGLAFDCQLVDeLP---VEPHDVPLDAIVTEKGV 186
 
Name Accession Description Interval E-value
RRM_MTHFSD cd12270
RNA recognition motif (RRM) found in vertebrate methenyltetrahydrofolate synthetase ...
144-215 2.78e-36

RNA recognition motif (RRM) found in vertebrate methenyltetrahydrofolate synthetase domain-containing proteins; This subfamily corresponds to methenyltetrahydrofolate synthetase domain (MTHFSD), a putative RNA-binding protein found in various vertebrate species. It contains an N-terminal 5-formyltetrahydrofolate cyclo-ligase domain and a C-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). The biological role of MTHFSD remains unclear.


Pssm-ID: 409713 [Multi-domain]  Cd Length: 72  Bit Score: 122.04  E-value: 2.78e-36
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 2217307126 144 DVYVGNLPGDARVSDLKRALRELGSVPLRLTWQGPRRRAFLHYPDSAAAQQAVSCLQGLRLGTDTLRVALAR 215
Cdd:cd12270     1 TVYVGNIPRSVRVSDLKSALRERGINPLRITWQGARGKAFLHYSDMADADSAVSSLQGLRIGGNTLTVELAK 72
RRM smart00360
RNA recognition motif;
145-211 1.29e-08

RNA recognition motif;


Pssm-ID: 214636 [Multi-domain]  Cd Length: 73  Bit Score: 50.28  E-value: 1.29e-08
                           10        20        30        40        50        60        70
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 2217307126  145 VYVGNLPGDARVSDLKRALRELGSV-----PLRLTWQGPRRRAFLHYPDSAAAQQAVSCLQGLRLGTDTLRV 211
Cdd:smart00360   2 LFVGNLPPDTTEEELRELFSKFGKVesvrlVRDKETGKSKGFAFVEFESEEDAEKALEALNGKELDGRPLKV 73
FAU1 COG0212
5-formyltetrahydrofolate cyclo-ligase [Coenzyme transport and metabolism];
7-47 6.49e-07

5-formyltetrahydrofolate cyclo-ligase [Coenzyme transport and metabolism];


Pssm-ID: 439982 [Multi-domain]  Cd Length: 186  Bit Score: 47.84  E-value: 6.49e-07
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|..
gi 2217307126   7 AVSKETPVVTIVHDCQVVD-IPeelVEEHDITVDYILTPTRV 47
Cdd:COG0212   148 RLRPRPLTIGLAFDCQLVDeLP---VEPHDVPLDAIVTEKGV 186
RRM_1 pfam00076
RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic ...
145-210 2.00e-06

RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic of an RNA binding protein. RRMs are found in a variety of RNA binding proteins, including various hnRNP proteins, proteins implicated in regulation of alternative splicing, and protein components of snRNPs. The motif also appears in a few single stranded DNA binding proteins. The RRM structure consists of four strands and two helices arranged in an alpha/beta sandwich, with a third helix present during RNA binding in some cases The C-terminal beta strand (4th strand) and final helix are hard to align and have been omitted in the SEED alignment The LA proteins have an N terminal rrm which is included in the seed. There is a second region towards the C terminus that has some features characteriztic of a rrm but does not appear to have the important structural core of a rrm. The LA proteins are one of the main autoantigens in Systemic lupus erythematosus (SLE), an autoimmune disease.


Pssm-ID: 425453 [Multi-domain]  Cd Length: 70  Bit Score: 44.15  E-value: 2.00e-06
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 2217307126 145 VYVGNLPGDARVSDLKRALRELGSV-----PLRLTWQgPRRRAFLHYPDSAAAQQAVSCLQGLRLGTDTLR 210
Cdd:pfam00076   1 LFVGNLPPDTTEEDLKDLFSKFGPIksirlVRDETGR-SKGFAFVEFEDEEDAEKAIEALNGKELGGRELK 70
RRM COG0724
RNA recognition motif (RRM) domain [Translation, ribosomal structure and biogenesis];
146-220 3.89e-05

RNA recognition motif (RRM) domain [Translation, ribosomal structure and biogenesis];


Pssm-ID: 440488 [Multi-domain]  Cd Length: 85  Bit Score: 40.85  E-value: 3.89e-05
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2217307126 146 YVGNLPGDARVSDLKRALRELGSV------PLRLTwQGPRRRAFLHYPDSAAAQQAVSCLQGLRLGTDTLRVALARQQRD 219
Cdd:COG0724     5 YVGNLPYSVTEEDLRELFSEYGEVtsvkliTDRET-GRSRGFGFVEMPDDEEAQAAIEALNGAELMGRTLKVNEARPREE 83

                  .
gi 2217307126 220 K 220
Cdd:COG0724    84 R 84
5-FTHF_cyc-lig pfam01812
5-formyltetrahydrofolate cyclo-ligase family; 5-formyltetrahydrofolate cyclo-ligase or ...
6-44 4.04e-04

5-formyltetrahydrofolate cyclo-ligase family; 5-formyltetrahydrofolate cyclo-ligase or methenyl-THF synthetase EC:6.3.3.2 catalyzes the interchange of 5-formyltetrahydrofolate (5-FTHF) to 5-10-methenyltetrahydrofolate, this requires ATP and Mg2+. 5-FTHF is used in chemotherapy where it is clinically known as Leucovorin.


Pssm-ID: 396398 [Multi-domain]  Cd Length: 186  Bit Score: 39.98  E-value: 4.04e-04
                          10        20        30
                  ....*....|....*....|....*....|....*....
gi 2217307126   6 GAVSKETPVVTIVHDCQVVDIPeelVEEHDITVDYILTP 44
Cdd:pfam01812 151 GHGAKPYTVGLAFDEQLVERLP---VEPHDVPVDEVVTE 186
ELAV_HUD_SF TIGR01661
ELAV/HuD family splicing factor; This model describes the ELAV/HuD subfamily of splicing ...
183-219 3.81e-03

ELAV/HuD family splicing factor; This model describes the ELAV/HuD subfamily of splicing factors found in metazoa. HuD stands for the human paraneoplastic encephalomyelitis antigen D of which there are 4 variants in human. ELAV stnds for the Drosophila Embryonic lethal abnormal visual protein. ELAV-like splicing factors are also known in human as HuB (ELAV-like protein 2), HuC (ELAV-like protein 3, Paraneoplastic cerebellar degeneration-associated antigen) and HuR (ELAV-like protein 1). These genes are most closely related to the sex-lethal subfamily of splicing factors found in Dipteran insects (TIGR01659). These proteins contain 3 RNA-recognition motifs (rrm: pfam00076).


