C-terminal binding protein (CtBP) functions as a transcriptional regulator by tethering chromatin remodeling proteins, such as histone deacetylases, histone methyl transferases, and histone demethylases, to DNA-bound transcription factors; CtBP may also have NAD-dependent dehydrogenase activity
C-terminal binding protein (CtBP), D-isomer-specific 2-hydroxyacid dehydrogenases related ...
28-346
2.38e-146
C-terminal binding protein (CtBP), D-isomer-specific 2-hydroxyacid dehydrogenases related repressor; The transcriptional corepressor CtBP is a dehydrogenase with sequence and structural similarity to the d2-hydroxyacid dehydrogenase family. CtBP was initially identified as a protein that bound the PXDLS sequence at the adenovirus E1A C terminus, causing the loss of CR-1-mediated transactivation. CtBP binds NAD(H) within a deep cleft, undergoes a conformational change upon NAD binding, and has NAD-dependent dehydrogenase activity.
:
Pssm-ID: 240624 [Multi-domain] Cd Length: 312 Bit Score: 419.23 E-value: 2.38e-146
C-terminal binding protein (CtBP), D-isomer-specific 2-hydroxyacid dehydrogenases related ...
28-346
2.38e-146
C-terminal binding protein (CtBP), D-isomer-specific 2-hydroxyacid dehydrogenases related repressor; The transcriptional corepressor CtBP is a dehydrogenase with sequence and structural similarity to the d2-hydroxyacid dehydrogenase family. CtBP was initially identified as a protein that bound the PXDLS sequence at the adenovirus E1A C terminus, causing the loss of CR-1-mediated transactivation. CtBP binds NAD(H) within a deep cleft, undergoes a conformational change upon NAD binding, and has NAD-dependent dehydrogenase activity.
Pssm-ID: 240624 [Multi-domain] Cd Length: 312 Bit Score: 419.23 E-value: 2.38e-146
Lactate dehydrogenase or related 2-hydroxyacid dehydrogenase [Energy production and conversion, ...
30-353
1.19e-97
Lactate dehydrogenase or related 2-hydroxyacid dehydrogenase [Energy production and conversion, Coenzyme transport and metabolism, General function prediction only]; Lactate dehydrogenase or related 2-hydroxyacid dehydrogenase is part of the Pathway/BioSystem: Pyridoxal phosphate biosynthesis
Pssm-ID: 440672 [Multi-domain] Cd Length: 316 Bit Score: 295.07 E-value: 1.19e-97
D-isomer specific 2-hydroxyacid dehydrogenase, catalytic domain; This family represents the ...
30-352
1.88e-82
D-isomer specific 2-hydroxyacid dehydrogenase, catalytic domain; This family represents the largest portion of the catalytic domain of 2-hydroxyacid dehydrogenases as the NAD binding domain is inserted within the structural domain.
Pssm-ID: 425656 [Multi-domain] Cd Length: 311 Bit Score: 256.06 E-value: 1.88e-82
D-3-phosphoglycerate dehydrogenase; This model represents a long form of D-3-phosphoglycerate ...
80-352
2.86e-69
D-3-phosphoglycerate dehydrogenase; This model represents a long form of D-3-phosphoglycerate dehydrogenase, the serA gene of one pathway of serine biosynthesis. Shorter forms, scoring between trusted and noise cutoff, include SerA from E. coli. [Amino acid biosynthesis, Serine family]
Pssm-ID: 273556 [Multi-domain] Cd Length: 525 Bit Score: 228.75 E-value: 2.86e-69
C-terminal binding protein (CtBP), D-isomer-specific 2-hydroxyacid dehydrogenases related ...
28-346
2.38e-146
C-terminal binding protein (CtBP), D-isomer-specific 2-hydroxyacid dehydrogenases related repressor; The transcriptional corepressor CtBP is a dehydrogenase with sequence and structural similarity to the d2-hydroxyacid dehydrogenase family. CtBP was initially identified as a protein that bound the PXDLS sequence at the adenovirus E1A C terminus, causing the loss of CR-1-mediated transactivation. CtBP binds NAD(H) within a deep cleft, undergoes a conformational change upon NAD binding, and has NAD-dependent dehydrogenase activity.
Pssm-ID: 240624 [Multi-domain] Cd Length: 312 Bit Score: 419.23 E-value: 2.38e-146
Formate/glycerate and related dehydrogenases of the D-specific 2-hydroxy acid dehydrogenase ...
30-337
1.12e-107
Formate/glycerate and related dehydrogenases of the D-specific 2-hydroxy acid dehydrogenase family; Formate dehydrogenase, D-specific 2-hydroxy acid dehydrogenase, Phosphoglycerate Dehydrogenase, Lactate dehydrogenase, Thermostable Phosphite Dehydrogenase, and Hydroxy(phenyl)pyruvate reductase, among others, share a characteristic arrangement of 2 similar subdomains of the alpha/beta Rossmann fold NAD+ binding form. 2-hydroxyacid dehydrogenases are enzymes that catalyze the conversion of a wide variety of D-2-hydroxy acids to their corresponding keto acids. The general mechanism is (R)-lactate + acceptor to pyruvate + reduced acceptor. The NAD+ binding domain is inserted within the linear sequence of the mostly N-terminal catalytic domain, which has a similar domain structure to the internal NAD binding domain. Structurally, these domains are connected by extended alpha helices and create a cleft in which NAD is bound, primarily to the C-terminal portion of the 2nd (internal) domain. Some related proteins have similar structural subdomain but with a tandem arrangement of the catalytic and NAD-binding subdomains in the linear sequence. Formate dehydrogenase (FDH) catalyzes the NAD+-dependent oxidation of formate ion to carbon dioxide with the concomitant reduction of NAD+ to NADH. FDHs of this family contain no metal ions or prosthetic groups. Catalysis occurs though direct transfer of hydride ion to NAD+ without the stages of acid-base catalysis typically found in related dehydrogenases. FDHs are found in all methylotrophic microorganisms in energy production and in the stress responses of plants. Formate/glycerate and related dehydrogenases of the D-specific 2-hydroxyacid dehydrogenase superfamily include groups such as formate dehydrogenase, glycerate dehydrogenase, L-alanine dehydrogenase, and S-Adenosylhomocysteine Hydrolase, among others. While many members of this family are dimeric, alanine DH is hexameric and phosphoglycerate DH is tetrameric.
Pssm-ID: 240622 [Multi-domain] Cd Length: 302 Bit Score: 320.35 E-value: 1.12e-107
Lactate dehydrogenase or related 2-hydroxyacid dehydrogenase [Energy production and conversion, ...
30-353
1.19e-97
Lactate dehydrogenase or related 2-hydroxyacid dehydrogenase [Energy production and conversion, Coenzyme transport and metabolism, General function prediction only]; Lactate dehydrogenase or related 2-hydroxyacid dehydrogenase is part of the Pathway/BioSystem: Pyridoxal phosphate biosynthesis
Pssm-ID: 440672 [Multi-domain] Cd Length: 316 Bit Score: 295.07 E-value: 1.19e-97
Phosphoglycerate dehydrogenase or related dehydrogenase [Coenzyme transport and metabolism]; ...
49-352
3.45e-93
Phosphoglycerate dehydrogenase or related dehydrogenase [Coenzyme transport and metabolism]; Phosphoglycerate dehydrogenase or related dehydrogenase is part of the Pathway/BioSystem: Serine biosynthesis
Pssm-ID: 439881 [Multi-domain] Cd Length: 314 Bit Score: 283.62 E-value: 3.45e-93
Putative D-3-Phosphoglycerate Dehydrogenases, NAD-binding and catalytic domains; ...
58-338
1.08e-86
Putative D-3-Phosphoglycerate Dehydrogenases, NAD-binding and catalytic domains; Phosphoglycerate dehydrogenases (PGDHs) catalyze the initial step in the biosynthesis of L-serine from D-3-phosphoglycerate. PGDHs come in 3 distinct structural forms, with this first group being related to 2-hydroxy acid dehydrogenases, sharing structural similarity to formate and glycerate dehydrogenases of the D-specific 2-hydroxyacid dehydrogenase superfamily, which also include groups such as L-alanine dehydrogenase and S-adenosylhomocysteine hydrolase. Despite often low sequence identity, these proteins typically have a characteristic arrangement of 2 similar subdomains of the alpha/beta Rossmann fold NAD+ binding form. The NAD+ binding domain is inserted within the linear sequence of the mostly N-terminal catalytic domain, which has a similar domain structure to the internal NAD binding domain. Structurally, these domains are connected by extended alpha helices and create a cleft in which NAD is bound, primarily to the C-terminal portion of the 2nd (internal) domain. Some related proteins have similar structural subdomain but with a tandem arrangement of the catalytic and NAD-binding subdomains in the linear sequence. Many, not all, members of this family are dimeric.
