NCBI Home Page NCBI Site Search page NCBI Guide that lists and describes the NCBI resources
Conserved domains on  [gi|1932715449|ref|XP_037528752|]
View 

polypyrimidine tract-binding protein 1 isoform X5 [Rhipicephalus sanguineus]

Protein Classification

hnRNP-L/PTB family RNA-binding protein( domain architecture ID 706757)

hnRNP-L/PTB family RNA-binding protein containing RNA recognition motifs (RRMs), such as polypyrimidine tract-binding proteins (PTBs) that bind to the polypyrimidine tract of introns and play roles in pre-mRNA splicing

CATH:  3.30.70.330
Gene Ontology:  GO:0003723|GO:0006397|GO:0008380
SCOP:  3000110

Graphical summary

 Zoom to residue level

show extra options »

Show site features     Horizontal zoom: ×

List of domain hits

Name Accession Description Interval E-value
hnRNP-L_PTB super family cl25888
hnRNP-L/PTB/hephaestus splicing factor family; Included in this family of heterogeneous ...
32-502 0e+00

hnRNP-L/PTB/hephaestus splicing factor family; Included in this family of heterogeneous ribonucleoproteins are PTB (polypyrimidine tract binding protein) and hnRNP-L. These proteins contain four RNA recognition motifs (rrm: pfam00067).


The actual alignment was detected with superfamily member TIGR01649:

Pssm-ID: 273733 [Multi-domain]  Cd Length: 481  Bit Score: 608.74  E-value: 0e+00
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1932715449  32 PSRVVHIRNIPNDATDTDIVHLGVPFGKVTNVLQLKGKNQAFLEMADEGSAVAMVDYFAKASPTVRGRVVYVQFSNHREL 111
Cdd:TIGR01649   1 PSPVVHVRNLPQDVVEADLVEALIPFGPVSYVMMLPGKRQALVEFEDEESAKACVNFATSVPIYIRGQPAFFNYSTSQEI 80
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1932715449 112 KTDnvhgalANQGGEGGGANTVLRVVVDNQIYPVTLDLLHSIFSRAGKVLKIVTFTKSNSFQALIQFSDVMGAQAAKLAL 191
Cdd:TIGR01649  81 KRD------GNSDFDSAGPNKVLRVIVENPMYPITLDVLYQIFNPYGKVLRIVTFTKNNVFQALVEFESVNSAQHAKAAL 154
                         170       180       190       200       210       220       230       240
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1932715449 192 DGQSIYNACCTLRIEYSKLTNLNVKYNNDKSRDFTNPTLP-TGDPTLDIGLAGSLGILA--SPFAAAGPGLTSPLTAAY- 267
Cdd:TIGR01649 155 NGADIYNGCCTLKIEYAKPTRLNVKYNDDDSRDYTNPDLPgRRDPGLDQTHRQRQPALLgqHPSSYGHDGYSSHGGPLAp 234
                         250       260       270       280       290       300       310       320
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1932715449 268 -AASATAGLPLGGFALSPSAPSAATALGMAGIRLPGQATTSCVLLVSNLNEQMVTPDALFTLFGVYGDVIRVKILFNKKD 346
Cdd:TIGR01649 235 lAGGDRMGPPHGPPSRYRPAYEAAPLAPAISSYGPAGGGPGSVLMVSGLHQEKVNCDRLFNLFCVYGNVERVKFMKNKKE 314
                         330       340       350       360       370       380       390       400
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1932715449 347 SALIQMAEPQQAQLAMSHLDKIKVYGKPIRVTPSKHHIVQLPKDGQPDAGLT--KDYINSPLHRFKKPGSKNYQNIYPPS 424
Cdd:TIGR01649 315 TALIEMADPYQAQLALTHLNGVKLFGKPLRVCPSKQQNVQPPREGQLDDGLTsyKDYSSSRNHRFKKPGSANKNNIQPPS 394
                         410       420       430       440       450       460       470       480
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1932715449 425 ATLHLSNIPPTVSEEQIREAFTQTGGT-VVAFKFFPKD---RKMALIQMGSVEESVTALIKMHNYQLSDSN-----HLRV 495
Cdd:TIGR01649 395 ATLHLSNIPLSVSEEDLKELFAENGVHkVKKFKFFPKDnerSKMGLLEWESVEDAVEALIALNHHQLNEPNgsapyHLKV 474

                  ....*..
gi 1932715449 496 SFSKSTI 502
Cdd:TIGR01649 475 SFSTSRI 481
 
Name Accession Description Interval E-value
hnRNP-L_PTB TIGR01649
hnRNP-L/PTB/hephaestus splicing factor family; Included in this family of heterogeneous ...
32-502 0e+00

hnRNP-L/PTB/hephaestus splicing factor family; Included in this family of heterogeneous ribonucleoproteins are PTB (polypyrimidine tract binding protein) and hnRNP-L. These proteins contain four RNA recognition motifs (rrm: pfam00067).


Pssm-ID: 273733 [Multi-domain]  Cd Length: 481  Bit Score: 608.74  E-value: 0e+00
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1932715449  32 PSRVVHIRNIPNDATDTDIVHLGVPFGKVTNVLQLKGKNQAFLEMADEGSAVAMVDYFAKASPTVRGRVVYVQFSNHREL 111
Cdd:TIGR01649   1 PSPVVHVRNLPQDVVEADLVEALIPFGPVSYVMMLPGKRQALVEFEDEESAKACVNFATSVPIYIRGQPAFFNYSTSQEI 80
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1932715449 112 KTDnvhgalANQGGEGGGANTVLRVVVDNQIYPVTLDLLHSIFSRAGKVLKIVTFTKSNSFQALIQFSDVMGAQAAKLAL 191
Cdd:TIGR01649  81 KRD------GNSDFDSAGPNKVLRVIVENPMYPITLDVLYQIFNPYGKVLRIVTFTKNNVFQALVEFESVNSAQHAKAAL 154
                         170       180       190       200       210       220       230       240
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1932715449 192 DGQSIYNACCTLRIEYSKLTNLNVKYNNDKSRDFTNPTLP-TGDPTLDIGLAGSLGILA--SPFAAAGPGLTSPLTAAY- 267
Cdd:TIGR01649 155 NGADIYNGCCTLKIEYAKPTRLNVKYNDDDSRDYTNPDLPgRRDPGLDQTHRQRQPALLgqHPSSYGHDGYSSHGGPLAp 234
                         250       260       270       280       290       300       310       320
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1932715449 268 -AASATAGLPLGGFALSPSAPSAATALGMAGIRLPGQATTSCVLLVSNLNEQMVTPDALFTLFGVYGDVIRVKILFNKKD 346
Cdd:TIGR01649 235 lAGGDRMGPPHGPPSRYRPAYEAAPLAPAISSYGPAGGGPGSVLMVSGLHQEKVNCDRLFNLFCVYGNVERVKFMKNKKE 314
                         330       340       350       360       370       380       390       400
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1932715449 347 SALIQMAEPQQAQLAMSHLDKIKVYGKPIRVTPSKHHIVQLPKDGQPDAGLT--KDYINSPLHRFKKPGSKNYQNIYPPS 424
Cdd:TIGR01649 315 TALIEMADPYQAQLALTHLNGVKLFGKPLRVCPSKQQNVQPPREGQLDDGLTsyKDYSSSRNHRFKKPGSANKNNIQPPS 394
                         410       420       430       440       450       460       470       480
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1932715449 425 ATLHLSNIPPTVSEEQIREAFTQTGGT-VVAFKFFPKD---RKMALIQMGSVEESVTALIKMHNYQLSDSN-----HLRV 495
Cdd:TIGR01649 395 ATLHLSNIPLSVSEEDLKELFAENGVHkVKKFKFFPKDnerSKMGLLEWESVEDAVEALIALNHHQLNEPNgsapyHLKV 474

                  ....*..
gi 1932715449 496 SFSKSTI 502
Cdd:TIGR01649 475 SFSTSRI 481
RRM2_PTBP1_like cd12693
RNA recognition motif 2 (RRM2) found in polypyrimidine tract-binding protein 1 (PTB or hnRNP I) ...
131-226 1.30e-61