Pssm-ID: 273741 [Multi-domain]  Cd Length: 352  Bit Score: 37.61  E-value: 3.81e-03
                          10        20        30
                  ....*....|....*....|....*....|....*..
gi 2217307126 183 FLHYPDSAAAQQAVSCLQGLRLGTDTLRVALARQQRD 219
Cdd:TIGR01661  49 FVNYVRPEDAEKAVNSLNGLRLQNKTIKVSYARPSSD 85
 
Name Accession Description Interval E-value
RRM_MTHFSD cd12270
RNA recognition motif (RRM) found in vertebrate methenyltetrahydrofolate synthetase ...
144-215 2.78e-36

RNA recognition motif (RRM) found in vertebrate methenyltetrahydrofolate synthetase domain-containing proteins; This subfamily corresponds to methenyltetrahydrofolate synthetase domain (MTHFSD), a putative RNA-binding protein found in various vertebrate species. It contains an N-terminal 5-formyltetrahydrofolate cyclo-ligase domain and a C-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). The biological role of MTHFSD remains unclear.


Pssm-ID: 409713 [Multi-domain]  Cd Length: 72  Bit Score: 122.04  E-value: 2.78e-36
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 2217307126 144 DVYVGNLPGDARVSDLKRALRELGSVPLRLTWQGPRRRAFLHYPDSAAAQQAVSCLQGLRLGTDTLRVALAR 215
Cdd:cd12270     1 TVYVGNIPRSVRVSDLKSALRERGINPLRITWQGARGKAFLHYSDMADADSAVSSLQGLRIGGNTLTVELAK 72
RRM_SF cd00590
RNA recognition motif (RRM) superfamily; RRM, also known as RBD (RNA binding domain) or RNP ...
145-211 1.82e-09

RNA recognition motif (RRM) superfamily; RRM, also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), is a highly abundant domain in eukaryotes found in proteins involved in post-transcriptional gene expression processes including mRNA and rRNA processing, RNA export, and RNA stability. This domain is 90 amino acids in length and consists of a four-stranded beta-sheet packed against two alpha-helices. RRM usually interacts with ssRNA, but is also known to interact with ssDNA as well as proteins. RRM binds a variable number of nucleotides, ranging from two to eight. The active site includes three aromatic side-chains located within the conserved RNP1 and RNP2 motifs of the domain. The RRM domain is found in a variety heterogeneous nuclear ribonucleoproteins (hnRNPs), proteins implicated in regulation of alternative splicing, and protein components of small nuclear ribonucleoproteins (snRNPs).


Pssm-ID: 409669 [Multi-domain]  Cd Length: 72  Bit Score: 52.29  E-value: 1.82e-09
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 2217307126 145 VYVGNLPGDARVSDLKRALRELGSV----PLRLTWQGPRRRAFLHYPDSAAAQQAVSCLQGLRLGTDTLRV 211
Cdd:cd00590     1 LFVGNLPPDTTEEDLRELFSKFGEVvsvrIVRDRDGKSKGFAFVEFESPEDAEKALEALNGTELGGRPLKV 71
RRM smart00360
RNA recognition motif;
145-211 1.29e-08

RNA recognition motif;


Pssm-ID: 214636 [Multi-domain]  Cd Length: 73  Bit Score: 50.28  E-value: 1.29e-08
                           10        20        30        40        50        60        70
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 2217307126  145 VYVGNLPGDARVSDLKRALRELGSV-----PLRLTWQGPRRRAFLHYPDSAAAQQAVSCLQGLRLGTDTLRV 211
Cdd:smart00360   2 LFVGNLPPDTTEEELRELFSKFGKVesvrlVRDKETGKSKGFAFVEFESEEDAEKALEALNGKELDGRPLKV 73
RRM_SRSF3_like cd12373
RNA recognition motif (RRM) found in serine/arginine-rich splicing factor 3 (SRSF3) and ...
145-215 3.56e-07

RNA recognition motif (RRM) found in serine/arginine-rich splicing factor 3 (SRSF3) and similar proteins; This subfamily corresponds to the RRM of two serine/arginine (SR) proteins, serine/arginine-rich splicing factor 3 (SRSF3) and serine/arginine-rich splicing factor 7 (SRSF7). SRSF3, also termed pre-mRNA-splicing factor SRp20, modulates alternative splicing by interacting with RNA cis-elements in a concentration- and cell differentiation-dependent manner. It is also involved in termination of transcription, alternative RNA polyadenylation, RNA export, and protein translation. SRSF3 is critical for cell proliferation, and tumor induction and maintenance. It can shuttle between the nucleus and cytoplasm. SRSF7, also termed splicing factor 9G8, plays a crucial role in both constitutive splicing and alternative splicing of many pre-mRNAs. Its localization and functions are tightly regulated by phosphorylation. SRSF7 is predominantly present in the nuclear and can shuttle between nucleus and cytoplasm. It cooperates with the export protein, Tap/NXF1, helps mRNA export to the cytoplasm, and enhances the expression of unspliced mRNA. Moreover, SRSF7 inhibits tau E10 inclusion through directly interacting with the proximal downstream intron of E10, a clustering region for frontotemporal dementia with Parkinsonism (FTDP) mutations. Both SRSF3 and SRSF7 contain a single N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a C-terminal RS domain rich in serine-arginine dipeptides. The RRM domain is involved in RNA binding, and the RS domain has been implicated in protein shuttling and protein-protein interactions.