Pssm-ID: 240649 [Multi-domain] Cd Length: 306 Bit Score: 266.66 E-value: 1.08e-86
Phosphoglycerate dehydrogenases, NAD-binding and catalytic domains; Phosphoglycerate ...
82-342
2.42e-86
Phosphoglycerate dehydrogenases, NAD-binding and catalytic domains; Phosphoglycerate dehydrogenases (PGDHs) catalyze the initial step in the biosynthesis of L-serine from D-3-phosphoglycerate. PGDHs come in 3 distinct structural forms, with this first group being related to 2-hydroxy acid dehydrogenases, sharing structural similarity to formate and glycerate dehydrogenases. PGDH in E. coli and Mycobacterium tuberculosis form tetramers, with subunits containing a Rossmann-fold NAD binding domain. Formate/glycerate and related dehydrogenases of the D-specific 2-hydroxyacid dehydrogenase superfamily include groups such as formate dehydrogenase, glycerate dehydrogenase, L-alanine dehydrogenase, and S-adenosylhomocysteine hydrolase. Despite often low sequence identity, these proteins typically have a characteristic arrangement of 2 similar subdomains of the alpha/beta Rossmann fold NAD+ binding form. The NAD+ binding domain is inserted within the linear sequence of the mostly N-terminal catalytic domain, which has a similar domain structure to the internal NAD binding domain. Structurally, these domains are connected by extended alpha helices and create a cleft in which NAD is bound, primarily to the C-terminal portion of the 2nd (internal) domain. Some related proteins have similar structural subdomain but with a tandem arrangement of the catalytic and NAD-binding subdomains in the linear sequence.
Pssm-ID: 240650 [Multi-domain] Cd Length: 304 Bit Score: 265.82 E-value: 2.42e-86
D-isomer specific 2-hydroxyacid dehydrogenase, catalytic domain; This family represents the ...
30-352
1.88e-82
D-isomer specific 2-hydroxyacid dehydrogenase, catalytic domain; This family represents the largest portion of the catalytic domain of 2-hydroxyacid dehydrogenases as the NAD binding domain is inserted within the structural domain.
Pssm-ID: 425656 [Multi-domain] Cd Length: 311 Bit Score: 256.06 E-value: 1.88e-82
Putative D-isomer specific 2-hydroxyacid dehydrogenases, NAD-binding and catalytic domains; ...
82-352
5.74e-79
Putative D-isomer specific 2-hydroxyacid dehydrogenases, NAD-binding and catalytic domains; 2-Hydroxyacid dehydrogenases catalyze the conversion of a wide variety of D-2-hydroxy acids to their corresponding keto acids. The general mechanism is (R)-lactate + acceptor to pyruvate + reduced acceptor. Formate/glycerate and related dehydrogenases of the D-specific 2-hydroxyacid dehydrogenase superfamily include groups such as formate dehydrogenase, glycerate dehydrogenase, L-alanine dehydrogenase, and S-adenosylhomocysteine hydrolase. Despite often low sequence identity, these proteins typically have a characteristic arrangement of 2 similar subdomains of the alpha/beta Rossmann fold NAD+ binding form. The NAD+ binding domain is inserted within the linear sequence of the mostly N-terminal catalytic domain, which has a similar domain structure to the internal NAD binding domain. Structurally, these domains are connected by extended alpha helices and create a cleft in which NAD is bound, primarily to the C-terminal portion of the 2nd (internal) domain. Some related proteins have similar structural subdomain but with a tandem arrangement of the catalytic and NAD-binding subdomains in the linear sequence. While many members of this family are dimeric, alanine DH is hexameric and phosphoglycerate DH is tetrameric.
Pssm-ID: 240655 [Multi-domain] Cd Length: 317 Bit Score: 247.53 E-value: 5.74e-79
Putative D-isomer specific 2-hydroxyacid dehydrogenases, NAD-binding and catalytic domains; ...
78-344
5.44e-76
Putative D-isomer specific 2-hydroxyacid dehydrogenases, NAD-binding and catalytic domains; 2-Hydroxyacid dehydrogenases catalyze the conversion of a wide variety of D-2-hydroxy acids to their corresponding keto acids. The general mechanism is (R)-lactate + acceptor to pyruvate + reduced acceptor. Formate/glycerate and related dehydrogenases of the D-specific 2-hydroxyacid dehydrogenase superfamily include groups such as formate dehydrogenase, glycerate dehydrogenase, L-alanine dehydrogenase, and S-adenosylhomocysteine hydrolase. Despite often low sequence identity, these proteins typically have a characteristic arrangement of 2 similar subdomains of the alpha/beta Rossmann fold NAD+ binding form. The NAD+ binding domain is inserted within the linear sequence of the mostly N-terminal catalytic domain, which has a similar domain structure to the internal NAD binding domain. Structurally, these domains are connected by extended alpha helices and create a cleft in which NAD is bound, primarily to the C-terminal portion of the 2nd (internal) domain. Some related proteins have similar structural subdomain but with a tandem arrangement of the catalytic and NAD-binding subdomains in the linear sequence. While many members of this family are dimeric, alanine DH is hexameric and phosphoglycerate DH is tetrameric.
Pssm-ID: 240652 [Multi-domain] Cd Length: 311 Bit Score: 239.40 E-value: 5.44e-76
D-Mandelate Dehydrogenase-like dehydrogenases; D-Mandelate dehydrogenase (D-ManDH), identified as an enzyme that interconverts benzoylformate and D-mandelate, is a D-2-hydroxyacid dehydrogenase family member that catalyzes the conversion of c3-branched 2-ketoacids. D-ManDH exhibits broad substrate specificities for 2-ketoacids with large hydrophobic side chains, particularly those with C3-branched side chains. 2-hydroxyacid dehydrogenases catalyze the conversion of a wide variety of D-2-hydroxy acids to their corresponding keto acids. The general mechanism is (R)-lactate + acceptor to pyruvate + reduced acceptor. Glycerate dehydrogenase catalyzes the reaction (R)-glycerate + NAD+ to hydroxypyruvate + NADH + H+. Formate/glycerate and related dehydrogenases of the D-specific 2-hydroxyacid dehydrogenase superfamily include groups such as formate dehydrogenase, glycerate dehydrogenase, L-alanine dehydrogenase, and S-adenosylhomocysteine hydrolase. Despite often low sequence identity, these proteins typically have a characteristic arrangement of 2 similar subdomains of the alpha/beta Rossmann fold NAD+ binding form. The NAD+ binding domain is inserted within the linear sequence of the mostly N-terminal catalytic domain, which has a similar domain structure to the internal NAD binding domain. Structurally, these domains are connected by extended alpha helices and create a cleft in which NAD is bound, primarily to the C-terminal portion of the 2nd (internal) domain.
Pssm-ID: 240645 [Multi-domain] Cd Length: 321 Bit Score: 232.44 E-value: 3.58e-73
Putative D-isomer specific 2-hydroxyacid dehydrogenases; 2-Hydroxyacid dehydrogenases catalyze ...
81-329
5.97e-73
Putative D-isomer specific 2-hydroxyacid dehydrogenases; 2-Hydroxyacid dehydrogenases catalyze the conversion of a wide variety of D-2-hydroxy acids to their corresponding keto acids. The general mechanism is (R)-lactate + acceptor to pyruvate + reduced acceptor. Formate/glycerate and related dehydrogenases of the D-specific 2-hydroxyacid dehydrogenase superfamily include groups such as formate dehydrogenase, glycerate dehydrogenase, L-alanine dehydrogenase, and S-adenosylhomocysteine hydrolase. Despite often low sequence identity, these proteins typically have a characteristic arrangement of 2 similar subdomains of the alpha/beta Rossmann fold NAD+ binding form. The NAD+ binding domain is inserted within the linear sequence of the mostly N-terminal catalytic domain, which has a similar domain structure to the internal NAD binding domain. Structurally, these domains are connected by extended alpha helices and create a cleft in which NAD is bound, primarily to the C-terminal portion of the 2nd (internal) domain. Some related proteins have similar structural subdomain but with a tandem arrangement of the catalytic and NAD-binding subdomains in the linear sequence. While many members of this family are dimeric, alanine DH is hexameric and phosphoglycerate DH is tetrameric.