RNA recognition motif 2 (RRM2) found in polypyrimidine tract-binding protein 1 (PTB or hnRNP I) and similar proteins; This subfamily corresponds to the RRM2 of polypyrimidine tract-binding protein 1 (PTB or hnRNP I), polypyrimidine tract-binding protein 2 (PTBP2 or nPTB), regulator of differentiation 1 (Rod1), and similar proteins found in Metazoa. PTB is an important negative regulator of alternative splicing in mammalian cells and also functions at several other aspects of mRNA metabolism, including mRNA localization, stabilization, polyadenylation, and translation. PTBP2 is highly homologous to PTB and is perhaps specific to the vertebrates. Unlike PTB, PTBP2 is enriched in the brain and in some neural cell lines. It binds more stably to the downstream control sequence (DCS) RNA than PTB does but is a weaker repressor of splicing in vitro. PTBP2 also greatly enhances the binding of two other proteins, heterogeneous nuclear ribonucleoprotein (hnRNP) H and KH-type splicing-regulatory protein (KSRP), to the DCS RNA. The binding properties of PTBP2 and its reduced inhibitory activity on splicing imply roles in controlling the assembly of other splicing-regulatory proteins. PTBP2 also contains four RRMs. ROD1 coding protein Rod1 is a mammalian PTB homolog of a regulator of differentiation in the fission yeast Schizosaccharomyces pombe, where the nrd1 gene encodes an RNA binding protein negatively regulates the onset of differentiation. ROD1 is predominantly expressed in hematopoietic cells or organs. It may play a role controlling differentiation in mammals. All members in this family contain four RNA recognition motifs (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 410093 [Multi-domain]  Cd Length: 96  Bit Score: 196.41  E-value: 1.30e-61
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1932715449 131 NTVLRVVVDNQIYPVTLDLLHSIFSRAGKVLKIVTFTKSNSFQALIQFSDVMGAQAAKLALDGQSIYNACCTLRIEYSKL 210
Cdd:cd12693     1 NPVLRVIVENLFYPVTLDVLHQIFSKFGTVLKIITFTKNNQFQALIQFADAVSAQAAKLSLDGQNIYNGCCTLRIDFSKL 80
                          90
                  ....*....|....*.
gi 1932715449 211 TNLNVKYNNDKSRDFT 226
Cdd:cd12693    81 TSLNVKYNNDKSRDYT 96
RRM_5 pfam13893
RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic ...
279-404 1.16e-36

RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic of an RNA binding protein. RRMs are found in a variety of RNA binding proteins, including various hnRNP proteins, proteins implicated in regulation of alternative splicing, and protein components of snRNPs. The motif also appears in a few single stranded DNA binding proteins.


Pssm-ID: 433561 [Multi-domain]  Cd Length: 125  Bit Score: 131.84  E-value: 1.16e-36
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1932715449 279 GFALSPSAPSAATALGMAGirLPGQATTScVLLVSNLNEQMVTPDALFTLFGVYGDVIRVKILFNKKDSALIQMAEPQQA 358
Cdd:pfam13893   1 PGRFGPSYTGSVAATGWPG--AAGVAGNS-VLMVYGLNPDRVNCDKLFNLFCLYGNVARVKFMKNKKGTAMVQMGDASQV 77
                          90       100       110       120
                  ....*....|....*....|....*....|....*....|....*...
gi 1932715449 359 QLAMSHLDKIKVYGKPIRVTPSKHHIV--QLPKDGQPDAGLTKDYINS 404
Cdd:pfam13893  78 QRAIQHLNGHPLFGKRLQIILSKQQAVsyALPFELQDDSPSFKDYSNS 125
RRM smart00360
RNA recognition motif;
309-377 7.36e-12

RNA recognition motif;


Pssm-ID: 214636 [Multi-domain]  Cd Length: 73  Bit Score: 60.69  E-value: 7.36e-12
                           10        20        30        40        50        60        70
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 1932715449  309 VLLVSNLNEQmVTPDALFTLFGVYGDVIRVKILFNK-----KDSALIQMAEPQQAQLAMSHLDKIKVYGKPIRV 377
Cdd:smart00360   1 TLFVGNLPPD-TTEEELRELFSKFGKVESVRLVRDKetgksKGFAFVEFESEEDAEKALEALNGKELDGRPLKV 73
RRM COG0724
RNA recognition motif (RRM) domain [Translation, ribosomal structure and biogenesis];
310-381 6.06e-09

RNA recognition motif (RRM) domain [Translation, ribosomal structure and biogenesis];


Pssm-ID: 440488 [Multi-domain]  Cd Length: 85  Bit Score: 52.79  E-value: 6.06e-09
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 1932715449 310 LLVSNLNEQmVTPDALFTLFGVYGDVIRVKILFNKKDS-----ALIQMAEPQQAQLAMSHLDKIKVYGKPIRVTPSK 381
Cdd:COG0724     4 IYVGNLPYS-VTEEDLRELFSEYGEVTSVKLITDRETGrsrgfGFVEMPDDEEAQAAIEALNGAELMGRTLKVNEAR 79
 
Name Accession Description Interval E-value
hnRNP-L_PTB TIGR01649
hnRNP-L/PTB/hephaestus splicing factor family; Included in this family of heterogeneous ...
32-502 0e+00

hnRNP-L/PTB/hephaestus splicing factor family; Included in this family of heterogeneous ribonucleoproteins are PTB (polypyrimidine tract binding protein) and hnRNP-L. These proteins contain four RNA recognition motifs (rrm: pfam00067).


Pssm-ID: 273733 [Multi-domain]  Cd Length: 481  Bit Score: 608.74  E-value: 0e+00
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1932715449  32 PSRVVHIRNIPNDATDTDIVHLGVPFGKVTNVLQLKGKNQAFLEMADEGSAVAMVDYFAKASPTVRGRVVYVQFSNHREL 111
Cdd:TIGR01649   1 PSPVVHVRNLPQDVVEADLVEALIPFGPVSYVMMLPGKRQALVEFEDEESAKACVNFATSVPIYIRGQPAFFNYSTSQEI 80
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1932715449 112 KTDnvhgalANQGGEGGGANTVLRVVVDNQIYPVTLDLLHSIFSRAGKVLKIVTFTKSNSFQALIQFSDVMGAQAAKLAL 191
Cdd:TIGR01649  81 KRD------GNSDFDSAGPNKVLRVIVENPMYPITLDVLYQIFNPYGKVLRIVTFTKNNVFQALVEFESVNSAQHAKAAL 154
                         170       180       190       200       210       220       230       240
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1932715449 192 DGQSIYNACCTLRIEYSKLTNLNVKYNNDKSRDFTNPTLP-TGDPTLDIGLAGSLGILA--SPFAAAGPGLTSPLTAAY- 267
Cdd:TIGR01649 155 NGADIYNGCCTLKIEYAKPTRLNVKYNDDDSRDYTNPDLPgRRDPGLDQTHRQRQPALLgqHPSSYGHDGYSSHGGPLAp 234
                         250       260       270       280       290       300       310       320
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1932715449 268 -AASATAGLPLGGFALSPSAPSAATALGMAGIRLPGQATTSCVLLVSNLNEQMVTPDALFTLFGVYGDVIRVKILFNKKD 346
Cdd:TIGR01649 235 lAGGDRMGPPHGPPSRYRPAYEAAPLAPAISSYGPAGGGPGSVLMVSGLHQEKVNCDRLFNLFCVYGNVERVKFMKNKKE 314
                         330       340       350       360       370       380       390       400
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1932715449 347 SALIQMAEPQQAQLAMSHLDKIKVYGKPIRVTPSKHHIVQLPKDGQPDAGLT--KDYINSPLHRFKKPGSKNYQNIYPPS 424
Cdd:TIGR01649 315 TALIEMADPYQAQLALTHLNGVKLFGKPLRVCPSKQQNVQPPREGQLDDGLTsyKDYSSSRNHRFKKPGSANKNNIQPPS 394
                         410       420       430       440       450       460       470       480
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1932715449 425 ATLHLSNIPPTVSEEQIREAFTQTGGT-VVAFKFFPKD---RKMALIQMGSVEESVTALIKMHNYQLSDSN-----HLRV 495
Cdd:TIGR01649 395 ATLHLSNIPLSVSEEDLKELFAENGVHkVKKFKFFPKDnerSKMGLLEWESVEDAVEALIALNHHQLNEPNgsapyHLKV 474

                  ....*..
gi 1932715449 496 SFSKSTI 502
Cdd:TIGR01649 475 SFSTSRI 481
RRM2_PTBP1_like cd12693
RNA recognition motif 2 (RRM2) found in polypyrimidine tract-binding protein 1 (PTB or hnRNP I) ...
131-226 1.30e-61