Pssm-ID: 409808 [Multi-domain]  Cd Length: 73  Bit Score: 46.08  E-value: 3.56e-07
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 2217307126 145 VYVGNLPGDARVSDLKRALRELGsvPLRLTW--QGPRRRAFLHYPDSAAAQQAVSCLQGLRLGTDTLRVALAR 215
Cdd:cd12373     2 VYVGNLGPRVTKRELEDAFEKYG--PLRNVWvaRNPPGFAFVEFEDPRDAEDAVRALDGRRICGSRVRVELSR 72
FAU1 COG0212
5-formyltetrahydrofolate cyclo-ligase [Coenzyme transport and metabolism];
7-47 6.49e-07

5-formyltetrahydrofolate cyclo-ligase [Coenzyme transport and metabolism];


Pssm-ID: 439982 [Multi-domain]  Cd Length: 186  Bit Score: 47.84  E-value: 6.49e-07
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|..
gi 2217307126   7 AVSKETPVVTIVHDCQVVD-IPeelVEEHDITVDYILTPTRV 47
Cdd:COG0212   148 RLRPRPLTIGLAFDCQLVDeLP---VEPHDVPLDAIVTEKGV 186
RRM_1 pfam00076
RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic ...
145-210 2.00e-06

RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic of an RNA binding protein. RRMs are found in a variety of RNA binding proteins, including various hnRNP proteins, proteins implicated in regulation of alternative splicing, and protein components of snRNPs. The motif also appears in a few single stranded DNA binding proteins. The RRM structure consists of four strands and two helices arranged in an alpha/beta sandwich, with a third helix present during RNA binding in some cases The C-terminal beta strand (4th strand) and final helix are hard to align and have been omitted in the SEED alignment The LA proteins have an N terminal rrm which is included in the seed. There is a second region towards the C terminus that has some features characteriztic of a rrm but does not appear to have the important structural core of a rrm. The LA proteins are one of the main autoantigens in Systemic lupus erythematosus (SLE), an autoimmune disease.


Pssm-ID: 425453 [Multi-domain]  Cd Length: 70  Bit Score: 44.15  E-value: 2.00e-06
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 2217307126 145 VYVGNLPGDARVSDLKRALRELGSV-----PLRLTWQgPRRRAFLHYPDSAAAQQAVSCLQGLRLGTDTLR 210
Cdd:pfam00076   1 LFVGNLPPDTTEEDLKDLFSKFGPIksirlVRDETGR-SKGFAFVEFEDEEDAEKAIEALNGKELGGRELK 70
RRM_CSTF2_RNA15_like cd12398
RNA recognition motif (RRM) found in cleavage stimulation factor subunit 2 (CSTF2), yeast ...
145-214 4.33e-06

RNA recognition motif (RRM) found in cleavage stimulation factor subunit 2 (CSTF2), yeast ortholog mRNA 3'-end-processing protein RNA15 and similar proteins; This subfamily corresponds to the RRM domain of CSTF2, its tau variant and eukaryotic homologs. CSTF2, also termed cleavage stimulation factor 64 kDa subunit (CstF64), is the vertebrate conterpart of yeast mRNA 3'-end-processing protein RNA15. It is expressed in all somatic tissues and is one of three cleavage stimulatory factor (CstF) subunits required for polyadenylation. CstF64 contains an N-terminal RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), a CstF77-binding domain, a repeated MEARA helical region and a conserved C-terminal domain reported to bind the transcription factor PC-4. During polyadenylation, CstF interacts with the pre-mRNA through the RRM of CstF64 at U- or GU-rich sequences within 10 to 30 nucleotides downstream of the cleavage site. CSTF2T, also termed tauCstF64, is a paralog of the X-linked cleavage stimulation factor CstF64 protein that supports polyadenylation in most somatic cells. It is expressed during meiosis and subsequent haploid differentiation in a more limited set of tissues and cell types, largely in meiotic and postmeiotic male germ cells, and to a lesser extent in brain. The loss of CSTF2T will cause male infertility, as it is necessary for spermatogenesis and fertilization. Moreover, CSTF2T is required for expression of genes involved in morphological differentiation of spermatids, as well as for genes having products that function during interaction of motile spermatozoa with eggs. It promotes germ cell-specific patterns of polyadenylation by using its RRM to bind to different sequence elements downstream of polyadenylation sites than does CstF64. The family also includes yeast ortholog mRNA 3'-end-processing protein RNA15 and similar proteins. RNA15 is a core subunit of cleavage factor IA (CFIA), an essential transcriptional 3'-end processing factor from Saccharomyces cerevisiae. RNA recognition by CFIA is mediated by an N-terminal RRM, which is contained in the RNA15 subunit of the complex. The RRM of RNA15 has a strong preference for GU-rich RNAs, mediated by a binding pocket that is entirely conserved in both yeast and vertebrate RNA15 orthologs.


Pssm-ID: 409832 [Multi-domain]  Cd Length: 77  Bit Score: 43.27  E-value: 4.33e-06
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 2217307126 145 VYVGNLPGDARVSDLKRALRELGSV-PLRL-----TWQgPRRRAFLHYPDSAAAQQAVSCLQGLRLGTDTLRVALA 214
Cdd:cd12398     3 VFVGNIPYDATEEQLKEIFSEVGPVvSFRLvtdreTGK-PKGYGFCEFRDAETALSAVRNLNGYELNGRPLRVDFA 77
RRM COG0724
RNA recognition motif (RRM) domain [Translation, ribosomal structure and biogenesis];
146-220 3.89e-05

RNA recognition motif (RRM) domain [Translation, ribosomal structure and biogenesis];


Pssm-ID: 440488 [Multi-domain]  Cd Length: 85  Bit Score: 40.85  E-value: 3.89e-05
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2217307126 146 YVGNLPGDARVSDLKRALRELGSV------PLRLTwQGPRRRAFLHYPDSAAAQQAVSCLQGLRLGTDTLRVALARQQRD 219
Cdd:COG0724     5 YVGNLPYSVTEEDLRELFSEYGEVtsvkliTDRET-GRSRGFGFVEMPDDEEAQAAIEALNGAELMGRTLKVNEARPREE 83

                  .
gi 2217307126 220 K 220
Cdd:COG0724    84 R 84
RRM_SRSF3 cd12645
RNA recognition motif (RRM) found in vertebrate serine/arginine-rich splicing factor 3 (SRSF3); ...
140-218 5.44e-05

RNA recognition motif (RRM) found in vertebrate serine/arginine-rich splicing factor 3 (SRSF3); This subgroup corresponds to the RRM of SRSF3, also termed pre-mRNA-splicing factor SRp20, a splicing regulatory serine/arginine (SR) protein that modulates alternative splicing by interacting with RNA cis-elements in a concentration- and cell differentiation-dependent manner. It is also involved in termination of transcription, alternative RNA polyadenylation, RNA export, and protein translation. SRSF3 is critical for cell proliferation and tumor induction and maintenance. SRSF3 can shuttle between the nucleus and cytoplasm. It contains a single N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a C-terminal RS domain rich in serine-arginine dipeptides. The RRM domain is involved in RNA binding, and the RS domain has been implicated in protein shuttling and protein-protein interactions.