Pssm-ID: 240639 [Multi-domain] Cd Length: 307 Bit Score: 231.57 E-value: 5.97e-73
D-glycerate dehydrogenase/hydroxypyruvate reductase (GDH); D-glycerate dehydrogenase (GDH, also known as hydroxypyruvate reductase, HPR) catalyzes the reversible reaction of (R)-glycerate + NAD+ to hydroxypyruvate + NADH + H+. In humans, HPR deficiency causes primary hyperoxaluria type 2, characterized by over-excretion of L-glycerate and oxalate in the urine, possibly due to an imbalance in competition with L-lactate dehydrogenase, another formate dehydrogenase (FDH)-like enzyme. GDH, like FDH and other members of the D-specific hydroxyacid dehydrogenase family that also includes L-alanine dehydrogenase and S-adenosylhomocysteine hydrolase, typically have a characteristic arrangement of 2 similar subdomains of the alpha/beta Rossmann-fold NAD+ binding form, despite often low sequence identity. The NAD+ binding domain is inserted within the linear sequence of the mostly N-terminal catalytic domain, which has a similar domain structure to the internal NAD binding domain. Structurally, these domains are connected by extended alpha helices and create a cleft in which NAD is bound, primarily to the C-terminal portion of the 2nd (internal) domain. Some related proteins have similar structural subdomain but with a tandem arrangement of the catalytic and NAD-binding subdomains in the linear sequence. While many members of this family are dimeric, alanine DH is hexameric and phosphoglycerate DH is tetrameric.
Pssm-ID: 240626 [Multi-domain] Cd Length: 309 Bit Score: 225.74 E-value: 1.06e-70
D-Lactate and related Dehydrogenases, NAD-binding and catalytic domains; D-Lactate ...
30-342
1.43e-70
D-Lactate and related Dehydrogenases, NAD-binding and catalytic domains; D-Lactate dehydrogenase (LDH) catalyzes the interconversion of pyruvate and lactate, and is a member of the 2-hydroxyacid dehydrogenase family. LDH is homologous to D-2-Hydroxyisocaproic acid dehydrogenase (D-HicDH) and shares the 2 domain structure of formate dehydrogenase. D-HicDH is a NAD-dependent member of the hydroxycarboxylate dehydrogenase family, and shares the Rossmann fold typical of many NAD binding proteins. D-HicDH from Lactobacillus casei forms a monomer and catalyzes the reaction R-CO-COO(-) + NADH + H+ to R-COH-COO(-) + NAD+. Similar to the structurally distinct L-HicDH, D-HicDH exhibits low side-chain R specificity, accepting a wide range of 2-oxocarboxylic acid side chains. (R)-2-hydroxyglutarate dehydrogenase (HGDH) catalyzes the NAD-dependent reduction of 2-oxoglutarate to (R)-2-hydroxyglutarate. Formate/glycerate and related dehydrogenases of the D-specific 2-hydroxyacid dehydrogenase superfamily include groups such as formate dehydrogenase, glycerate dehydrogenase, L-alanine dehydrogenase, and S-adenosylhomocysteine hydrolase. Despite often low sequence identity, these proteins typically have a characteristic arrangement of 2 similar subdomains of the alpha/beta Rossmann fold NAD+ binding form. The NAD+ binding domain is inserted within the linear sequence of the mostly N-terminal catalytic domain, which has a similar domain structure to the internal NAD binding domain. Structurally, these domains are connected by extended alpha helices and create a cleft in which NAD is bound, primarily to the C-terminal portion of the 2nd (internal) domain.
Pssm-ID: 240620 [Multi-domain] Cd Length: 323 Bit Score: 226.03 E-value: 1.43e-70
D-3-phosphoglycerate dehydrogenase; This model represents a long form of D-3-phosphoglycerate ...
80-352
2.86e-69
D-3-phosphoglycerate dehydrogenase; This model represents a long form of D-3-phosphoglycerate dehydrogenase, the serA gene of one pathway of serine biosynthesis. Shorter forms, scoring between trusted and noise cutoff, include SerA from E. coli. [Amino acid biosynthesis, Serine family]
Pssm-ID: 273556 [Multi-domain] Cd Length: 525 Bit Score: 228.75 E-value: 2.86e-69
Phosphoglycerate dehydrogenase (PGDH) NAD-binding and catalytic domains; Phosphoglycerate ...
80-315
9.69e-68
Phosphoglycerate dehydrogenase (PGDH) NAD-binding and catalytic domains; Phosphoglycerate dehydrogenase (PGDH) catalyzes the initial step in the biosynthesis of L-serine from D-3-phosphoglycerate. PGDH comes in 3 distinct structural forms, with this first group being related to 2-hydroxy acid dehydrogenases, sharing structural similarity to formate and glycerate dehydrogenases. PGDH in E. coli and Mycobacterium tuberculosis form tetramers, with subunits containing a Rossmann-fold NAD binding domain. Formate/glycerate and related dehydrogenases of the D-specific 2-hydroxyacid dehydrogenase superfamily include groups such as formate dehydrogenase, glycerate dehydrogenase, L-alanine dehydrogenase, and S-Adenosylhomocysteine Hydrolase. Despite often low sequence identity, these proteins typically have a characteristic arrangement of 2 similar subdomains of the alpha/beta Rossmann fold NAD+ binding form. The NAD+ binding domain is inserted within the linear sequence of the mostly N-terminal catalytic domain, which has a similar domain structure to the internal NAD binding domain. Structurally, these domains are connected by extended alpha helices and create a cleft in which NAD is bound, primarily to the C-terminal portion of the 2nd (internal) domain. Some related proteins have similar structural subdomain but with a tandem arrangement of the catalytic and NAD-binding subdomains in the linear sequence.
Pssm-ID: 240628 [Multi-domain] Cd Length: 301 Bit Score: 217.79 E-value: 9.69e-68
D-isomer specific 2-hydroxyacid dehydrogenase, NAD binding domain; This domain is inserted ...
133-317
1.31e-66
D-isomer specific 2-hydroxyacid dehydrogenase, NAD binding domain; This domain is inserted into the catalytic domain, the large dehydrogenase and D-lactate dehydrogenase families in SCOP. N-terminal portion of which is represented by family pfam00389.
Pssm-ID: 427007 [Multi-domain] Cd Length: 178 Bit Score: 210.43 E-value: 1.31e-66
Putative D-isomer specific 2-hydroxyacid dehydrogenases, NAD-binding and catalytic domains; ...
31-349
3.30e-65
Putative D-isomer specific 2-hydroxyacid dehydrogenases, NAD-binding and catalytic domains; 2-Hydroxyacid dehydrogenases catalyze the conversion of a wide variety of D-2-hydroxy acids to their corresponding keto acids. The general mechanism is (R)-lactate + acceptor to pyruvate + reduced acceptor. Formate/glycerate and related dehydrogenases of the D-specific 2-hydroxyacid dehydrogenase superfamily include groups such as formate dehydrogenase, glycerate dehydrogenase, L-alanine dehydrogenase, and S-adenosylhomocysteine hydrolase. Despite often low sequence identity, these proteins typically have a characteristic arrangement of 2 similar subdomains of the alpha/beta Rossmann fold NAD+ binding form. The NAD+ binding domain is inserted within the linear sequence of the mostly N-terminal catalytic domain, which has a similar domain structure to the internal NAD binding domain. Structurally, these domains are connected by extended alpha helices and create a cleft in which NAD is bound, primarily to the C-terminal portion of the 2nd (internal) domain. Some related proteins have similar structural subdomain but with a tandem arrangement of the catalytic and NAD-binding subdomains in the linear sequence. While many members of this family are dimeric, alanine DH is hexameric and phosphoglycerate DH is tetrameric.
Pssm-ID: 240654 [Multi-domain] Cd Length: 321 Bit Score: 212.18 E-value: 3.30e-65
Putative D-isomer specific 2-hydroxyacid dehydrogenases; 2-Hydroxyacid dehydrogenases catalyze ...
61-337
4.45e-65
Putative D-isomer specific 2-hydroxyacid dehydrogenases; 2-Hydroxyacid dehydrogenases catalyze the conversion of a wide variety of D-2-hydroxy acids to their corresponding keto acids. The general mechanism is (R)-lactate + acceptor to pyruvate + reduced acceptor. Formate/glycerate and related dehydrogenases of the D-specific 2-hydroxyacid dehydrogenase superfamily include groups such as formate dehydrogenase, glycerate dehydrogenase, L-alanine dehydrogenase, and S-adenosylhomocysteine hydrolase. Despite often low sequence identity, these proteins typically have a characteristic arrangement of 2 similar subdomains of the alpha/beta Rossmann fold NAD+ binding form. The NAD+ binding domain is inserted within the linear sequence of the mostly N-terminal catalytic domain, which has a similar domain structure to the internal NAD binding domain. Structurally, these domains are connected by extended alpha helices and create a cleft in which NAD is bound, primarily to the C-terminal portion of the 2nd (internal) domain. Some related proteins have similar structural subdomain but with a tandem arrangement of the catalytic and NAD-binding subdomains in the linear sequence. While many members of this family are dimeric, alanine DH is hexameric and phosphoglycerate DH is tetrameric.