RNA recognition motif 2 (RRM2) found in polypyrimidine tract-binding protein 1 (PTB or hnRNP I) and similar proteins; This subfamily corresponds to the RRM2 of polypyrimidine tract-binding protein 1 (PTB or hnRNP I), polypyrimidine tract-binding protein 2 (PTBP2 or nPTB), regulator of differentiation 1 (Rod1), and similar proteins found in Metazoa. PTB is an important negative regulator of alternative splicing in mammalian cells and also functions at several other aspects of mRNA metabolism, including mRNA localization, stabilization, polyadenylation, and translation. PTBP2 is highly homologous to PTB and is perhaps specific to the vertebrates. Unlike PTB, PTBP2 is enriched in the brain and in some neural cell lines. It binds more stably to the downstream control sequence (DCS) RNA than PTB does but is a weaker repressor of splicing in vitro. PTBP2 also greatly enhances the binding of two other proteins, heterogeneous nuclear ribonucleoprotein (hnRNP) H and KH-type splicing-regulatory protein (KSRP), to the DCS RNA. The binding properties of PTBP2 and its reduced inhibitory activity on splicing imply roles in controlling the assembly of other splicing-regulatory proteins. PTBP2 also contains four RRMs. ROD1 coding protein Rod1 is a mammalian PTB homolog of a regulator of differentiation in the fission yeast Schizosaccharomyces pombe, where the nrd1 gene encodes an RNA binding protein negatively regulates the onset of differentiation. ROD1 is predominantly expressed in hematopoietic cells or organs. It may play a role controlling differentiation in mammals. All members in this family contain four RNA recognition motifs (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 410093 [Multi-domain]  Cd Length: 96  Bit Score: 196.41  E-value: 1.30e-61
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1932715449 131 NTVLRVVVDNQIYPVTLDLLHSIFSRAGKVLKIVTFTKSNSFQALIQFSDVMGAQAAKLALDGQSIYNACCTLRIEYSKL 210
Cdd:cd12693     1 NPVLRVIVENLFYPVTLDVLHQIFSKFGTVLKIITFTKNNQFQALIQFADAVSAQAAKLSLDGQNIYNGCCTLRIDFSKL 80
                          90
                  ....*....|....*.
gi 1932715449 211 TNLNVKYNNDKSRDFT 226
Cdd:cd12693    81 TSLNVKYNNDKSRDYT 96
RRM2_PTBP1 cd12782
RNA recognition motif 2 (RRM2) found in vertebrate polypyrimidine tract-binding protein 1 (PTB) ...
128-234 1.22e-49

RNA recognition motif 2 (RRM2) found in vertebrate polypyrimidine tract-binding protein 1 (PTB); This subgroup corresponds to the RRM2 of PTB, also known as 58 kDa RNA-binding protein PPTB-1 or heterogeneous nuclear ribonucleoprotein I (hnRNP I), an important negative regulator of alternative splicing in mammalian cells. PTB also functions at several other aspects of mRNA metabolism, including mRNA localization, stabilization, polyadenylation, and translation. PTB contains four RNA recognition motifs (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain). RRM1 and RRM2 are independent from each other and separated by flexible linkers. By contrast, there is an unusual and conserved interdomain interaction between RRM3 and RRM4. It is widely held that only RRMs 3 and 4 are involved in RNA binding and RRM2 mediates PTB homodimer formation. However, new evidence shows that the RRMs 1 and 2 also contribute substantially to RNA binding. Moreover, PTB may not always dimerize to repress splicing. It is a monomer in solution.


Pssm-ID: 410174 [Multi-domain]  Cd Length: 108  Bit Score: 165.65  E-value: 1.22e-49
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1932715449 128 GGANTVLRVVVDNQIYPVTLDLLHSIFSRAGKVLKIVTFTKSNSFQALIQFSDVMGAQAAKLALDGQSIYNACCTLRIEY 207
Cdd:cd12782     2 AGQSPVLRIIVENLFYPVTLDVLHQIFSKFGTVLKIITFTKNNQFQALLQYADPVSAQHAKLSLDGQNIYNACCTLRIDF 81
                          90       100
                  ....*....|....*....|....*..
gi 1932715449 208 SKLTNLNVKYNNDKSRDFTNPTLPTGD 234
Cdd:cd12782    82 SKLTSLNVKYNNDKSRDYTRPDLPSGD 108
RRM3_PTBP1_like cd12423
RNA recognition motif 3 (RRM3) found in polypyrimidine tract-binding protein 1 (PTB or hnRNP I) ...
309-382 1.51e-49

RNA recognition motif 3 (RRM3) found in polypyrimidine tract-binding protein 1 (PTB or hnRNP I) and similar proteins; This subfamily corresponds to the RRM3 of polypyrimidine tract-binding protein 1 (PTB or hnRNP I), polypyrimidine tract-binding protein 2 (PTBP2 or nPTB), regulator of differentiation 1 (Rod1), and similar proteins found in Metazoa. PTB is an important negative regulator of alternative splicing in mammalian cells and also functions at several other aspects of mRNA metabolism, including mRNA localization, stabilization, polyadenylation, and translation. PTBP2 is highly homologous to PTB and is perhaps specific to the vertebrates. Unlike PTB, PTBP2 is enriched in the brain and in some neural cell lines. It binds more stably to the downstream control sequence (DCS) RNA than PTB does but is a weaker repressor of splicing in vitro. PTBP2 also greatly enhances the binding of two other proteins, heterogeneous nuclear ribonucleoprotein (hnRNP) H and KH-type splicing-regulatory protein (KSRP), to the DCS RNA. The binding properties of PTBP2 and its reduced inhibitory activity on splicing imply roles in controlling the assembly of other splicing-regulatory proteins. PTBP2 also contains four RRMs. ROD1 coding protein Rod1 is a mammalian PTB homolog of a regulator of differentiation in the fission yeast Schizosaccharomyces pombe, where the nrd1 gene encodes an RNA binding protein negatively regulates the onset of differentiation. ROD1 is predominantly expressed in hematopoietic cells or organs. It may play a role controlling differentiation in mammals. All members in this family contain four RNA recognition motifs (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 409857 [Multi-domain]  Cd Length: 74  Bit Score: 163.94  E-value: 1.51e-49
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 1932715449 309 VLLVSNLNEQMVTPDALFTLFGVYGDVIRVKILFNKKDSALIQMAEPQQAQLAMSHLDKIKVYGKPIRVTPSKH 382
Cdd:cd12423     1 VLLVSNLNEEMVTPDALFTLFGVYGDVLRVKILFNKKDTALIQMADPQQAQTALQHLNGIKLFGKPIRVTLSKH 74
RRM4_PTBP1_like cd12425
RNA recognition motif 4 (RRM4) found in polypyrimidine tract-binding protein 1 (PTB or hnRNP I) ...
426-501 6.72e-49

RNA recognition motif 4 (RRM4) found in polypyrimidine tract-binding protein 1 (PTB or hnRNP I) and similar proteins; This subfamily corresponds to the RRM4 of polypyrimidine tract-binding protein 1 (PTB or hnRNP I), polypyrimidine tract-binding protein 2 (PTBP2 or nPTB), regulator of differentiation 1 (Rod1), and similar proteins found in Metazoa. PTB is an important negative regulator of alternative splicing in mammalian cells and also functions at several other aspects of mRNA metabolism, including mRNA localization, stabilization, polyadenylation, and translation. PTBP2 is highly homologous to PTB and is perhaps specific to the vertebrates. Unlike PTB, PTBP2 is enriched in the brain and in some neural cell lines. It binds more stably to the downstream control sequence (DCS) RNA than PTB does but is a weaker repressor of splicing in vitro. PTBP2 also greatly enhances the binding of two other proteins, heterogeneous nuclear ribonucleoprotein (hnRNP) H and KH-type splicing-regulatory protein (KSRP), to the DCS RNA. The binding properties of PTBP2 and its reduced inhibitory activity on splicing imply roles in controlling the assembly of other splicing-regulatory proteins. PTBP2 also contains four RRMs. ROD1 coding protein Rod1 is a mammalian PTB homolog of a regulator of differentiation in the fission yeast Schizosaccharomyces pombe, where the nrd1 gene encodes an RNA binding protein negatively regulates the onset of differentiation. ROD1 is predominantly expressed in hematopoietic cells or organs. It may play a role controlling differentiation in mammals. All members in this family contain four RNA recognition motifs (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 409859 [Multi-domain]  Cd Length: 76  Bit Score: 162.44  E-value: 6.72e-49
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 1932715449 426 TLHLSNIPPTVSEEQIREAFTQTGGTVVAFKFFPKDRKMALIQMGSVEESVTALIKMHNYQLSDSNHLRVSFSKST 501
Cdd:cd12425     1 TLHLSNIPPSVTEEDLKDLFTSTGGTVKAFKFFQKDRKMALIQMGSVEEAIEALIALHNYQLSENSHLRVSFSKST 76
RRM2_PTBP2 cd12783
RNA recognition motif 2 (RRM2) found in vertebrate polypyrimidine tract-binding protein 2 ...
133-234 1.35e-48