Pssm-ID: 241089 [Multi-domain]  Cd Length: 81  Bit Score: 40.41  E-value: 5.44e-05
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2217307126 140 PLAADVYVGNLPGDARVSDLKRALRELGsvPLRLTW--QGPRRRAFLHYPDSAAAQQAVSCLQGLRLGTDTLRVALARQQ 217
Cdd:cd12645     2 PLDCKVYVGNLGNNGNKTELERAFGYYG--PLRSVWvaRNPPGFAFVEFEDPRDAADAVRELDGRTLCGCRVRVELSNGE 79

                  .
gi 2217307126 218 R 218
Cdd:cd12645    80 K 80
RRM1_SRSF1_like cd12338
RNA recognition motif 1 (RRM1) found in serine/arginine-rich splicing factor 1 (SRSF1) and ...
145-213 8.85e-05

RNA recognition motif 1 (RRM1) found in serine/arginine-rich splicing factor 1 (SRSF1) and similar proteins; This subgroup corresponds to the RRM1 in three serine/arginine (SR) proteins: serine/arginine-rich splicing factor 1 (SRSF1 or ASF-1), serine/arginine-rich splicing factor 9 (SRSF9 or SRp30C), and plant pre-mRNA-splicing factor SF2 (SR1). SRSF1 is a shuttling SR protein involved in constitutive and alternative splicing, nonsense-mediated mRNA decay (NMD), mRNA export and translation. It also functions as a splicing-factor oncoprotein that regulates apoptosis and proliferation to promote mammary epithelial cell transformation. SRSF9 has been implicated in the activity of many elements that control splice site selection, the alternative splicing of the glucocorticoid receptor beta in neutrophils and in the gonadotropin-releasing hormone pre-mRNA. It can also interact with other proteins implicated in alternative splicing, including YB-1, rSLM-1, rSLM-2, E4-ORF4, Nop30, and p32. Both, SRSF1 and SRSF9, contain two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a C-terminal RS domains rich in serine-arginine dipeptides. In contrast, SF2 contains two N-terminal RRMs and a C-terminal PSK domain rich in proline, serine and lysine residues.


Pssm-ID: 409775 [Multi-domain]  Cd Length: 72  Bit Score: 39.66  E-value: 8.85e-05
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 2217307126 145 VYVGNLPGDARVSDLKRALRELGSVpLRLTWQGPRRR---AFLHYPDSAAAQQAVSCLQGLRLGTDTLRVAL 213
Cdd:cd12338     2 IYVGNLPGDIRERDIEDLFYKYGPI-LAIDLKNRRRGppfAFVEFEDPRDAEDAIRGRDGYDFDGYRLRVEF 72
RRM_HP0827_like cd12399
RNA recognition motif (RRM) found in Helicobacter pylori HP0827 protein and similar proteins; ...
145-211 1.01e-04

RNA recognition motif (RRM) found in Helicobacter pylori HP0827 protein and similar proteins; This subfamily corresponds to the RRM of H. pylori HP0827, a putative ssDNA-binding protein 12rnp2 precursor, containing one RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). The ssDNA binding may be important in activation of HP0827.


Pssm-ID: 409833 [Multi-domain]  Cd Length: 75  Bit Score: 39.43  E-value: 1.01e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 2217307126 145 VYVGNLPGDARVSDLKRALRELGSV-----PLRLTWQGPRRRAFLHYPDSAAAQQAVSCLQGLRLGTDTLRV 211
Cdd:cd12399     1 LYVGNLPYSASEEQLKSLFGQFGAVfdvklPMDRETKRPRGFGFVELQEEESAEKAIAKLDGTDFMGRTIRV 72
RRM_NOL8 cd12226
RNA recognition motif (RRM) found in nucleolar protein 8 (NOL8) and similar proteins; This ...
145-215 1.26e-04

RNA recognition motif (RRM) found in nucleolar protein 8 (NOL8) and similar proteins; This model corresponds to the RRM of NOL8 (also termed Nop132) encoded by a novel NOL8 gene that is up-regulated in the majority of diffuse-type, but not intestinal-type, gastric cancers. Thus, NOL8 may be a good molecular target for treatment of diffuse-type gastric cancer. Also, NOL8 is a phosphorylated protein that contains an N-terminal RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), suggesting NOL8 is likely to function as a novel RNA-binding protein. It may be involved in regulation of gene expression at the post-transcriptional level or in ribosome biogenesis in cancer cells.


Pssm-ID: 409673 [Multi-domain]  Cd Length: 77  Bit Score: 39.10  E-value: 1.26e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 2217307126 145 VYVGNLPGDARVSDLKRALRELGSV-PLRL---TWQGPRRRAFLHY-PDSAAAQQAVSCLQGLRLGTDTLRVALAR 215
Cdd:cd12226     2 LFVGGLSPSITEDDLERRFSRFGTVsDVEIirkKDAPDRGFAYIDLrTSEAALQKCLSTLNGVKWKGSRLKIQLAK 77
RRM_CSTF2_CSTF2T cd12671
RNA recognition motif (RRM) found in cleavage stimulation factor subunit 2 (CSTF2), cleavage ...
145-211 1.53e-04