Pssm-ID: 240648 [Multi-domain] Cd Length: 310 Bit Score: 211.24 E-value: 4.45e-65
Putative D-3-Phosphoglycerate Dehydrogenases, NAD-binding and catalytic domains; ...
83-352
7.49e-65
Putative D-3-Phosphoglycerate Dehydrogenases, NAD-binding and catalytic domains; Phosphoglycerate dehydrogenases (PGDHs) catalyze the initial step in the biosynthesis of L-serine from D-3-phosphoglycerate. PGDHs come in 3 distinct structural forms, with this first group being related to 2-hydroxy acid dehydrogenases, sharing structural similarity to formate and glycerate dehydrogenases of the D-specific 2-hydroxyacid dehydrogenase superfamily, which also include groups such as L-alanine dehydrogenase and S-adenosylhomocysteine hydrolase. Despite often low sequence identity, these proteins typically have a characteristic arrangement of 2 similar subdomains of the alpha/beta Rossmann fold NAD+ binding form. The NAD+ binding domain is inserted within the linear sequence of the mostly N-terminal catalytic domain, which has a similar domain structure to the internal NAD binding domain. Structurally, these domains are connected by extended alpha helices and create a cleft in which NAD is bound, primarily to the C-terminal portion of the 2nd (internal) domain. Some related proteins have similar structural subdomain but with a tandem arrangement of the catalytic and NAD-binding subdomains in the linear sequence. Many, not all, members of this family are dimeric.
Pssm-ID: 240651 [Multi-domain] Cd Length: 305 Bit Score: 210.49 E-value: 7.49e-65
D-Lactate dehydrogenase and D-2-Hydroxyisocaproic acid dehydrogenase (D-HicDH), NAD-binding ...
58-341
7.45e-59
D-Lactate dehydrogenase and D-2-Hydroxyisocaproic acid dehydrogenase (D-HicDH), NAD-binding and catalytic domains; D-Lactate dehydrogenase (LDH) catalyzes the interconversion of pyruvate and lactate, and is a member of the 2-hydroxyacid dehydrogenases family. LDH is homologous to D-2-hydroxyisocaproic acid dehydrogenase(D-HicDH) and shares the 2 domain structure of formate dehydrogenase. D-HicDH is a NAD-dependent member of the hydroxycarboxylate dehydrogenase family, and shares the Rossmann fold typical of many NAD binding proteins. HicDH from Lactobacillus casei forms a monomer and catalyzes the reaction R-CO-COO(-) + NADH + H+ to R-COH-COO(-) + NAD+. D-HicDH, like the structurally distinct L-HicDH, exhibits low side-chain R specificity, accepting a wide range of 2-oxocarboxylic acid side chains. Formate/glycerate and related dehydrogenases of the D-specific 2-hydroxyacid dehydrogenase superfamily include groups such as formate dehydrogenase, glycerate dehydrogenase, L-alanine dehydrogenase, and S-Adenosylhomocysteine Hydrolase. Despite often low sequence identity, these proteins typically have a characteristic arrangement of 2 similar subdomains of the alpha/beta Rossmann fold NAD+ binding form. The NAD+ binding domain is inserted within the linear sequence of the mostly N-terminal catalytic domain, which has a similar domain structure to the internal NAD binding domain. Structurally, these domains are connected by extended alpha helices and create a cleft in which NAD is bound, primarily to the C-terminal portion of the 2nd (internal) domain.
Pssm-ID: 240662 Cd Length: 329 Bit Score: 195.83 E-value: 7.45e-59
D-Lactate and related Dehydrogenase like proteins, NAD-binding and catalytic domains; ...
81-342
1.52e-58
D-Lactate and related Dehydrogenase like proteins, NAD-binding and catalytic domains; D-Lactate dehydrogenase (LDH) catalyzes the interconversion of pyruvate and lactate, and is a member of the 2-hydroxyacid dehydrogenase family. LDH is homologous to D-2-Hydroxyisocaproic acid dehydrogenase(D-HicDH) and shares the 2 domain structure of formate dehydrogenase. D-2-hydroxyisocaproate dehydrogenase-like (HicDH) proteins are NAD-dependent members of the hydroxycarboxylate dehydrogenase family, and share the Rossmann fold typical of many NAD binding proteins. HicDH from Lactobacillus casei forms a monomer and catalyzes the reaction R-CO-COO(-) + NADH + H+ to R-COH-COO(-) + NAD+. D-HicDH, like the structurally distinct L-HicDH, exhibits low side-chain R specificity, accepting a wide range of 2-oxocarboxylic acid side chains. Formate/glycerate and related dehydrogenases of the D-specific 2-hydroxyacid dehydrogenase superfamily include groups such as formate dehydrogenase, glycerate dehydrogenase, L-alanine dehydrogenase, and S-Adenosylhomocysteine Hydrolase. Despite often low sequence identity, these proteins typically have a characteristic arrangement of 2 similar subdomains of the alpha/beta Rossmann fold NAD+ binding form. The NAD+ binding domain is inserted within the linear sequence of the mostly N-terminal catalytic domain, which has a similar domain structure to the internal NAD binding domain. Structurally, these domains are connected by extended alpha helices and create a cleft in which NAD is bound, primarily to the C-terminal portion of the 2nd (internal) domain.
Pssm-ID: 240663 [Multi-domain] Cd Length: 329 Bit Score: 194.80 E-value: 1.52e-58
Putative D-3-Phosphoglycerate Dehydrogenases; Phosphoglycerate dehydrogenases (PGDHs) catalyze the initial step in the biosynthesis of L-serine from D-3-phosphoglycerate. PGDHs come in 3 distinct structural forms, with this first group being related to 2-hydroxy acid dehydrogenases, sharing structural similarity to formate and glycerate dehydrogenases of the D-specific 2-hydroxyacid dehydrogenase superfamily, which also include groups such as L-alanine dehydrogenase and S-adenosylhomocysteine hydrolase. Despite often low sequence identity, these proteins typically have a characteristic arrangement of 2 similar subdomains of the alpha/beta Rossmann fold NAD+ binding form. The NAD+ binding domain is inserted within the linear sequence of the mostly N-terminal catalytic domain, which has a similar domain structure to the internal NAD binding domain. Structurally, these domains are connected by extended alpha helices and create a cleft in which NAD is bound, primarily to the C-terminal portion of the 2nd (internal) domain. Some related proteins have similar structural subdomain but with a tandem arrangement of the catalytic and NAD-binding subdomains in the linear sequence. Many, not all, members of this family are dimeric.
Pssm-ID: 240646 [Multi-domain] Cd Length: 308 Bit Score: 186.95 E-value: 8.44e-56
D-Lactate and related Dehydrogenases, NAD-binding and catalytic domains; D-Lactate ...
80-323
3.65e-55
D-Lactate and related Dehydrogenases, NAD-binding and catalytic domains; D-Lactate dehydrogenase (LDH) catalyzes the interconversion of pyruvate and lactate, and is a member of the 2-hydroxyacid dehydrogenase family. LDH is homologous to D-2-hydroxyisocaproic acid dehydrogenase (D-HicDH) and shares the 2-domain structure of formate dehydrogenase. D-2-hydroxyisocaproate dehydrogenase-like (HicDH) proteins are NAD-dependent members of the hydroxycarboxylate dehydrogenase family, and share the Rossmann fold typical of many NAD binding proteins. HicDH from Lactobacillus casei forms a monomer and catalyzes the reaction R-CO-COO(-) + NADH + H+ to R-COH-COO(-) + NAD+. D-HicDH, like the structurally distinct L-HicDH, exhibits low side-chain R specificity, accepting a wide range of 2-oxocarboxylic acid side chains. Formate/glycerate and related dehydrogenases of the D-specific 2-hydroxyacid dehydrogenase superfamily include groups such as formate dehydrogenase, glycerate dehydrogenase, L-alanine dehydrogenase, and S-adenosylhomocysteine hydrolase. Despite often low sequence identity, these proteins typically have a characteristic arrangement of 2 similar subdomains of the alpha/beta Rossmann fold NAD+ binding form. The NAD+ binding domain is inserted within the linear sequence of the mostly N-terminal catalytic domain, which has a similar domain structure to the internal NAD binding domain. Structurally, these domains are connected by extended alpha helices and create a cleft in which NAD is bound, primarily to the C-terminal portion of the 2nd (internal) domain.
Pssm-ID: 240659 Cd Length: 328 Bit Score: 186.11 E-value: 3.65e-55
Putative glycerate dehydrogenase and related proteins of the D-specific 2-hydroxy ...