RNA recognition motif 2 (RRM2) found in vertebrate polypyrimidine tract-binding protein 2 (PTBP2); This subgroup corresponds to the RRM2 of PTBP2, also known as neural polypyrimidine tract-binding protein or neurally-enriched homolog of PTB (nPTB), highly homologous to polypyrimidine tract binding protein (PTB) and perhaps specific to the vertebrates. Unlike PTB, PTBP2 is enriched in the brain and in some neural cell lines. It binds more stably to the downstream control sequence (DCS) RNA than PTB does but is a weaker repressor of splicing in vitro. PTBP2 also greatly enhances the binding of two other proteins, heterogeneous nuclear ribonucleoprotein (hnRNP) H and KH-type splicing-regulatory protein (KSRP), to the DCS RNA. The binding properties of PTBP2 and its reduced inhibitory activity on splicing imply roles in controlling the assembly of other splicing-regulatory proteins. PTBP2 contains four RNA recognition motifs (RRMs), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 410175 [Multi-domain]  Cd Length: 107  Bit Score: 162.87  E-value: 1.35e-48
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1932715449 133 VLRVVVDNQIYPVTLDLLHSIFSRAGKVLKIVTFTKSNSFQALIQFSDVMGAQAAKLALDGQSIYNACCTLRIEYSKLTN 212
Cdd:cd12783     3 VLRIIIDNMYYPVTLDVLHQIFSKFGTVLKIITFTKNNQFQALLQYGDPVNAQQAKLALDGQNIYNACCTLRIDFSKLVN 82
                          90       100
                  ....*....|....*....|..
gi 1932715449 213 LNVKYNNDKSRDFTNPTLPTGD 234
Cdd:cd12783    83 LNVKYNNDKSRDYTRPDLPSGD 104
RRM2_ROD1 cd12784
RNA recognition motif 2 (RRM2) found in vertebrate regulator of differentiation 1 (Rod1); This ...
129-234 7.03e-47

RNA recognition motif 2 (RRM2) found in vertebrate regulator of differentiation 1 (Rod1); This subgroup corresponds to the RRM2 of ROD1 coding protein Rod1, a mammalian polypyrimidine tract binding protein (PTB) homolog of a regulator of differentiation in the fission yeast Schizosaccharomyces pombe, where the nrd1 gene encodes an RNA binding protein and negatively regulates the onset of differentiation. ROD1 is predominantly expressed in hematopoietic cells or organs. It might play a role controlling differentiation in mammals. Rod1 contains four repeats of RNA recognition motifs (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain) and does have RNA binding activities.


Pssm-ID: 410176 [Multi-domain]  Cd Length: 108  Bit Score: 158.24  E-value: 7.03e-47
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1932715449 129 GANTVLRVVVDNQIYPVTLDLLHSIFSRAGKVLKIVTFTKSNSFQALIQFSDVMGAQAAKLALDGQSIYNACCTLRIEYS 208
Cdd:cd12784     1 GQSPVLRIIVENLFYPVTLEVLHQIFSKFGTVLKIITFTKNNQFQALLQYADPMNAHHAKVALDGQNIYNACCTLRIEFS 80
                          90       100
                  ....*....|....*....|....*.
gi 1932715449 209 KLTNLNVKYNNDKSRDFTNPTLPTGD 234
Cdd:cd12784    81 KLTSLNVKYNNDKSRDFTRLDLPSGD 106
RRM3_PTBP1 cd12695
RNA recognition motif 3 (RRM3) found in vertebrate polypyrimidine tract-binding protein 1 (PTB) ...
309-401 3.30e-45

RNA recognition motif 3 (RRM3) found in vertebrate polypyrimidine tract-binding protein 1 (PTB); This subgroup corresponds to the RRM3 of PTB, also known as 58 kDa RNA-binding protein PPTB-1 or heterogeneous nuclear ribonucleoprotein I (hnRNP I), an important negative regulator of alternative splicing in mammalian cells. PTB also functions at several other aspects of mRNA metabolism, including mRNA localization, stabilization, polyadenylation, and translation. PTB contains four RNA recognition motifs (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain). RRM1 and RRM2 are independent from each other and separated by flexible linkers. By contrast, there is an unusual and conserved interdomain interaction between RRM3 and RRM4. It is widely held that only RRMs 3 and 4 are involved in RNA binding and RRM2 mediates PTB homodimer formation. However, new evidence show that the RRMs 1 and 2 also contribute substantially to RNA binding. Moreover, PTB may not always dimerize to repress splicing. It is a monomer in solution.


Pssm-ID: 410095 [Multi-domain]  Cd Length: 93  Bit Score: 153.23  E-value: 3.30e-45
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1932715449 309 VLLVSNLNEQMVTPDALFTLFGVYGDVIRVKILFNKKDSALIQMAEPQQAQLAMSHLDKIKVYGKPIRVTPSKHHIVQLP 388
Cdd:cd12695     1 VLLVSNLNPERVTPQCLFILFGVYGDVQRVKILFNKKENALVQMADGNQAQLAMSHLNGQKLHGKPIRITLSKHQTVQLP 80
                          90
                  ....*....|...
gi 1932715449 389 KDGQPDAGLTKDY 401
Cdd:cd12695    81 REGQEDQGLTKDY 93
RRM3_PTBP2 cd12696
RNA recognition motif 3 (RRM3) found in vertebrate polypyrimidine tract-binding protein 2 ...
293-401 7.63e-41

RNA recognition motif 3 (RRM3) found in vertebrate polypyrimidine tract-binding protein 2 (PTBP2); This subgroup corresponds to the RRM3 of PTBP2, also known as neural polypyrimidine tract-binding protein or neurally-enriched homolog of PTB (nPTB), highly homologous to polypyrimidine tract binding protein (PTB) and perhaps specific to the vertebrates. Unlike PTB, PTBP2 is enriched in the brain and in some neural cell lines. It binds more stably to the downstream control sequence (DCS) RNA than PTB does but is a weaker repressor of splicing in vitro. PTBP2 also greatly enhances the binding of two other proteins, heterogeneous nuclear ribonucleoprotein (hnRNP) H and KH-type splicing-regulatory protein (KSRP), to the DCS RNA. The binding properties of PTBP2 and its reduced inhibitory activity on splicing imply roles in controlling the assembly of other splicing-regulatory proteins. PTBP2 contains four RNA recognition motifs (RRMs), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 410096 [Multi-domain]  Cd Length: 107  Bit Score: 142.44  E-value: 7.63e-41
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1932715449 293 LGMAGIRLPGQAttscVLLVSNLNEQMVTPDALFTLFGVYGDVIRVKILFNKKDSALIQMAEPQQAQLAMSHLDKIKVYG 372
Cdd:cd12696     3 VGMPGVSAGGNT----VLLVSNLNEEMVTPQSLFTLFGVYGDVQRVKILYNKKDSALIQMADGNQSQLAMSHLNGQKMYG 78
                          90       100
                  ....*....|....*....|....*....
gi 1932715449 373 KPIRVTPSKHHIVQLPKDGQPDAGLTKDY 401
Cdd:cd12696    79 KIIRVTLSKHQTVQLPREGLDDQGLTKDF 107
RRM1_PTBP1_hnRNPL_like cd12421
RNA recognition motif (RRM) found in polypyrimidine tract-binding protein 1 (PTB or hnRNP I), ...
35-108 1.77e-40

RNA recognition motif (RRM) found in polypyrimidine tract-binding protein 1 (PTB or hnRNP I), heterogeneous nuclear ribonucleoprotein L (hnRNP-L), and similar proteins; This subfamily corresponds to the RRM1 of the majority of family members that include polypyrimidine tract-binding protein 1 (PTB or hnRNP I), polypyrimidine tract-binding protein 2 (PTBP2 or nPTB), regulator of differentiation 1 (Rod1), heterogeneous nuclear ribonucleoprotein L (hnRNP-L), heterogeneous nuclear ribonucleoprotein L-like (hnRNP-LL), polypyrimidine tract-binding protein homolog 3 (PTBPH3), polypyrimidine tract-binding protein homolog 1 and 2 (PTBPH1 and PTBPH2), and similar proteins. PTB is an important negative regulator of alternative splicing in mammalian cells and also functions at several other aspects of mRNA metabolism, including mRNA localization, stabilization, polyadenylation, and translation. PTBP2 is highly homologous to PTB and is perhaps specific to the vertebrates. Unlike PTB, PTBP2 is enriched in the brain and in some neural cell lines. It binds more stably to the downstream control sequence (DCS) RNA than PTB does but is a weaker repressor of splicing in vitro. PTBP2 also greatly enhances the binding of two other proteins, heterogeneous nuclear ribonucleoprotein (hnRNP) H and KH-type splicing-regulatory protein (KSRP), to the DCS RNA. The binding properties of PTBP2 and its reduced inhibitory activity on splicing imply roles in controlling the assembly of other splicing-regulatory proteins. Rod1 is a mammalian polypyrimidine tract binding protein (PTB) homolog of a regulator of differentiation in the fission yeast Schizosaccharomyces pombe, where the nrd1 gene encodes an RNA binding protein negatively regulates the onset of differentiation. ROD1 is predominantly expressed in hematopoietic cells or organs. It might play a role controlling differentiation in mammals. hnRNP-L is a higher eukaryotic specific subunit of human KMT3a (also known as HYPB or hSet2) complex required for histone H3 Lys-36 trimethylation activity. It plays both, nuclear and cytoplasmic, roles in mRNA export of intronless genes, IRES-mediated translation, mRNA stability, and splicing. hnRNP-LL protein plays a critical and unique role in the signal-induced regulation of CD45 and acts as a global regulator of alternative splicing in activated T cells. The family also includes polypyrimidine tract binding protein homolog 3 (PTBPH3) found in plant. Although its biological roles remain unclear, PTBPH3 shows significant sequence similarity to other family members, all of which contain four RNA recognition motifs (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain). Although their biological roles remain unclear, both PTBPH1 and PTBPH2 show significant sequence similarity to PTB. However, in contrast to PTB, they have three RRMs. In addition, this family also includes RNA-binding motif protein 20 (RBM20) that is an alternative splicing regulator associated with dilated cardiomyopathy (DCM) and contains only one RRM.