RNA recognition motif (RRM) found in cleavage stimulation factor subunit 2 (CSTF2), cleavage stimulation factor subunit 2 tau variant (CSTF2T) and similar proteins; This subgroup corresponds to the RRM domain of CSTF2, its tau variant and eukaryotic homologs. CSTF2, also termed cleavage stimulation factor 64 kDa subunit (CstF64), is the vertebrate conterpart of yeast mRNA 3'-end-processing protein RNA15. It is expressed in all somatic tissues and is one of three cleavage stimulatory factor (CstF) subunits required for polyadenylation. CstF64 contains an N-terminal RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), a CstF77-binding domain, a repeated MEARA helical region and a conserved C-terminal domain reported to bind the transcription factor PC-4. During polyadenylation, CstF interacts with the pre-mRNA through the RRM of CstF64 at U- or GU-rich sequences within 10 to 30 nucleotides downstream of the cleavage site. CSTF2T, also termed tauCstF64, is a paralog of the X-linked cleavage stimulation factor CstF64 protein that supports polyadenylation in most somatic cells. It is expressed during meiosis and subsequent haploid differentiation in a more limited set of tissues and cell types, largely in meiotic and postmeiotic male germ cells, and to a lesser extent in brain. The loss of CSTF2T will cause male infertility, as it is necessary for spermatogenesis and fertilization. Moreover, CSTF2T is required for expression of genes involved in morphological differentiation of spermatids, as well as for genes having products that function during interaction of motile spermatozoa with eggs. It promotes germ cell-specific patterns of polyadenylation by using its RRM to bind to different sequence elements downstream of polyadenylation sites than does CstF64.


Pssm-ID: 410072 [Multi-domain]  Cd Length: 85  Bit Score: 39.42  E-value: 1.53e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 2217307126 145 VYVGNLPGDARVSDLKRALRELGSV-PLRLTWQ----GPRRRAFLHYPDSAAAQQAVSCLQGLRLGTDTLRV 211
Cdd:cd12671     9 VFVGNIPYEATEEQLKDIFSEVGPVvSFRLVYDretgKPKGYGFCEYQDQETALSAMRNLNGYELNGRALRV 80
5-FTHF_cyc-lig pfam01812
5-formyltetrahydrofolate cyclo-ligase family; 5-formyltetrahydrofolate cyclo-ligase or ...
6-44 4.04e-04

5-formyltetrahydrofolate cyclo-ligase family; 5-formyltetrahydrofolate cyclo-ligase or methenyl-THF synthetase EC:6.3.3.2 catalyzes the interchange of 5-formyltetrahydrofolate (5-FTHF) to 5-10-methenyltetrahydrofolate, this requires ATP and Mg2+. 5-FTHF is used in chemotherapy where it is clinically known as Leucovorin.


Pssm-ID: 396398 [Multi-domain]  Cd Length: 186  Bit Score: 39.98  E-value: 4.04e-04
                          10        20        30
                  ....*....|....*....|....*....|....*....
gi 2217307126   6 GAVSKETPVVTIVHDCQVVDIPeelVEEHDITVDYILTP 44
Cdd:pfam01812 151 GHGAKPYTVGLAFDEQLVERLP---VEPHDVPVDEVVTE 186
RRM_SRSF7 cd12646
RNA recognition motif (RRM) found in vertebrate serine/arginine-rich splicing factor 7 (SRSF7); ...
145-214 7.64e-04

RNA recognition motif (RRM) found in vertebrate serine/arginine-rich splicing factor 7 (SRSF7); This subgroup corresponds to the RRM of SRSF7, also termed splicing factor 9G8, is a splicing regulatory serine/arginine (SR) protein that plays a crucial role in both constitutive splicing and alternative splicing of many pre-mRNAs. Its localization and functions are tightly regulated by phosphorylation. SRSF7 is predominantly present in the nuclear and can shuttle between nucleus and cytoplasm. It cooperates with the export protein, Tap/NXF1, helps mRNA export to the cytoplasm, and enhances the expression of unspliced mRNA. SRSF7 inhibits tau E10 inclusion through directly interacting with the proximal downstream intron of E10, a clustering region for frontotemporal dementia with Parkinsonism (FTDP) mutations. SRSF7 contains a single N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), followed by a CCHC-type zinc knuckle motif in its median region, and a C-terminal RS domain rich in serine-arginine dipeptides. The RRM domain is involved in RNA binding, and the RS domain has been implicated in protein shuttling and protein-protein interactions.


Pssm-ID: 410050 [Multi-domain]  Cd Length: 77  Bit Score: 37.25  E-value: 7.64e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 2217307126 145 VYVGNLPGDARVSDLKRALRELGsvPLRLTW--QGPRRRAFLHYPDSAAAQQAVSCLQGLRLGTDTLRVALA 214
Cdd:cd12646     2 VYVGNLGTGAGKGELERAFSYYG--PLRTVWiaRNPPGFAFVEFEDPRDAEDAVRGLDGKVICGSRVRVELS 71
RRM2_NsCP33_like cd21608
RNA recognition motif 2 (RRM2) found in Nicotiana sylvestris chloroplastic 33 kDa ...
145-214 1.73e-03

RNA recognition motif 2 (RRM2) found in Nicotiana sylvestris chloroplastic 33 kDa ribonucleoprotein (NsCP33) and similar proteins; The family includes NsCP33, Arabidopsis thaliana chloroplastic 31 kDa ribonucleoprotein (CP31A) and mitochondrial glycine-rich RNA-binding protein 2 (AtGR-RBP2). NsCP33 may be involved in splicing and/or processing of chloroplast RNA's. AtCP31A, also called RNA-binding protein 1/2/3 (AtRBP33), or RNA-binding protein CP31A, or RNA-binding protein RNP-T, or RNA-binding protein cp31, is required for specific RNA editing events in chloroplasts and stabilizes specific chloroplast mRNAs, as well as for normal chloroplast development under cold stress conditions by stabilizing transcripts of numerous mRNAs under these conditions. CP31A may modulate telomere replication through RNA binding domains. AtGR-RBP2, also called AtRBG2, or glycine-rich protein 2 (AtGRP2), or mitochondrial RNA-binding protein 1a (At-mRBP1a), plays a role in RNA transcription or processing during stress. It binds RNAs and DNAs sequence with a preference to single-stranded nucleic acids. AtGR-RBP2 displays strong affinity to poly(U) sequence. It exerts cold and freezing tolerance, probably by exhibiting an RNA chaperone activity during the cold and freezing adaptation process. Some members in this family contain two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The model corresponds to the second RRM motif.