73-332
3.73e-55
Putative glycerate dehydrogenase and related proteins of the D-specific 2-hydroxy dehydrogenase family; This group contains a variety of proteins variously identified as glycerate dehydrogenase (GDH, aka Hydroxypyruvate Reductase) and other enzymes of the 2-hydroxyacid dehydrogenase family. GDH catalyzes the reversible reaction of (R)-glycerate + NAD+ to hydroxypyruvate + NADH + H+. 2-hydroxyacid dehydrogenases catalyze the conversion of a wide variety of D-2-hydroxy acids to their corresponding keto acids. The general mechanism is (R)-lactate + acceptor to pyruvate + reduced acceptor. Formate/glycerate and related dehydrogenases of the D-specific 2-hydroxyacid dehydrogenase superfamily include groups such as formate dehydrogenase, glycerate dehydrogenase, L-alanine dehydrogenase, and S-adenosylhomocysteine hydrolase. Despite often low sequence identity, these proteins typically have a characteristic arrangement of 2 similar subdomains of the alpha/beta Rossmann-fold NAD+ binding form. The NAD+ binding domain is inserted within the linear sequence of the mostly N-terminal catalytic domain, which has a similar domain structure to the internal NAD binding domain. Structurally, these domains are connected by extended alpha helices and create a cleft in which NAD is bound, primarily to the C-terminal portion of the 2nd (internal) domain. Some related proteins have similar structural subdomain but with a tandem arrangement of the catalytic and NAD-binding subdomains in the linear sequence. While many members of this family are dimeric, alanine DH is hexameric and phosphoglycerate DH is tetrameric.
Pssm-ID: 240638 [Multi-domain] Cd Length: 315 Bit Score: 185.50 E-value: 3.73e-55
Putative Lactate dehydrogenase and (R)-2-Hydroxyglutarate Dehydrogenase-like proteins, ...
51-336
1.07e-49
Putative Lactate dehydrogenase and (R)-2-Hydroxyglutarate Dehydrogenase-like proteins, NAD-binding and catalytic domains; This group contains various putative dehydrogenases related to D-lactate dehydrogenase (LDH), (R)-2-hydroxyglutarate dehydrogenase (HGDH), and related enzymes, members of the 2-hydroxyacid dehydrogenases family. LDH catalyzes the interconversion of pyruvate and lactate, and HGDH catalyzes the NAD-dependent reduction of 2-oxoglutarate to (R)-2-hydroxyglutarate. Despite often low sequence identity within this 2-hydroxyacid dehydrogenase family, these proteins typically have a characteristic arrangement of 2 similar subdomains of the alpha/beta Rossmann fold NAD+ binding form. The NAD+ binding domain is inserted within the linear sequence of the mostly N-terminal catalytic domain, which has a similar domain structure to the internal NAD binding domain. Structurally, these domains are connected by extended alpha helices and create a cleft in which NAD is bound, primarily to the C-terminal portion of the 2nd (internal) domain.
Pssm-ID: 240661 Cd Length: 322 Bit Score: 171.62 E-value: 1.07e-49
NAD-dependent Formate Dehydrogenase (FDH); NAD-dependent formate dehydrogenase (FDH) catalyzes the NAD+-dependent oxidation of a formate anion to carbon dioxide coupled with the reduction of NAD+ to NADH. Formate/glycerate and related dehydrogenases of the D-specific 2-hydroxy acid dehydrogenase family have 2 highly similar subdomains of the alpha/beta form, with NAD binding occurring in the cleft between subdomains. NAD contacts are primarily to the Rossmann-fold NAD-binding domain which is inserted within the linear sequence of the more diverse flavodoxin-like catalytic subdomain. Some related proteins have similar structural subdomain but with a tandem arrangement of the catalytic and NAD-binding subdomains in the linear sequence. FDHs of this family contain no metal ions or prosthetic groups. Catalysis occurs though direct transfer of the hydride ion to NAD+ without the stages of acid-base catalysis typically found in related dehydrogenases. FDHs are found in all methylotrophic microorganisms in energy production from C1 compounds such as methanol, and in the stress responses of plants. NAD-dependent FDH is useful in cofactor regeneration in asymmetrical biocatalytic reduction processes, where FDH irreversibly oxidizes formate to carbon dioxide, while reducing the oxidized form of the cofactor to the reduced form.
Pssm-ID: 240627 Cd Length: 348 Bit Score: 169.43 E-value: 1.17e-48
Putative D-isomer specific 2-hydroxyacid dehydrogenases; 2-Hydroxyacid dehydrogenases catalyze ...
80-360
1.80e-47
Putative D-isomer specific 2-hydroxyacid dehydrogenases; 2-Hydroxyacid dehydrogenases catalyze the conversion of a wide variety of D-2-hydroxy acids to their corresponding keto acids. The general mechanism is (R)-lactate + acceptor to pyruvate + reduced acceptor. Formate/glycerate and related dehydrogenases of the D-specific 2-hydroxyacid dehydrogenase superfamily include groups such as formate dehydrogenase, glycerate dehydrogenase, L-alanine dehydrogenase, and S-adenosylhomocysteine hydrolase. Despite often low sequence identity, these proteins typically have a characteristic arrangement of 2 similar subdomains of the alpha/beta Rossmann fold NAD+ binding form. The NAD+ binding domain is inserted within the linear sequence of the mostly N-terminal catalytic domain, which has a similar domain structure to the internal NAD binding domain. Structurally, these domains are connected by extended alpha helices and create a cleft in which NAD is bound, primarily to the C-terminal portion of the 2nd (internal) domain. Some related proteins have similar structural subdomain but with a tandem arrangement of the catalytic and NAD-binding subdomains in the linear sequence. While many members of this family are dimeric, alanine DH is hexameric and phosphoglycerate DH is tetrameric.
Pssm-ID: 240644 [Multi-domain] Cd Length: 330 Bit Score: 165.81 E-value: 1.80e-47
Phosphoglycerate dehydrogenases, NAD-binding and catalytic domains; Phosphoglycerate ...
80-337
1.37e-46
Phosphoglycerate dehydrogenases, NAD-binding and catalytic domains; Phosphoglycerate dehydrogenases (PGDHs) catalyze the initial step in the biosynthesis of L-serine from D-3-phosphoglycerate. PGDHs come in 3 distinct structural forms, with this first group being related to 2-hydroxy acid dehydrogenases, sharing structural similarity to formate and glycerate dehydrogenases. PGDH in E. coli and Mycobacterium tuberculosis form tetramers, with subunits containing a Rossmann-fold NAD binding domain. Formate/glycerate and related dehydrogenases of the D-specific 2-hydroxyacid dehydrogenase superfamily include groups such as formate dehydrogenase, glycerate dehydrogenase, L-alanine dehydrogenase, and S-adenosylhomocysteine hydrolase. Despite often low sequence identity, these proteins typically have a characteristic arrangement of 2 similar subdomains of the alpha/beta Rossmann fold NAD+ binding form. The NAD+ binding domain is inserted within the linear sequence of the mostly N-terminal catalytic domain, which has a similar domain structure to the internal NAD binding domain. Structurally, these domains are connected by extended alpha helices and create a cleft in which NAD is bound, primarily to the C-terminal portion of the 2nd (internal) domain. Some related proteins have similar structural subdomain but with a tandem arrangement of the catalytic and NAD-binding subdomains in the linear sequence.
Pssm-ID: 240653 Cd Length: 304 Bit Score: 162.75 E-value: 1.37e-46
Thermostable Phosphite Dehydrogenase; Phosphite dehydrogenase (PTDH), a member of the ...
58-341
8.20e-46
Thermostable Phosphite Dehydrogenase; Phosphite dehydrogenase (PTDH), a member of the D-specific 2-hydroxyacid dehydrogenase family, catalyzes the NAD-dependent formation of phosphate from phosphite (hydrogen phosphonate). PTDH has been suggested as a potential enzyme for cofactor regeneration systems. The D-specific 2-hydroxyacid dehydrogenase superfamily include groups such as formate dehydrogenase, glycerate dehydrogenase, L-alanine dehydrogenase, and S-adenosylhomocysteine hydrolase. Despite often low sequence identity, these proteins typically have a characteristic arrangement of 2 similar subdomains of the alpha/beta Rossmann fold NAD+ binding form. The NAD+ binding domain is inserted within the linear sequence of the mostly N-terminal catalytic domain, which has a similar domain structure to the internal NAD-binding domain.