Pssm-ID: 409855 [Multi-domain]  Cd Length: 74  Bit Score: 140.02  E-value: 1.77e-40
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 1932715449  35 VVHIRNIPNDATDTDIVHLGVPFGKVTNVLQLKGKNQAFLEMADEGSAVAMVDYFAKASPTVRGRVVYVQFSNH 108
Cdd:cd12421     1 VVHIRNLPPDATEADLVALGLPFGKVTNVLLLKGKNQALVEMEDVESASSMVNYYTTVPPLIRGRPVYVQYSNH 74
RRM4_ROD1 cd12703
RNA recognition motif 4 (RRM4) found in vertebrate regulator of differentiation 1 (Rod1); This ...
412-502 2.42e-40

RNA recognition motif 4 (RRM4) found in vertebrate regulator of differentiation 1 (Rod1); This subgroup corresponds to the RRM4 of ROD1 coding protein Rod1, a mammalian polypyrimidine tract binding protein (PTB) homolog of a regulator of differentiation in the fission yeast Schizosaccharomyces pombe, where the nrd1 gene encodes an RNA binding protein that negatively regulates the onset of differentiation. ROD1 is predominantly expressed in hematopoietic cells or organs. It might play a role controlling differentiation in mammals. Rod1 contains four repeats of RNA recognition motifs (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain) and does have RNA binding activities.


Pssm-ID: 410102 [Multi-domain]  Cd Length: 91  Bit Score: 140.59  E-value: 2.42e-40
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1932715449 412 PGSKNYQNIYPPSATLHLSNIPPTVSEEQIREAFTQTGGTVVAFKFFPKDRKMALIQMGSVEESVTALIKMHNYQLSDSN 491
Cdd:cd12703     1 PGSKNFQNIFPPSATLHLSNIPPSVTDDDLKRLFASTGCSVKAFKFFQKDRKMALIQLGSVEEAIQALIELHNHDLGENH 80
                          90
                  ....*....|.
gi 1932715449 492 HLRVSFSKSTI 502
Cdd:cd12703    81 HLRVSFSKSTI 91
RRM1_ROD1 cd12779
RNA recognition motif 1 (RRM1) found in vertebrate regulator of differentiation 1 (Rod1); This ...
32-116 5.62e-40

RNA recognition motif 1 (RRM1) found in vertebrate regulator of differentiation 1 (Rod1); This subgroup corresponds to the RRM1 of ROD1 coding protein Rod1, a mammalian polypyrimidine tract binding protein (PTB) homolog of a regulator of differentiation in the fission yeast Schizosaccharomyces pombe, where the nrd1 gene encodes an RNA binding protein that negatively regulates the onset of differentiation. ROD1 is predominantly expressed in hematopoietic cells or organs. It might play a role controlling differentiation in mammals. Rod1 contains four repeats of RNA recognition motifs (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain) and does have RNA binding activities.


Pssm-ID: 410171 [Multi-domain]  Cd Length: 90  Bit Score: 139.39  E-value: 5.62e-40
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1932715449  32 PSRVVHIRNIPNDATDTDIVHLGVPFGKVTNVLQLKGKNQAFLEMADEGSAVAMVDYFAKASPTVRGRVVYVQFSNHREL 111
Cdd:cd12779     4 PSRVLHIRKIPNDVTEAEVISLGLPFGKVTNLLMLKGKNQAFLEMASEEAAVTMVNYYTTVTPHLRNQPVYIQYSNHREL 83

                  ....*
gi 1932715449 112 KTDNV 116
Cdd:cd12779    84 KTDNL 88
RRM_5 pfam13893
RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic ...
279-404 1.16e-36

RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic of an RNA binding protein. RRMs are found in a variety of RNA binding proteins, including various hnRNP proteins, proteins implicated in regulation of alternative splicing, and protein components of snRNPs. The motif also appears in a few single stranded DNA binding proteins.


Pssm-ID: 433561 [Multi-domain]  Cd Length: 125  Bit Score: 131.84  E-value: 1.16e-36
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1932715449 279 GFALSPSAPSAATALGMAGirLPGQATTScVLLVSNLNEQMVTPDALFTLFGVYGDVIRVKILFNKKDSALIQMAEPQQA 358
Cdd:pfam13893   1 PGRFGPSYTGSVAATGWPG--AAGVAGNS-VLMVYGLNPDRVNCDKLFNLFCLYGNVARVKFMKNKKGTAMVQMGDASQV 77
                          90       100       110       120
                  ....*....|....*....|....*....|....*....|....*...
gi 1932715449 359 QLAMSHLDKIKVYGKPIRVTPSKHHIV--QLPKDGQPDAGLTKDYINS 404
Cdd:pfam13893  78 QRAIQHLNGHPLFGKRLQIILSKQQAVsyALPFELQDDSPSFKDYSNS 125
RRM1_PTBP1_like cd12688
RNA recognition motif 1 (RRM1) found in polypyrimidine tract-binding protein 1 (PTB or hnRNP I) ...
34-114 2.23e-35

RNA recognition motif 1 (RRM1) found in polypyrimidine tract-binding protein 1 (PTB or hnRNP I) and similar proteins; This subfamily corresponds to the RRM1 of polypyrimidine tract-binding protein 1 (PTB or hnRNP I), polypyrimidine tract-binding protein 2 (PTBP2 or nPTB), regulator of differentiation 1 (Rod1), and similar proteins found in Metazoa. PTB is an important negative regulator of alternative splicing in mammalian cells and functions at several aspects of mRNA metabolism, including mRNA localization, stabilization, polyadenylation, and translation. PTBP2 is highly homologous to PTB and is perhaps specific to the vertebrates. Unlike PTB, PTBP2 is enriched in the brain and in some neural cell lines. It binds more stably to the downstream control sequence (DCS) RNA than PTB does but is a weaker repressor of splicing in vitro. PTBP2 also greatly enhances the binding of two other proteins, heterogeneous nuclear ribonucleoprotein (hnRNP) H and KH-type splicing-regulatory protein (KSRP), to the DCS RNA. The binding properties of PTBP2 and its reduced inhibitory activity on splicing imply roles in controlling the assembly of other splicing-regulatory proteins. PTBP2 also contains four RRMs. ROD1 coding protein Rod1 is a mammalian PTB homolog of a regulator of differentiation in the fission yeast Schizosaccharomyces pombe, where the nrd1 gene encodes an RNA binding protein and negatively regulates the onset of differentiation. ROD1 is predominantly expressed in hematopoietic cells or organs. It may play a role controlling differentiation in mammals. All members in this family contain four RNA recognition motifs (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 410089 [Multi-domain]  Cd Length: 81  Bit Score: 126.65  E-value: 2.23e-35
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1932715449  34 RVVHIRNIPNDATDTDIVHLGVPFGKVTNVLQLKGKNQAFLEMADEGSAVAMVDYFAKASPTVRGRVVYVQFSNHRELKT 113
Cdd:cd12688     1 RVLHIRKLPCDVTEAEVISLGLPFGKVTNLLMLKGKNQAFLEMATEEAAVTMVNYYTPVTPHLRSQPIYIQYSNHKELKT 80

                  .
gi 1932715449 114 D 114
Cdd:cd12688    81 D 81
RRM1_PTBP1 cd12777
RNA recognition motif 1 (RRM1) found in vertebrate polypyrimidine tract-binding protein 1 (PTB) ...
34-114 3.60e-35

RNA recognition motif 1 (RRM1) found in vertebrate polypyrimidine tract-binding protein 1 (PTB); This subgroup corresponds to the RRM1 of PTB, also known as 58 kDa RNA-binding protein PPTB-1 or heterogeneous nuclear ribonucleoprotein I (hnRNP I), an important negative regulator of alternative splicing in mammalian cells. PTB also functions at several other aspects of mRNA metabolism, including mRNA localization, stabilization, polyadenylation, and translation. PTB contains four RNA recognition motifs (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain). RRM1 and RRM2 are independent from each other and separated by flexible linkers. By contrast, there is an unusual and conserved interdomain interaction between RRM3 and RRM4. It is widely held that only RRMs 3 and 4 are involved in RNA binding and RRM2 mediates PTB homodimer formation. However, new evidence shows that the RRMs 1 and 2 also contribute substantially to RNA binding. Moreover, PTB may not always dimerize to repress splicing. It is a monomer in solution.