Pssm-ID: 410187 [Multi-domain]  Cd Length: 76  Bit Score: 35.99  E-value: 1.73e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 2217307126 145 VYVGNLPGDARVSDLKRALRELG---SVPL---RLTwqGpRRR--AFLHYPDSAAAQQAVSCLQGLRLGTDTLRVALA 214
Cdd:cd21608     2 LYVGNLSWDTTEDDLRDLFSEFGeveSAKVitdRET--G-RSRgfGFVTFSTAEAAEAAIDALNGKELDGRSIVVNEA 76
RRM3_Spen cd12310
RNA recognition motif 3 (RRM3) found in the Spen (split end) protein family; This subfamily ...
145-211 2.10e-03

RNA recognition motif 3 (RRM3) found in the Spen (split end) protein family; This subfamily corresponds to the RRM3 domain in the Spen (split end) protein family which includes RNA binding motif protein 15 (RBM15), putative RNA binding motif protein 15B (RBM15B) and similar proteins found in Metazoa. RBM15, also termed one-twenty two protein 1 (OTT1), conserved in eukaryotes, is a novel mRNA export factor and is a novel component of the NXF1 pathway. It binds to NXF1 and serves as receptor for the RNA export element RTE. It also possess mRNA export activity and can facilitate the access of DEAD-box protein DBP5 to mRNA at the nuclear pore complex (NPC). RNA-binding protein 15B (RBM15B), also termed one twenty-two 3 (OTT3), is a paralog of RBM15 and therefore has post-transcriptional regulatory activity. It is a nuclear protein sharing with RBM15 the association with the splicing factor compartment and the nuclear envelope as well as the binding to mRNA export factors NXF1 and Aly/REF. Members in this family belong to the Spen (split end) protein family, which shares a domain architecture comprising of three N-terminal RNA recognition motifs (RRMs), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a C-terminal SPOC (Spen paralog and ortholog C-terminal) domain.


Pssm-ID: 409750 [Multi-domain]  Cd Length: 72  Bit Score: 35.72  E-value: 2.10e-03
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 2217307126 145 VYVGNLPGDARVSDLKRALRELGSvPLRLTWQGPRRRAFLHYPDSAAAQQAVSCLQGLRLGTDTLRV 211
Cdd:cd12310     1 LWVGGLGPWTSLAELEREFDRFGA-IRKIDYRKGDDYAYILYESLDAAQAAVRALRGFPLGGPDRRL 66
RRM1_HuD cd12770
RNA recognition motif 1 (RRM1) found in vertebrate Hu-antigen D (HuD); This subgroup ...
182-215 2.48e-03

RNA recognition motif 1 (RRM1) found in vertebrate Hu-antigen D (HuD); This subgroup corresponds to the RRM1 of HuD, also termed ELAV-like protein 4 (ELAV-4), or paraneoplastic encephalomyelitis antigen HuD, one of the neuronal members of the Hu family. The neuronal Hu proteins play important roles in neuronal differentiation, plasticity and memory. HuD has been implicated in various aspects of neuronal function, such as the commitment and differentiation of neuronal precursors as well as synaptic remodeling in mature neurons. HuD also functions as an important regulator of mRNA expression in neurons by interacting with AU-rich RNA element (ARE) and stabilizing multiple transcripts. Moreover, HuD regulates the nuclear processing/stability of N-myc pre-mRNA in neuroblastoma cells, as well as the neurite elongation and morphological differentiation. HuD specifically binds poly(A) RNA. Like other Hu proteins, HuD contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an ARE. RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions.


Pssm-ID: 410163 [Multi-domain]  Cd Length: 81  Bit Score: 35.85  E-value: 2.48e-03
                          10        20        30
                  ....*....|....*....|....*....|....
gi 2217307126 182 AFLHYPDSAAAQQAVSCLQGLRLGTDTLRVALAR 215
Cdd:cd12770    46 GFVNYIDPKDAEKAINTLNGLRLQTKTIKVSYAR 79
RRM1_HuB cd12771
RNA recognition motif 1 (RRM1) found in vertebrate Hu-antigen B (HuB); This subgroup ...
182-215 2.99e-03

RNA recognition motif 1 (RRM1) found in vertebrate Hu-antigen B (HuB); This subgroup corresponds to the RRM1 of HuB, also termed ELAV-like protein 2 (ELAV-2), or ELAV-like neuronal protein 1, or nervous system-specific RNA-binding protein Hel-N1 (Hel-N1), one of the neuronal members of the Hu family. The neuronal Hu proteins play important roles in neuronal differentiation, plasticity and memory. HuB is also expressed in gonads and is up-regulated during neuronal differentiation of embryonic carcinoma P19 cells. Like other Hu proteins, HuB contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an AU-rich RNA element (ARE). RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions.


Pssm-ID: 410164 [Multi-domain]  Cd Length: 83  Bit Score: 35.47  E-value: 2.99e-03
                          10        20        30
                  ....*....|....*....|....*....|....
gi 2217307126 182 AFLHYPDSAAAQQAVSCLQGLRLGTDTLRVALAR 215
Cdd:cd12771    49 GFVNYIEPKDAEKAINTLNGLRLQTKTIKVSYAR 82
ELAV_HUD_SF TIGR01661
ELAV/HuD family splicing factor; This model describes the ELAV/HuD subfamily of splicing ...
183-219 3.81e-03

ELAV/HuD family splicing factor; This model describes the ELAV/HuD subfamily of splicing factors found in metazoa. HuD stands for the human paraneoplastic encephalomyelitis antigen D of which there are 4 variants in human. ELAV stnds for the Drosophila Embryonic lethal abnormal visual protein. ELAV-like splicing factors are also known in human as HuB (ELAV-like protein 2), HuC (ELAV-like protein 3, Paraneoplastic cerebellar degeneration-associated antigen) and HuR (ELAV-like protein 1). These genes are most closely related to the sex-lethal subfamily of splicing factors found in Dipteran insects (TIGR01659). These proteins contain 3 RNA-recognition motifs (rrm: pfam00076).