Pssm-ID: 240634 [Multi-domain] Cd Length: 318 Bit Score: 161.30 E-value: 8.20e-46
Hydroxy(phenyl)pyruvate Reductase, D-isomer-specific 2-hydroxyacid-related dehydrogenase; Hydroxy(phenyl)pyruvate reductase (HPPR) catalyzes the NADP-dependent reduction of hydroxyphenylpyruvates, hydroxypyruvate, or pyruvate to its respective lactate. HPPR acts as a dimer and is related to D-isomer-specific 2-hydroxyacid dehydrogenases, a superfamily that includes groups such as formate dehydrogenase, glycerate dehydrogenase, L-alanine dehydrogenase, and S-Adenosylhomocysteine Hydrolase. Despite often low sequence identity, these proteins typically have a characteristic arrangement of 2 similar subdomains of the alpha/beta Rossmann fold NAD+ binding form. The NAD+ binding domain is inserted within the linear sequence of the mostly N-terminal catalytic domain, which has a similar domain structure to the internal NAD binding domain. Structurally, these domains are connected by extended alpha helices and create a cleft in which NAD is bound, primarily to the C-terminal portion of the 2nd (internal) domain. Some related proteins have similar structural subdomain but with a tandem arrangement of the catalytic and NAD-binding subdomains in the linear sequence. While many members of this family are dimeric, alanine DH is hexameric and phosphoglycerate DH is tetrameric.
Pssm-ID: 240633 [Multi-domain] Cd Length: 301 Bit Score: 160.33 E-value: 9.80e-46
(R)-2-Hydroxyglutarate Dehydrogenase and related dehydrogenases, NAD-binding and catalytic ...
80-329
2.15e-43
(R)-2-Hydroxyglutarate Dehydrogenase and related dehydrogenases, NAD-binding and catalytic domains; (R)-2-hydroxyglutarate dehydrogenase (HGDH) catalyzes the NAD-dependent reduction of 2-oxoglutarate to (R)-2-hydroxyglutarate. HGDH is a member of the D-2-hydroxyacid NAD(+)-dependent dehydrogenase family; these proteins typically have a characteristic arrangement of 2 similar subdomains of the alpha/beta Rossmann fold NAD+ binding form. The NAD+ binding domain is inserted within the linear sequence of the mostly N-terminal catalytic domain, which has a similar domain structure to the internal NAD binding domain. Structurally, these domains are connected by extended alpha helices and create a cleft in which NAD is bound, primarily to the C-terminal portion of the 2nd (internal) domain.
Pssm-ID: 240660 Cd Length: 330 Bit Score: 155.14 E-value: 2.15e-43
Putative D-isomer specific 2-hydroxyacid dehydrogenases, NAD-binding and catalytic domains; ...
83-321
6.26e-43
Putative D-isomer specific 2-hydroxyacid dehydrogenases, NAD-binding and catalytic domains; 2-Hydroxyacid dehydrogenases catalyze the conversion of a wide variety of D-2-hydroxy acids to their corresponding keto acids. The general mechanism is (R)-lactate + acceptor to pyruvate + reduced acceptor. Formate/glycerate and related dehydrogenases of the D-specific 2-hydroxyacid dehydrogenase superfamily include groups such as formate dehydrogenase, glycerate dehydrogenase, L-alanine dehydrogenase, and S-adenosylhomocysteine hydrolase. Despite often low sequence identity, these proteins typically have a characteristic arrangement of 2 similar subdomains of the alpha/beta Rossmann fold NAD+ binding form. The NAD+ binding domain is inserted within the linear sequence of the mostly N-terminal catalytic domain, which has a similar domain structure to the internal NAD binding domain. Structurally, these domains are connected by extended alpha helices and create a cleft in which NAD is bound, primarily to the C-terminal portion of the 2nd (internal) domain. Some related proteins have similar structural subdomain but with a tandem arrangement of the catalytic and NAD-binding subdomains in the linear sequence. While many members of this family are dimeric, alanine DH is hexameric and phosphoglycerate DH is tetrameric.
Pssm-ID: 240656 [Multi-domain] Cd Length: 306 Bit Score: 153.22 E-value: 6.26e-43
Putative D-isomer specific 2-hydroxyacid dehydrogenases; 2-Hydroxyacid dehydrogenases catalyze ...
64-345
6.78e-40
Putative D-isomer specific 2-hydroxyacid dehydrogenases; 2-Hydroxyacid dehydrogenases catalyze the conversion of a wide variety of D-2-hydroxy acids to their corresponding keto acids. The general mechanism is (R)-lactate + acceptor to pyruvate + reduced acceptor. Formate/glycerate and related dehydrogenases of the D-specific 2-hydroxyacid dehydrogenase superfamily include groups such as formate dehydrogenase, glycerate dehydrogenase, L-alanine dehydrogenase, and S-adenosylhomocysteine hydrolase. Despite often low sequence identity, these proteins typically have a characteristic arrangement of 2 similar subdomains of the alpha/beta Rossmann fold NAD+ binding form. The NAD+ binding domain is inserted within the linear sequence of the mostly N-terminal catalytic domain, which has a similar domain structure to the internal NAD binding domain. Structurally, these domains are connected by extended alpha helices and create a cleft in which NAD is bound, primarily to the C-terminal portion of the 2nd (internal) domain. Some related proteins have similar structural subdomain but with a tandem arrangement of the catalytic and NAD-binding subdomains in the linear sequence. While many members of this family are dimeric, alanine DH is hexameric and phosphoglycerate DH is tetrameric.
Pssm-ID: 240642 [Multi-domain] Cd Length: 314 Bit Score: 145.08 E-value: 6.78e-40
D-Erythronate-4-Phosphate Dehydrogenase NAD-binding and catalytic domains; ...
80-320
1.54e-36
D-Erythronate-4-Phosphate Dehydrogenase NAD-binding and catalytic domains; D-Erythronate-4-phosphate Dehydrogenase (E. coli gene PdxB), a D-specific 2-hydroxyacid dehydrogenase family member, catalyzes the NAD-dependent oxidation of erythronate-4-phosphate, which is followed by transamination to form 4-hydroxy-L-threonine-4-phosphate within the de novo biosynthesis pathway of vitamin B6. D-Erythronate-4-phosphate dehydrogenase has the common architecture shared with D-isomer specific 2-hydroxyacid dehydrogenases but contains an additional C-terminal dimerization domain in addition to an NAD-binding domain and the "lid" domain. The lid domain corresponds to the catalytic domain of phosphoglycerate dehydrogenase and other proteins of the D-isomer specific 2-hydroxyacid dehydrogenase family, which include groups such as formate dehydrogenase, glycerate dehydrogenase, L-alanine dehydrogenase, and S-adenosylhomocysteine hydrolase. Despite often low sequence identity, these proteins typically have a characteristic arrangement of 2 similar subdomains of the alpha/beta Rossmann fold NAD+ binding form. The NAD+ binding domain is inserted within the linear sequence of the mostly N-terminal catalytic domain, which has a similar domain structure to the internal NAD binding domain. Structurally, these domains are connected by extended alpha helices and create a cleft in which NAD is bound, primarily to the C-terminal portion of the 2nd (internal) domain. Some related proteins have similar structural subdomain but with a tandem arrangement of the catalytic and NAD-binding subdomains in the linear sequence.
Pssm-ID: 240635 [Multi-domain] Cd Length: 343 Bit Score: 136.89 E-value: 1.54e-36
Putative D-isomer specific 2-hydroxyacid dehydrogenase; 2-Hydroxyacid dehydrogenases catalyze ...
83-355
9.35e-35
Putative D-isomer specific 2-hydroxyacid dehydrogenase; 2-Hydroxyacid dehydrogenases catalyze the conversion of a wide variety of D-2-hydroxy acids to their corresponding keto acids. The general mechanism is (R)-lactate + acceptor to pyruvate + reduced acceptor. Formate/glycerate and related dehydrogenases of the D-specific 2-hydroxyacid dehydrogenase superfamily include groups such as formate dehydrogenase, glycerate dehydrogenase, L-alanine dehydrogenase, and S-adenosylhomocysteine hydrolase. Despite often low sequence identity, these proteins typically have a characteristic arrangement of 2 similar subdomains of the alpha/beta Rossmann fold NAD+ binding form. The NAD+ binding domain is inserted within the linear sequence of the mostly N-terminal catalytic domain, which has a similar domain structure to the internal NAD binding domain. Structurally, these domains are connected by extended alpha helices and create a cleft in which NAD is bound, primarily to the C-terminal portion of the 2nd (internal) domain. Some related proteins have similar structural subdomains but with a tandem arrangement of the catalytic and NAD-binding subdomains in the linear sequence. While many members of this family are dimeric, alanine DH is hexameric and phosphoglycerate DH is tetrameric. Formate dehydrogenase (FDH) catalyzes the NAD+-dependent oxidation of formate ion to carbon dioxide with the concomitant reduction of NAD+ to NADH. FDHs of this family contain no metal ions or prosthetic groups. Catalysis occurs though direct transfer of the hydride ion to NAD+ without the stages of acid-base catalysis typically found in related dehydrogenases. FDHs are found in all methylotrophic microorganisms in energy production and in the stress responses of plants.