Pssm-ID: 410169 [Multi-domain]  Cd Length: 81  Bit Score: 126.25  E-value: 3.60e-35
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1932715449  34 RVVHIRNIPNDATDTDIVHLGVPFGKVTNVLQLKGKNQAFLEMADEGSAVAMVDYFAKASPTVRGRVVYVQFSNHRELKT 113
Cdd:cd12777     1 RVIHVRKLPNDVTEAEVISLGLPFGKVTNLLMLKGKNQAFIEMNTEEAANTMVNYYTSVTPVLRGQPIYIQFSNHKELKT 80

                  .
gi 1932715449 114 D 114
Cdd:cd12777    81 D 81
RRM1_PTBP2 cd12778
RNA recognition motif 1 (RRM1) found in vertebrate polypyrimidine tract-binding protein 2 ...
33-114 5.43e-35

RNA recognition motif 1 (RRM1) found in vertebrate polypyrimidine tract-binding protein 2 (PTBP2); This subgroup corresponds to the RRM1 of PTBP2, also known as neural polypyrimidine tract-binding protein or neurally-enriched homolog of PTB (nPTB), highly homologous to polypyrimidine tract binding protein (PTB) and perhaps specific to the vertebrates. Unlike PTB, PTBP2 is enriched in the brain and in some neural cell lines. It binds more stably to the downstream control sequence (DCS) RNA than PTB does but is a weaker repressor of splicing in vitro. PTBP2 also greatly enhances the binding of two other proteins, heterogeneous nuclear ribonucleoprotein (hnRNP) H and KH-type splicing-regulatory protein (KSRP), to the DCS RNA. The binding properties of PTBP2 and its reduced inhibitory activity on splicing imply roles in controlling the assembly of other splicing-regulatory proteins. PTBP2 contains four RNA recognition motifs (RRMs), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 410170 [Multi-domain]  Cd Length: 82  Bit Score: 125.56  E-value: 5.43e-35
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1932715449  33 SRVVHIRNIPNDATDTDIVHLGVPFGKVTNVLQLKGKNQAFLEMADEGSAVAMVDYFAKASPTVRGRVVYVQFSNHRELK 112
Cdd:cd12778     1 SRVLHIRKLPGEVTETEVIALGLPFGKVTNILMLKGKNQAFLELATEEAAITMVNYYTAVTPHLRNQPIYIQYSNHKELK 80

                  ..
gi 1932715449 113 TD 114
Cdd:cd12778    81 TD 82
RRM4_PTBP1 cd12701
RNA recognition motif 4 (RRM4) found in vertebrate polypyrimidine tract-binding protein 1 (PTB) ...
426-501 1.31e-34

RNA recognition motif 4 (RRM4) found in vertebrate polypyrimidine tract-binding protein 1 (PTB); This subgroup corresponds to the RRM4 of PTB, also known as 58 kDa RNA-binding protein PPTB-1 or heterogeneous nuclear ribonucleoprotein I (hnRNP I), an important negative regulator of alternative splicing in mammalian cells. PTB also functions at several other aspects of mRNA metabolism, including mRNA localization, stabilization, polyadenylation, and translation. PTB contains four RNA recognition motifs (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain). RRM1 and RRM2 are independent from each other and separated by flexible linkers. By contrast, there is an unusual and conserved interdomain interaction between RRM3 and RRM4. It is widely held that only RRMs 3 and 4 are involved in RNA binding and RRM2 mediates PTB homodimer formation. However, new evidence shows that the RRMs 1 and 2 also contribute substantially to RNA binding. Moreover, PTB may not always dimerize to repress splicing. It is a monomer in solution.


Pssm-ID: 410101 [Multi-domain]  Cd Length: 76  Bit Score: 124.38  E-value: 1.31e-34
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 1932715449 426 TLHLSNIPPTVSEEQIREAFTQTGGTVVAFKFFPKDRKMALIQMGSVEESVTALIKMHNYQLSDSNHLRVSFSKST 501
Cdd:cd12701     1 TLHLSNIPPSVSEEDLKMLFSSNGGMVKGFKFFQKDRKMALIQMGSVEEAIQALIDLHNHDLGENHHLRVSFSKST 76
RRM2_PTBP1_hnRNPL_like cd12422
RNA recognition motif (RRM) found in polypyrimidine tract-binding protein 1 (PTB or hnRNP I), ...
133-217 5.78e-34

RNA recognition motif (RRM) found in polypyrimidine tract-binding protein 1 (PTB or hnRNP I), heterogeneous nuclear ribonucleoprotein L (hnRNP-L), and similar proteins; This subfamily corresponds to the RRM2 of polypyrimidine tract-binding protein 1 (PTB or hnRNP I), polypyrimidine tract-binding protein 2 (PTBP2 or nPTB), regulator of differentiation 1 (Rod1), heterogeneous nuclear ribonucleoprotein L (hnRNP-L), heterogeneous nuclear ribonucleoprotein L-like (hnRNP-LL), polypyrimidine tract-binding protein homolog 3 (PTBPH3), polypyrimidine tract-binding protein homolog 1 and 2 (PTBPH1 and PTBPH2), and similar proteins, and RRM3 of PTBPH1 and PTBPH2. PTB is an important negative regulator of alternative splicing in mammalian cells and also functions at several other aspects of mRNA metabolism, including mRNA localization, stabilization, polyadenylation, and translation. PTBP2 is highly homologous to PTB and is perhaps specific to the vertebrates. Unlike PTB, PTBP2 is enriched in the brain and in some neural cell lines. It binds more stably to the downstream control sequence (DCS) RNA than PTB does but is a weaker repressor of splicing in vitro. PTBP2 also greatly enhances the binding of two other proteins, heterogeneous nuclear ribonucleoprotein (hnRNP) H and KH-type splicing-regulatory protein (KSRP), to the DCS RNA. The binding properties of PTBP2 and its reduced inhibitory activity on splicing imply roles in controlling the assembly of other splicing-regulatory proteins. Rod1 is a mammalian polypyrimidine tract binding protein (PTB) homolog of a regulator of differentiation in the fission yeast Schizosaccharomyces pombe, where the nrd1 gene encodes an RNA binding protein negatively regulates the onset of differentiation. ROD1 is predominantly expressed in hematopoietic cells or organs. It might play a role controlling differentiation in mammals. hnRNP-L is a higher eukaryotic specific subunit of human KMT3a (also known as HYPB or hSet2) complex required for histone H3 Lys-36 trimethylation activity. It plays both, nuclear and cytoplasmic, roles in mRNA export of intronless genes, IRES-mediated translation, mRNA stability, and splicing. hnRNP-LL protein plays a critical and unique role in the signal-induced regulation of CD45 and acts as a global regulator of alternative splicing in activated T cells. This family also includes polypyrimidine tract binding protein homolog 3 (PTBPH3) found in plant. Although its biological roles remain unclear, PTBPH3 shows significant sequence similarity to other family members, all of which contain four RNA recognition motifs (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain). Although their biological roles remain unclear, both PTBPH1 and PTBPH2 show significant sequence similarity to PTB. However, in contrast to PTB, they have three RRMs.


Pssm-ID: 409856 [Multi-domain]  Cd Length: 85  Bit Score: 123.07  E-value: 5.78e-34
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1932715449 133 VLRVVVDNQIYPVTLDLLHSIFSRAGKVLKIVTFTKSNSFQALIQFSDVMGAQAAKLALDGQSIYNACCTLRIEYSKLTN 212
Cdd:cd12422     1 VLLVTVTNLLYPVTVDVLHQVFSPYGAVEKIVIFEKGTGVQALVQFDSVESAEAAKKALNGRNIYDGCCTLDIQFSRLKE 80

                  ....*
gi 1932715449 213 LNVKY 217
Cdd:cd12422    81 LTVKY 85
RRM4_PTBP2 cd12702
RNA recognition motif 4 (RRM4) found in vertebrate polypyrimidine tract-binding protein 2 ...
422-502 1.36e-33

RNA recognition motif 4 (RRM4) found in vertebrate polypyrimidine tract-binding protein 2 (PTBP2); This subgroup corresponds to the RRM4 of PTBP2, also known as neural polypyrimidine tract-binding protein or neurally-enriched homolog of PTB (nPTB), highly homologous to polypyrimidine tract binding protein (PTB) and perhaps specific to the vertebrates. Unlike PTB, PTBP2 is enriched in the brain and in some neural cell lines. It binds more stably to the downstream control sequence (DCS) RNA than PTB does but is a weaker repressor of splicing in vitro. PTBP2 also greatly enhances the binding of two other proteins, heterogeneous nuclear ribonucleoprotein (hnRNP) H and KH-type splicing-regulatory protein (KSRP), to the DCS RNA. The binding properties of PTBP2 and its reduced inhibitory activity on splicing imply roles in controlling the assembly of other splicing-regulatory proteins. PTBP2 contains four RNA recognition motifs (RRMs), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 241146 [Multi-domain]  Cd Length: 80  Bit Score: 122.04  E-value: 1.36e-33
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1932715449 422 PPSATLHLSNIPPTVSEEQIREAFTQTGGTVVAFKFFpKDRKMALIQMGSVEESVTALIKMHNYQLSDSNHLRVSFSKST 501
Cdd:cd12702     1 PPSATLHLSNIPPSVAEEDLRTLFANTGGTVKAFKFF-QDHKMALLQMSTVEEAIQALIDLHNYNLGENHHLRVSFSKST 79

                  .
gi 1932715449 502 I 502
Cdd:cd12702    80 I 80
RRM3_ROD1 cd12697
RNA recognition motif 3 (RRM3) found in vertebrate regulator of differentiation 1 (Rod1); This ...
309-383 3.31e-29

RNA recognition motif 3 (RRM3) found in vertebrate regulator of differentiation 1 (Rod1); This subgroup corresponds to the RRM3 of ROD1 coding protein Rod1, a mammalian polypyrimidine tract binding protein (PTB) homolog of a regulator of differentiation in the fission yeast Schizosaccharomyces pombe, where the nrd1 gene encodes an RNA binding protein negatively regulates the onset of differentiation. ROD1 is predominantly expressed in hematopoietic cells or organs. It might play a role controlling differentiation in mammals. Rod1 contains four repeats of RNA recognition motifs (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain) and does have RNA binding activities.