Pssm-ID: 273741 [Multi-domain]  Cd Length: 352  Bit Score: 37.61  E-value: 3.81e-03
                          10        20        30
                  ....*....|....*....|....*....|....*..
gi 2217307126 183 FLHYPDSAAAQQAVSCLQGLRLGTDTLRVALARQQRD 219
Cdd:TIGR01661  49 FVNYVRPEDAEKAVNSLNGLRLQNKTIKVSYARPSSD 85
U2AF_lg TIGR01642
U2 snRNP auxilliary factor, large subunit, splicing factor; These splicing factors consist of ...
106-216 4.42e-03

U2 snRNP auxilliary factor, large subunit, splicing factor; These splicing factors consist of an N-terminal arginine-rich low complexity domain followed by three tandem RNA recognition motifs (pfam00076). The well-characterized members of this family are auxilliary components of the U2 small nuclear ribonuclearprotein splicing factor (U2AF). These proteins are closely related to the CC1-like subfamily of splicing factors (TIGR01622). Members of this subfamily are found in plants, metazoa and fungi.


Pssm-ID: 273727 [Multi-domain]  Cd Length: 509  Bit Score: 37.57  E-value: 4.42e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2217307126 106 QTVPLSVGR------RPPDTPGPET-NSMEAAPGSPPGEGAPLAAD----VYVGNLPGDARVSDLKRALRELGsvPLR-- 172
Cdd:TIGR01642 248 SNVFLKIRRphdyipVPQITPEVSQkNPDDNAKNVEKLVNSTTVLDskdrIYIGNLPLYLGEDQIKELLESFG--DLKaf 325
                          90       100       110       120
                  ....*....|....*....|....*....|....*....|....*....
gi 2217307126 173 -----LTWQGPRRRAFLHYPDSAAAQQAVSCLQGLRLGTDTLRVALARQ 216
Cdd:TIGR01642 326 nlikdIATGLSKGYAFCEYKDPSVTDVAIAALNGKDTGDNKLHVQRACV 374
RRM1_Hu cd12650
RNA recognition motif 1 (RRM1) found in the Hu proteins family; This subfamily corresponds to ...
182-214 4.46e-03

RNA recognition motif 1 (RRM1) found in the Hu proteins family; This subfamily corresponds to the RRM1 of the Hu proteins family which represents a group of RNA-binding proteins involved in diverse biological processes. Since the Hu proteins share high homology with the Drosophila embryonic lethal abnormal vision (ELAV) protein, the Hu family is sometimes referred to as the ELAV family. Drosophila ELAV is exclusively expressed in neurons and is required for the correct differentiation and survival of neurons in flies. The neuronal members of the Hu family include Hu-antigen B (HuB or ELAV-2 or Hel-N1), Hu-antigen C (HuC or ELAV-3 or PLE21), and Hu-antigen D (HuD or ELAV-4), which play important roles in neuronal differentiation, plasticity and memory. HuB is also expressed in gonads. Hu-antigen R (HuR or ELAV-1 or HuA) is the ubiquitously expressed Hu family member. It has a variety of biological functions mostly related to the regulation of cellular response to DNA damage and other types of stress. HuR has an anti-apoptotic function during early cell stress response. It binds to mRNAs and enhances the expression of several anti-apoptotic proteins, such as p21waf1, p53, and prothymosin alpha. HuR also has pro-apoptotic function by promoting apoptosis when cell death is unavoidable. Furthermore, HuR may be important in muscle differentiation, adipogenesis, suppression of inflammatory response and modulation of gene expression in response to chronic ethanol exposure and amino acid starvation. Hu proteins perform their cytoplasmic and nuclear molecular functions by coordinately regulating functionally related mRNAs. In the cytoplasm, Hu proteins recognize and bind to AU-rich RNA elements (AREs) in the 3' untranslated regions (UTRs) of certain target mRNAs, such as GAP-43, vascular epithelial growth factor (VEGF), the glucose transporter GLUT1, eotaxin and c-fos, and stabilize those ARE-containing mRNAs. They also bind and regulate the translation of some target mRNAs, such as neurofilament M, GLUT1, and p27. In the nucleus, Hu proteins function as regulators of polyadenylation and alternative splicing. Each Hu protein contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an ARE. RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions.


Pssm-ID: 410053 [Multi-domain]  Cd Length: 77  Bit Score: 35.07  E-value: 4.46e-03
                          10        20        30
                  ....*....|....*....|....*....|...
gi 2217307126 182 AFLHYPDSAAAQQAVSCLQGLRLGTDTLRVALA 214
Cdd:cd12650    45 GFVNYVDPSDAEKAINTLNGLRLQNKTIKVSYA 77
RRM1_PUF60 cd12370
RNA recognition motif 1 (RRM1) found in (U)-binding-splicing factor PUF60 and similar proteins; ...
145-211 6.70e-03

RNA recognition motif 1 (RRM1) found in (U)-binding-splicing factor PUF60 and similar proteins; This subfamily corresponds to the RRM1 of PUF60, also termed FUSE-binding protein-interacting repressor (FBP-interacting repressor or FIR), or Ro-binding protein 1 (RoBP1), or Siah-binding protein 1 (Siah-BP1). PUF60 is an essential splicing factor that functions as a poly-U RNA-binding protein required to reconstitute splicing in depleted nuclear extracts. Its function is enhanced through interaction with U2 auxiliary factor U2AF65. PUF60 also controls human c-myc gene expression by binding and inhibiting the transcription factor far upstream sequence element (FUSE)-binding-protein (FBP), an activator of c-myc promoters. PUF60 contains two central RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a C-terminal U2AF (U2 auxiliary factor) homology motifs (UHM) that harbors another RRM and binds to tryptophan-containing linear peptide motifs (UHM ligand motifs, ULMs) in several nuclear proteins. Research indicates that PUF60 binds FUSE as a dimer, and only the first two RRM domains participate in the single-stranded DNA recognition.