Pssm-ID: 240625 [Multi-domain] Cd Length: 313 Bit Score: 131.49 E-value: 9.35e-35
Phosphoglycerate Dehydrogenase, 2-hydroxyacid dehydrogenase family; Phosphoglycerate Dehydrogenase (PGDH) catalyzes the NAD-dependent conversion of 3-phosphoglycerate into 3-phosphohydroxypyruvate, which is the first step in serine biosynthesis. Over-expression of PGDH has been implicated as supporting proliferation of certain breast cancers, while PGDH deficiency is linked to defects in mammalian central nervous system development. PGDH is a member of the 2-hydroxyacid dehydrogenase family, enzymes that catalyze the conversion of a wide variety of D-2-hydroxy acids to their corresponding keto acids. The general mechanism is (R)-lactate + acceptor to pyruvate + reduced acceptor. Formate/glycerate and related dehydrogenases of the D-specific 2-hydroxyacid dehydrogenase superfamily include groups such as formate dehydrogenase, glycerate dehydrogenase, L-alanine dehydrogenase, and S-Adenosylhomocysteine Hydrolase. Despite often low sequence identity, these proteins typically have a characteristic arrangement of 2 similar subdomains of the alpha/beta Rossmann-fold NAD+ binding form. The NAD+ binding domain is inserted within the linear sequence of the mostly N-terminal catalytic domain, which has a similar domain structure to the internal NAD binding domain. Structurally, these domains are connected by extended alpha helices and create a cleft in which NAD is bound, primarily to the C-terminal portion of the 2nd (internal) domain. Some related proteins have similar structural subdomain but with a tandem arrangement of the catalytic and NAD-binding subdomains in the linear sequence. While many members of this family are dimeric, alanine DH is hexameric and phosphoglycerate DH is tetrameric.
Pssm-ID: 240632 [Multi-domain] Cd Length: 314 Bit Score: 129.24 E-value: 6.11e-34
Putative D-isomer specific 2-hydroxyacid dehydrogenases, NAD-binding and catalytic domains; ...
170-342
9.86e-33
Putative D-isomer specific 2-hydroxyacid dehydrogenases, NAD-binding and catalytic domains; 2-Hydroxyacid dehydrogenases catalyze the conversion of a wide variety of D-2-hydroxy acids to their corresponding keto acids. The general mechanism is (R)-lactate + acceptor to pyruvate + reduced acceptor. Formate/glycerate and related dehydrogenases of the D-specific 2-hydroxyacid dehydrogenase superfamily include groups such as formate dehydrogenase, glycerate dehydrogenase, L-alanine dehydrogenase, and S-adenosylhomocysteine hydrolase. Despite often low sequence identity, these proteins typically have a characteristic arrangement of 2 similar subdomains of the alpha/beta Rossmann fold NAD+ binding form. The NAD+ binding domain is inserted within the linear sequence of the mostly N-terminal catalytic domain, which has a similar domain structure to the internal NAD binding domain. Structurally, these domains are connected by extended alpha helices and create a cleft in which NAD is bound, primarily to the C-terminal portion of the 2nd (internal) domain. Some related proteins have similar structural subdomain but with a tandem arrangement of the catalytic and NAD-binding subdomains in the linear sequence. While many members of this family are dimeric, alanine DH is hexameric and phosphoglycerate DH is tetrameric.
Pssm-ID: 240657 Cd Length: 308 Bit Score: 125.92 E-value: 9.86e-33
Putative glycerate dehydrogenase and related proteins of the D-specific 2-hydroxy ...
84-339
5.89e-24
Putative glycerate dehydrogenase and related proteins of the D-specific 2-hydroxy dehydrogenase family; This group contains a variety of proteins variously identified as glycerate dehydrogenase (GDH, also known as hydroxypyruvate reductase) and other enzymes of the 2-hydroxyacid dehydrogenase family. GDH catalyzes the reversible reaction of (R)-glycerate + NAD+ to hydroxypyruvate + NADH + H+. 2-hydroxyacid dehydrogenases catalyze the conversion of a wide variety of D-2-hydroxy acids to their corresponding keto acids. The general mechanism is (R)-lactate + acceptor to pyruvate + reduced acceptor. Formate/glycerate and related dehydrogenases of the D-specific 2-hydroxyacid dehydrogenase superfamily include groups such as formate dehydrogenase, glycerate dehydrogenase, L-alanine dehydrogenase, and S-adenosylhomocysteine hydrolase. Despite often low sequence identity, these proteins typically have a characteristic arrangement of 2 similar subdomains of the alpha/beta Rossmann-fold NAD+ binding form. The NAD+ binding domain is inserted within the linear sequence of the mostly N-terminal catalytic domain, which has a similar domain structure to the internal NAD binding domain. Structurally, these domains are connected by extended alpha helices and create a cleft in which NAD is bound, primarily to the C-terminal portion of the 2nd (internal) domain. Some related proteins have similar structural subdomain but with a tandem arrangement of the catalytic and NAD-binding subdomains in the linear sequence. While many members of this family are dimeric, alanine DH is hexameric and phosphoglycerate DH is tetrameric.
Pssm-ID: 240641 [Multi-domain] Cd Length: 306 Bit Score: 101.42 E-value: 5.89e-24
Putative D-isomer specific 2-hydroxyacid dehydrogenases; 2-Hydroxyacid dehydrogenases catalyze ...
82-347
7.95e-21
Putative D-isomer specific 2-hydroxyacid dehydrogenases; 2-Hydroxyacid dehydrogenases catalyze the conversion of a wide variety of D-2-hydroxy acids to their corresponding keto acids. The general mechanism is (R)-lactate + acceptor to pyruvate + reduced acceptor. Formate/glycerate and related dehydrogenases of the D-specific 2-hydroxyacid dehydrogenase superfamily include groups such as formate dehydrogenase, glycerate dehydrogenase, L-alanine dehydrogenase, and S-adenosylhomocysteine hydrolase. Despite often low sequence identity, these proteins typically have a characteristic arrangement of 2 similar subdomains of the alpha/beta Rossmann fold NAD+ binding form. The NAD+ binding domain is inserted within the linear sequence of the mostly N-terminal catalytic domain, which has a similar domain structure to the internal NAD binding domain. Structurally, these domains are connected by extended alpha helices and create a cleft in which NAD is bound, primarily to the C-terminal portion of the 2nd (internal) domain. Some related proteins have similar structural subdomain but with a tandem arrangement of the catalytic and NAD-binding subdomains in the linear sequence. While many members of this family are dimeric, alanine DH is hexameric and phosphoglycerate DH is tetrameric.
Pssm-ID: 240643 [Multi-domain] Cd Length: 300 Bit Score: 92.27 E-value: 7.95e-21
Putative D-isomer specific 2-hydroxyacid dehydrogenases; 2-Hydroxyacid dehydrogenases catalyze ...
114-317
2.82e-20
Putative D-isomer specific 2-hydroxyacid dehydrogenases; 2-Hydroxyacid dehydrogenases catalyze the conversion of a wide variety of D-2-hydroxy acids to their corresponding keto acids. The general mechanism is (R)-lactate + acceptor to pyruvate + reduced acceptor. Formate/glycerate and related dehydrogenases of the D-specific 2-hydroxyacid dehydrogenase superfamily include groups such as formate dehydrogenase, glycerate dehydrogenase, L-alanine dehydrogenase, and S-adenosylhomocysteine hydrolase. Despite often low sequence identity, these proteins typically have a characteristic arrangement of 2 similar subdomains of the alpha/beta Rossmann fold NAD+ binding form. The NAD+ binding domain is inserted within the linear sequence of the mostly N-terminal catalytic domain, which has a similar domain structure to the internal NAD binding domain. Structurally, these domains are connected by extended alpha helices and create a cleft in which NAD is bound, primarily to the C-terminal portion of the 2nd (internal) domain. Some related proteins have similar structural subdomain but with a tandem arrangement of the catalytic and NAD-binding subdomains in the linear sequence. While many members of this family are dimeric, alanine DH is hexameric and phosphoglycerate DH is tetrameric.
Pssm-ID: 240636 Cd Length: 303 Bit Score: 90.79 E-value: 2.82e-20
Putative D-isomer specific 2-hydroxyacid dehydrogenases; 2-Hydroxyacid dehydrogenases catalyze ...