Pssm-ID: 410097 [Multi-domain]  Cd Length: 76  Bit Score: 109.67  E-value: 3.31e-29
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 1932715449 309 VLLVSNLNEQMVTPDALFTLFGVYGDVIRVKILFNKKDSALIQMAEPQQAQLAMSHLDKIKVYGKPIRVTPSKHH 383
Cdd:cd12697     2 VLLVSNLNPDAITPHGLFILFGVYGDVLRVKIMFNKKENALVQMADATQAQIAMSHLNGQRLYGKVLRATLSKHQ 76
RRM3_PTBPH1_PTBPH2 cd12690
RNA recognition motif 3 (RRM3) found in plant polypyrimidine tract-binding protein homolog 1 ...
133-226 5.49e-29

RNA recognition motif 3 (RRM3) found in plant polypyrimidine tract-binding protein homolog 1 and 2 (PTBPH1 and PTBPH2); This subfamily corresponds to the RRM3 of PTBPH1 and PTBPH2. Although their biological roles remain unclear, PTBPH1 and PTBPH2 show significant sequence similarity to polypyrimidine tract binding protein (PTB) that is an important negative regulator of alternative splicing in mammalian cells and also functions at several other aspects of mRNA metabolism, including mRNA localization, stabilization, polyadenylation, and translation. Both, PTBPH1 and PTBPH2, contain three RNA recognition motifs (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 410091 [Multi-domain]  Cd Length: 97  Bit Score: 109.96  E-value: 5.49e-29
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1932715449 133 VLRVVVDNQIYPVTLDLLHSIFSRAGKVLKIVTFTKSNSFQALIQFSDVMGAQAAKLALDGQSIYN-ACCTLRIEYSKLT 211
Cdd:cd12690     3 VLLASIENMQYAVTLDVLHTVFSAFGFVQKIAIFEKNGGFQALIQYPDVPTAVVAKEALEGHCIYDgGYCKLHLSYSRHT 82
                          90
                  ....*....|....*
gi 1932715449 212 NLNVKYNNDKSRDFT 226
Cdd:cd12690    83 DLNVKVNNDRSRDYT 97
RRM2_hnRNPL_like cd12694
RNA recognition motif 2 (RRM2) found in heterogeneous nuclear ribonucleoprotein L (hnRNP-L) ...
131-216 2.93e-27

RNA recognition motif 2 (RRM2) found in heterogeneous nuclear ribonucleoprotein L (hnRNP-L) and similar proteins; This subfamily corresponds to the RRM2 of heterogeneous nuclear ribonucleoprotein L (hnRNP-L), heterogeneous nuclear ribonucleoprotein L-like (hnRNP-LL), and similar proteins. hnRNP-L is a higher eukaryotic specific subunit of human KMT3a (also known as HYPB or hSet2) complex required for histone H3 Lys-36 trimethylation activity. It plays both nuclear and cytoplasmic roles in mRNA export of intronless genes, IRES-mediated translation, mRNA stability, and splicing. hnRNP-LL plays a critical and unique role in the signal-induced regulation of CD45 and acts as a global regulator of alternative splicing in activated T cells. It is closely related in domain structure and sequence to hnRNP-L, which contains three RNA-recognition motifs (RRMs), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 410094 [Multi-domain]  Cd Length: 86  Bit Score: 104.66  E-value: 2.93e-27
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1932715449 131 NTVLRVVVDNQIYPVTLDLLHSIFSRAGKVLKIVTFTKsNSFQALIQFSDVMGAQAAKLALDGQSIYNACCTLRIEYSKL 210
Cdd:cd12694     1 NHVLLFTILNPLYPITVDVIHTICSPYGKVLRIVIFRK-NGVQAMVEFDSVESAQRAKAALNGADIYSGCCTLKIEYAKP 79

                  ....*.
gi 1932715449 211 TNLNVK 216
Cdd:cd12694    80 TRLNVY 85
RRM3_PTBPH3 cd12698
RNA recognition motif 3 (RRM3) found in plant polypyrimidine tract-binding protein homolog 3 ...
307-382 3.11e-25

RNA recognition motif 3 (RRM3) found in plant polypyrimidine tract-binding protein homolog 3 (PTBPH3); This subgroup corresponds to the RRM3 of PTBPH3. Although its biological roles remain unclear, PTBPH3 shows significant sequence similarity to polypyrimidine tract binding protein (PTB) that is an important negative regulator of alternative splicing in mammalian cells and also functions at several other aspects of mRNA metabolism, including mRNA localization, stabilization, polyadenylation, and translation. Like PTB, PTBPH3 contains four RNA recognition motifs (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 410098 [Multi-domain]  Cd Length: 76  Bit Score: 98.58  E-value: 3.11e-25
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 1932715449 307 SCVLLVSNLNEQMVTPDALFTLFGVYGDVIRVKILFNKKDSALIQMAEPQQAQLAMSHLDKIKVYGKPIRVTPSKH 382
Cdd:cd12698     1 TPVLLVSNLNPEKVDVDKLFNLFSLYGNIVRIKILRNKPDHALIQMSDPFQAELAVNYLKGAMLFGKSLEVNFSKH 76
RRM2_PTBPH3 cd12692
RNA recognition motif 2 (RRM2) found in plant polypyrimidine tract-binding protein homolog 3 ...
131-217 2.01e-24

RNA recognition motif 2 (RRM2) found in plant polypyrimidine tract-binding protein homolog 3 (PTBPH3); This subfamily corresponds to the RRM2 of PTBPH3. Although its biological roles remain unclear, PTBPH3 shows significant sequence similarity to polypyrimidine tract binding protein (PTB) that is an important negative regulator of alternative splicing in mammalian cells and also functions at several other aspects of mRNA metabolism, including mRNA localization, stabilization, polyadenylation, and translation. Like PTB, PTBPH3 contains four RNA recognition motifs (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 410092 [Multi-domain]  Cd Length: 88  Bit Score: 96.93  E-value: 2.01e-24
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1932715449 131 NTVLRVVVDNQIYPVTLDLLHSIFSRAGKVLKIVTFTKSNSFQALIQFSDVMGAQAAKLALDGQSIYNACCTLRIEYSKL 210
Cdd:cd12692     2 NRILLVTIHHPLYPITVDVLHQVFSPHGFVEKIVTFQKSAGLQALIQYQSQQSAVQARSALQGRNIYDGCCQLDIQFSNL 81

                  ....*..
gi 1932715449 211 TNLNVKY 217
Cdd:cd12692    82 QELQVNY 88
RRM2_hnRPLL cd12786
RNA recognition motif 2 (RRM2) found in vertebrate heterogeneous nuclear ribonucleoprotein ...
130-226 5.35e-24

RNA recognition motif 2 (RRM2) found in vertebrate heterogeneous nuclear ribonucleoprotein L-like (hnRNP-LL); The subgroup corresponds to the RRM2 of hnRNP-LL which plays a critical and unique role in the signal-induced regulation of CD45 and acts as a global regulator of alternative splicing in activated T cells. It is closely related in domain structure and sequence to heterogeneous nuclear ribonucleoprotein L (hnRNP-L), which is an abundant nuclear, multifunctional RNA-binding protein with three RNA-recognition motifs (RRMs), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 241230 [Multi-domain]  Cd Length: 96  Bit Score: 95.85  E-value: 5.35e-24
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1932715449 130 ANTVLRVVVDNQIYPVTLDLLHSIFSRAGKVLKIVTFtKSNSFQALIQFSDVMGAQAAKLALDGQSIYNACCTLRIEYSK 209
Cdd:cd12786     1 GNKVLLLSIQNPLYPITVDVLYTVCNPVGKVQRIVIF-KRNGIQAMVEFESVECAQKAKAALNGADIYAGCCTLKIEYAR 79
                          90
                  ....*....|....*..
gi 1932715449 210 LTNLNVKYNNDKSRDFT 226
Cdd:cd12786    80 PTRLNVIRNDNDSWDYT 96
RRM2_hnRNPL cd12785
RNA recognition motif 2 (RRM2) found in vertebrate heterogeneous nuclear ribonucleoprotein L ...
131-228 4.86e-23