Pssm-ID: 409805 [Multi-domain]  Cd Length: 76  Bit Score: 34.31  E-value: 6.70e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 2217307126 145 VYVGNLPGDARVSDLKRALRELGSV-PLRLTWQGPRRR----AFLHYPDSAAAQQAVSCLQGLRLGTDTLRV 211
Cdd:cd12370     3 VYVGSIYFELGEDTIRQAFAPFGPIkSIDMSWDPVTMKhkgfAFVEYEVPEAAQLALEQMNGVMLGGRNIKV 74
RRM1_VICKZ cd12358
RNA recognition motif 1 (RRM1) found in the VICKZ family proteins; Thid subfamily corresponds ...
146-204 6.87e-03

RNA recognition motif 1 (RRM1) found in the VICKZ family proteins; Thid subfamily corresponds to the RRM1 of IGF2BPs (or IMPs) found in the VICKZ family that have been implicated in the post-transcriptional regulation of several different RNAs and in subcytoplasmic localization of mRNAs during embryogenesis. IGF2BPs are composed of two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and four hnRNP K homology (KH) domains.


Pssm-ID: 240804 [Multi-domain]  Cd Length: 73  Bit Score: 34.27  E-value: 6.87e-03
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|...
gi 2217307126 146 YVGNLPGDARVSDLKRALRELGSVPlrltwQGP--RRR--AFLHYPDSAAAQQAVSCLQGLRL 204
Cdd:cd12358     2 YIGNLSSDVNESDLRQLFEEHKIPV-----SSVlvKKGgyAFVDCPDQSWADKAIEKLNGKIL 59
RRM_NELFE cd12305
RNA recognition motif in negative elongation factor E (NELF-E) and similar proteins; This ...
159-215 6.93e-03

RNA recognition motif in negative elongation factor E (NELF-E) and similar proteins; This subfamily corresponds to the RRM of NELF-E, also termed RNA-binding protein RD. NELF-E is the RNA-binding subunit of cellular negative transcription elongation factor NELF (negative elongation factor) involved in transcriptional regulation of HIV-1 by binding to the stem of the viral transactivation-response element (TAR) RNA which is synthesized by cellular RNA polymerase II at the viral long terminal repeat. NELF is a heterotetrameric protein consisting of NELF A, B, C or the splice variant D, and E. NELF-E contains an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). It plays a role in the control of HIV transcription by binding to TAR RNA. In addition, NELF-E is associated with the NELF-B subunit, probably via a leucine zipper motif.


Pssm-ID: 409746 [Multi-domain]  Cd Length: 75  Bit Score: 34.22  E-value: 6.93e-03
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....*..
gi 2217307126 159 LKRALRELGSVpLRLTWQGPRRRAFLHYPDSAAAQQAVSCLQGLRLGTDTLRVALAR 215
Cdd:cd12305    19 LKKAFSPFGNI-INISMEIEKNCAFVTFEKMESADQAIAELNGTTVEGVQLKVSIAR 74
RRM1_SF2_plant_like cd12599
RNA recognition motif 1 (RRM1) found in plant pre-mRNA-splicing factor SF2 and similar ...
145-213 6.95e-03

RNA recognition motif 1 (RRM1) found in plant pre-mRNA-splicing factor SF2 and similar proteins; This subgroup corresponds to the RRM1 of SF2, also termed SR1 protein, a plant serine/arginine (SR)-rich phosphoprotein similar to the mammalian splicing factor SF2/ASF. It promotes splice site switching in mammalian nuclear extracts. SF2 contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), followed by a C-terminal domain rich in proline, serine and lysine residues (PSK domain), a composition reminiscent of histones. This PSK domain harbors a putative phosphorylation site for the mitotic kinase cyclin/p34cdc2.


Pssm-ID: 410011 [Multi-domain]  Cd Length: 72  Bit Score: 34.34  E-value: 6.95e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 2217307126 145 VYVGNLPGDARVSDLKRALRELGSV-------PLRltwqgPRRRAFLHYPDSAAAQQAVSCLQGLRLGTDTLRVAL 213
Cdd:cd12599     2 VYVGNLPMDIREREVEDLFSKYGPVvsidlkiPPR-----PPAYAFVEFEDARDAEDAIRGRDGYDFDGHRLRVEL 72
RRM_eIF4B cd12402
RNA recognition motif (RRM) found in eukaryotic translation initiation factor 4B (eIF-4B) and ...
146-218 8.49e-03

RNA recognition motif (RRM) found in eukaryotic translation initiation factor 4B (eIF-4B) and similar proteins; This subfamily corresponds to the RRM of eIF-4B, a multi-domain RNA-binding protein that has been primarily implicated in promoting the binding of 40S ribosomal subunits to mRNA during translation initiation. It contains two RNA-binding domains; the N-terminal well-conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), binds the 18S rRNA of the 40S ribosomal subunit and the C-terminal basic domain (BD), including two arginine-rich motifs (ARMs), binds mRNA during initiation, and is primarily responsible for the stimulation of the helicase activity of eIF-4A. eIF-4B also contains a DRYG domain (a region rich in Asp, Arg, Tyr, and Gly amino acids) in the middle, which is responsible for both, self-association of eIF-4B and binding to the p170 subunit of eIF3. Additional research indicates that eIF-4B can interact with the poly(A) binding protein (PABP) in mammalian cells, which can stimulate both, the eIF-4B-mediated activation of the helicase activity of eIF-4A and binding of poly(A) by PABP. eIF-4B has also been shown to interact specifically with the internal ribosome entry sites (IRES) of several picornaviruses which facilitate cap-independent translation initiation.


Pssm-ID: 409836 [Multi-domain]  Cd Length: 81  Bit Score: 34.12  E-value: 8.49e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 2217307126 146 YVGNLPGDARVSDLKRALRELGSVPLRL----TWQGPRRRAFLHYPDSAAAQQAVScLQGLRLGTDTLRVALARQQR 218
Cdd:cd12402     6 YLGNLPYDVTEDDIEDFFRGLNISSVRLprenGPGRLRGFGYVEFEDRESLIQALS-LNEESLKNRRIRVDVAGQAQ 81
 
Blast search parameters
Data Source: Precalculated data, version = cdd.v.3.21
Preset Options:Database: CDSEARCH/cdd   Low complexity filter: no  Composition Based Adjustment: yes   E-value threshold: 0.01

References:

  • Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
  • Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
  • Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
Help | Disclaimer | Write to the Help Desk
NCBI | NLM | NIH