129-342
9.66e-20
Putative D-isomer specific 2-hydroxyacid dehydrogenases; 2-Hydroxyacid dehydrogenases catalyze the conversion of a wide variety of D-2-hydroxy acids to their corresponding keto acids. The general mechanism is (R)-lactate + acceptor to pyruvate + reduced acceptor. Formate/glycerate and related dehydrogenases of the D-specific 2-hydroxyacid dehydrogenase superfamily include groups such as formate dehydrogenase, glycerate dehydrogenase, L-alanine dehydrogenase, and S-adenosylhomocysteine hydrolase. Despite often low sequence identity, these proteins typically have a characteristic arrangement of 2 similar subdomains of the alpha/beta Rossmann fold NAD+ binding form. The NAD+ binding domain is inserted within the linear sequence of the mostly N-terminal catalytic domain, which has a similar domain structure to the internal NAD binding domain. Structurally, these domains are connected by extended alpha helices and create a cleft in which NAD is bound, primarily to the C-terminal portion of the 2nd (internal) domain. Some related proteins have similar structural subdomain but with a tandem arrangement of the catalytic and NAD-binding subdomains in the linear sequence. While many members of this family are dimeric, alanine DH is hexameric and phosphoglycerate DH is tetrameric.
Pssm-ID: 240637 Cd Length: 310 Bit Score: 89.36 E-value: 9.66e-20
Putative D-isomer specific 2-hydroxyacid dehydrogenases; 2-Hydroxyacid dehydrogenases catalyze ...
173-321
1.06e-16
Putative D-isomer specific 2-hydroxyacid dehydrogenases; 2-Hydroxyacid dehydrogenases catalyze the conversion of a wide variety of D-2-hydroxy acids to their corresponding keto acids. The general mechanism is (R)-lactate + acceptor to pyruvate + reduced acceptor. Formate/glycerate and related dehydrogenases of the D-specific 2-hydroxyacid dehydrogenase superfamily include groups such as formate dehydrogenase, glycerate dehydrogenase, L-alanine dehydrogenase, and S-adenosylhomocysteine hydrolase. Despite often low sequence identity, these proteins typically have a characteristic arrangement of 2 similar subdomains of the alpha/beta Rossmann fold NAD+ binding form. The NAD+ binding domain is inserted within the linear sequence of the mostly N-terminal catalytic domain, which has a similar domain structure to the internal NAD binding domain. Structurally, these domains are connected by extended alpha helices and create a cleft in which NAD is bound, primarily to the C-terminal portion of the 2nd (internal) domain. Some related proteins have similar structural subdomain but with a tandem arrangement of the catalytic and NAD-binding subdomains in the linear sequence. While many members of this family are dimeric, alanine DH is hexameric and phosphoglycerate DH is tetrameric.
Pssm-ID: 240640 Cd Length: 334 Bit Score: 80.78 E-value: 1.06e-16
Putative D-isomer specific 2-hydroxyacid dehydrogenases; 2-Hydroxyacid dehydrogenases catalyze ...
57-337
6.11e-15
Putative D-isomer specific 2-hydroxyacid dehydrogenases; 2-Hydroxyacid dehydrogenases catalyze the conversion of a wide variety of D-2-hydroxy acids to their corresponding keto acids. The general mechanism is (R)-lactate + acceptor to pyruvate + reduced acceptor. Formate/glycerate and related dehydrogenases of the D-specific 2-hydroxyacid dehydrogenase superfamily include groups such as formate dehydrogenase, glycerate dehydrogenase, L-alanine dehydrogenase, and S-adenosylhomocysteine hydrolase. Despite often low sequence identity, these proteins typically have a characteristic arrangement of 2 similar subdomains of the alpha/beta Rossmann fold NAD+ binding form. The NAD+ binding domain is inserted within the linear sequence of the mostly N-terminal catalytic domain, which has a similar domain structure to the internal NAD binding domain. Structurally, these domains are connected by extended alpha helices and create a cleft in which NAD is bound, primarily to the C-terminal portion of the 2nd (internal) domain. Some related proteins have similar structural subdomain but with a tandem arrangement of the catalytic and NAD-binding subdomains in the linear sequence. While many members of this family are dimeric, alanine DH is hexameric and phosphoglycerate DH is tetrameric.
Pssm-ID: 240647 [Multi-domain] Cd Length: 294 Bit Score: 75.03 E-value: 6.11e-15
Formate/glycerate dehydrogenases, D-specific 2-hydroxy acid dehydrogenases and related ...
85-310
9.35e-12
Formate/glycerate dehydrogenases, D-specific 2-hydroxy acid dehydrogenases and related dehydrogenases; The formate/glycerate dehydrogenase like family contains a diverse group of enzymes such as formate dehydrogenase (FDH), glycerate dehydrogenase (GDH), D-lactate dehydrogenase, L-alanine dehydrogenase, and S-Adenosylhomocysteine hydrolase, that share a common 2-domain structure. Despite often low sequence identity, these proteins typically have a characteristic arrangement of 2 similar domains of the alpha/beta Rossmann fold NAD+ binding form. The NAD(P) binding domain is inserted within the linear sequence of the mostly N-terminal catalytic domain. Structurally, these domains are connected by extended alpha helices and create a cleft in which NAD(P) is bound, primarily to the C-terminal portion of the 2nd (internal) domain. While many members of this family are dimeric, alanine DH is hexameric and phosphoglycerate DH is tetrameric. 2-hydroxyacid dehydrogenases are enzymes that catalyze the conversion of a wide variety of D-2-hydroxy acids to their corresponding keto acids. The general mechanism is (R)-lactate + acceptor to pyruvate + reduced acceptor. Formate dehydrogenase (FDH) catalyzes the NAD+-dependent oxidation of formate ion to carbon dioxide with the concomitant reduction of NAD+ to NADH. FDHs of this family contain no metal ions or prosthetic groups. Catalysis occurs though direct transfer of a hydride ion to NAD+ without the stages of acid-base catalysis typically found in related dehydrogenases.
Pssm-ID: 240631 [Multi-domain] Cd Length: 310 Bit Score: 65.71 E-value: 9.35e-12
Database: CDSEARCH/cdd Low complexity filter: no Composition Based Adjustment: yes E-value threshold: 0.01
References:
Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
of the residues that compose this conserved feature have been mapped to the query sequence.
Click on the triangle to view details about the feature, including a multiple sequence alignment
of your query sequence and the protein sequences used to curate the domain model,
where hash marks (#) above the aligned sequences show the location of the conserved feature residues.
The thumbnail image, if present, provides an approximate view of the feature's location in 3 dimensions.
Click on the triangle for interactive 3D structure viewing options.
Functional characterization of the conserved domain architecture found on the query.
Click here to see more details.
This image shows a graphical summary of conserved domains identified on the query sequence.
The Show Concise/Full Display button at the top of the page can be used to select the desired level of detail: only top scoring hits
(labeled illustration) or all hits
(labeled illustration).
Domains are color coded according to superfamilies
to which they have been assigned. Hits with scores that pass a domain-specific threshold
(specific hits) are drawn in bright colors.
Others (non-specific hits) and
superfamily placeholders are drawn in pastel colors.
if a domain or superfamily has been annotated with functional sites (conserved features),
they are mapped to the query sequence and indicated through sets of triangles
with the same color and shade of the domain or superfamily that provides the annotation. Mouse over the colored bars or triangles to see descriptions of the domains and features.
click on the bars or triangles to view your query sequence embedded in a multiple sequence alignment of the proteins used to develop the corresponding domain model.
The table lists conserved domains identified on the query sequence. Click on the plus sign (+) on the left to display full descriptions, alignments, and scores.
Click on the domain model's accession number to view the multiple sequence alignment of the proteins used to develop the corresponding domain model.
To view your query sequence embedded in that multiple sequence alignment, click on the colored bars in the Graphical Summary portion of the search results page,
or click on the triangles, if present, that represent functional sites (conserved features)
mapped to the query sequence.
Concise Display shows only the best scoring domain model, in each hit category listed below except non-specific hits, for each region on the query sequence.
(labeled illustration) Standard Display shows only the best scoring domain model from each source, in each hit category listed below for each region on the query sequence.
(labeled illustration) Full Display shows all domain models, in each hit category below, that meet or exceed the RPS-BLAST threshold for statistical significance.
(labeled illustration) Four types of hits can be shown, as available,
for each region on the query sequence:
specific hits meet or exceed a domain-specific e-value threshold
(illustrated example)
and represent a very high confidence that the query sequence belongs to the same protein family as the sequences use to create the domain model
non-specific hits
meet or exceed the RPS-BLAST threshold for statistical significance (default E-value cutoff of 0.01, or an E-value selected by user via the
advanced search options)
the domain superfamily to which the specific and non-specific hits belong
multi-domain models that were computationally detected and are likely to contain multiple single domains
Retrieve proteins that contain one or more of the domains present in the query sequence, using the Conserved Domain Architecture Retrieval Tool
(CDART).
Modify your query to search against a different database and/or use advanced search options