RNA recognition motif 2 (RRM2) found in vertebrate heterogeneous nuclear ribonucleoprotein L (hnRNP-L); This subgroup corresponds to the RRM2 of hnRNP-L, a higher eukaryotic specific subunit of human KMT3a (also known as HYPB or hSet2) complex required for histone H3 Lys-36 trimethylation activity. It plays both, nuclear and cytoplasmic, roles in mRNA export of intronless genes, IRES-mediated translation, mRNA stability, and splicing. hnRNP-L shows significant sequence homology to polypyrimidine tract-binding protein (PTB or hnRNP I). Both hnRNP-L and PTB are localized in the nucleus but excluded from the nucleolus. hnRNP-L is an RNA-binding protein with three RNA recognition motifs (RRMs), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 410177 [Multi-domain]  Cd Length: 100  Bit Score: 93.58  E-value: 4.86e-23
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1932715449 131 NTVLRVVVDNQIYPVTLDLLHSIFSRAGKVLKIVTFTKsNSFQALIQFSDVMGAQAAKLALDGQSIYNACCTLRIEYSKL 210
Cdd:cd12785     4 NNVLLFTILNPIYSITTDVLYTICNPCGPVQRIVIFRK-NGVQAMVEFDSVQSAQRAKASLNGADIYSGCCTLKIEYAKP 82
                          90
                  ....*....|....*...
gi 1932715449 211 TNLNVKYNNDKSRDFTNP 228
Cdd:cd12785    83 TRLNVFKNDQDTWDYTNP 100
RRM1_PTBPH3 cd12687
RNA recognition motif 1 (RRM1) found in plant polypyrimidine tract-binding protein homolog 3 ...
34-108 4.69e-22

RNA recognition motif 1 (RRM1) found in plant polypyrimidine tract-binding protein homolog 3 (PTBPH3); This subfamily corresponds to the RRM1 of PTBPH3. Although its biological roles remain unclear, PTBPH3 shows significant sequence similarity to polypyrimidine tract binding protein (PTB) that is an important negative regulator of alternative splicing in mammalian cells and also functions at several other aspects of mRNA metabolism, including mRNA localization, stabilization, polyadenylation, and translation. Like PTB, PTBPH3 contains four RNA recognition motifs (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 410088 [Multi-domain]  Cd Length: 75  Bit Score: 89.93  E-value: 4.69e-22
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 1932715449  34 RVVHIRNIPNDATDTDIVHLGVPFGKVTNVLQLKGKNQAFLEMADEGSAVAMVDYFAKASPTVRGRVVYVQFSNH 108
Cdd:cd12687     1 KVLHVRNVGHEISENDLLQLAQPFGVVTKLVMLRAKNQALLQMQDVSAAISALQFYTSVQPSIRGRNVYIQFSSH 75
RRM1_PTBPH1_PTBPH2 cd12686
RNA recognition motif 1 (RRM1) found in plant polypyrimidine tract-binding protein homolog 1 ...
32-107 2.27e-21

RNA recognition motif 1 (RRM1) found in plant polypyrimidine tract-binding protein homolog 1 and 2 (PTBPH1 and PTBPH2); This subfamily corresponds to the RRM1 of PTBPH1 and PTBPH2. Although their biological roles remain unclear, PTBPH1 and PTBPH2 show significant sequence similarity to polypyrimidine tract binding protein (PTB) that is an important negative regulator of alternative splicing in mammalian cells and also functions at several other aspects of mRNA metabolism, including mRNA localization, stabilization, polyadenylation, and translation. Both, PTBPH1 and PTBPH2, contain three RNA recognition motifs (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 410087 [Multi-domain]  Cd Length: 81  Bit Score: 87.94  E-value: 2.27e-21
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1932715449  32 PSRVVHIRNIPNDATDTDIVHLGVPFGKVTNVLQLKG--KNQAFLEMADEGSAVAMVDYFAKAS--PTVRGRVVYVQFSN 107
Cdd:cd12686     1 PSKVLHLRNLPWECTEEELIELCKPFGTVVNTKCNVGanKNQAFVEFADLNQAISMVSYYASSSepAQVRGKTVYLQYSN 80
RRM3_hnRNPL_like cd12424
RNA recognition motif 1 (RRM1) found in heterogeneous nuclear ribonucleoprotein L (hnRNP-L) ...
309-382 1.77e-20

RNA recognition motif 1 (RRM1) found in heterogeneous nuclear ribonucleoprotein L (hnRNP-L) and similar proteins; This subfamily corresponds to the RRM3 of heterogeneous nuclear ribonucleoprotein L (hnRNP-L), heterogeneous nuclear ribonucleoprotein L-like (hnRNP-LL), and similar proteins. hnRNP-L is a higher eukaryotic specific subunit of human KMT3a (also known as HYPB or hSet2) complex required for histone H3 Lys-36 trimethylation activity. It plays both, nuclear and cytoplasmic, roles in mRNA export of intronless genes, IRES-mediated translation, mRNA stability, and splicing. hnRNP-LL plays a critical and unique role in the signal-induced regulation of CD45 and acts as a global regulator of alternative splicing in activated T cells. It is closely related in domain structure and sequence to hnRNP-L, which contains three RNA-recognition motifs (RRMs), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain). The family also includes polypyrimidine tract binding protein homolog 3 (PTBPH3) found in plant. Although its biological roles remain unclear, PTBPH3 shows significant sequence similarity to polypyrimidine tract binding protein (PTB) that is an important negative regulator of alternative splicing in mammalian cells and also functions at several other aspects of mRNA metabolism, including mRNA localization, stabilization, polyadenylation, and translation. Like PTB, PTBPH3 contains four RRMs.


Pssm-ID: 409858 [Multi-domain]  Cd Length: 74  Bit Score: 85.35  E-value: 1.77e-20
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 1932715449 309 VLLVSNLNEQMVTPDALFTLFGVYGDVIRVKILFNKKDSALIQMAEPQQAQLAMSHLDKIKVYGKPIRVTPSKH 382
Cdd:cd12424     1 VLMVYGLDPDKMNCDRLFNLLCLYGNVLKIKFLKSKPGTAMVQMGDPVAADRAIQNLNNVVLFGQKLQLTYSKQ 74
RRM2_PTBPH1_PTBPH2 cd12691
RNA recognition motif 2 (RRM2) found in plant polypyrimidine tract-binding protein homolog 1 ...
145-217 1.43e-18

RNA recognition motif 2 (RRM2) found in plant polypyrimidine tract-binding protein homolog 1 and 2 (PTBPH1 and PTBPH2); This subfamily corresponds to the RRM2 of PTBPH1 and PTBPH2. Although their biological roles remain unclear, PTBPH1 and PTBPH2 show significant sequence similarity to polypyrimidine tract binding protein (PTB) that is an important negative regulator of alternative splicing in mammalian cells and also functions at several other aspects of mRNA metabolism, including mRNA localization, stabilization, polyadenylation, and translation. Both, PTBPH1 and PTBPH2, contain three RNA recognition motifs (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 241135 [Multi-domain]  Cd Length: 95  Bit Score: 80.66  E-value: 1.43e-18
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1932715449 145 VTLDLLHSIFSRAGKVLKIVTFTKSNSFQALIQFSDVMGAQAAKLALDGQSI-------YNACCTLRIEYSKLTNLNVKY 217
Cdd:cd12691    16 VSIDVLHLVFSAFGFVHKIATFEKTAGFQALVQFTDAETASAARSALDGRSIpryllpeHVGPCSLRISYSAHTDLNVKF 95
RRM2_MATR3 cd12715
RNA recognition motif 2 (RRM2) found in vertebrate matrin-3; This subgroup corresponds to the ...
34-106 2.64e-17

RNA recognition motif 2 (RRM2) found in vertebrate matrin-3; This subgroup corresponds to the RRM2 of Matrin 3 (MATR3 or P130), a highly conserved inner nuclear matrix protein with a bipartite nuclear localization signal (NLS), two zinc finger domains predicted to bind DNA, and two RNA recognition motifs (RRM), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), that are known to interact with RNA. MATR3 has been implicated in various biological processes. It is involved in RNA processing by interacting with other nuclear proteins to anchor hyperedited RNAs to the nuclear matrix. It plays a role in mRNA stabilization through maintaining the stability of certain mRNA species. Besides, it modulates the activity of proximal promoters by binding to highly repetitive sequences of matrix/scaffold attachment region (MAR/SAR). The phosphorylation of MATR3 is assumed to cause neuronal death. It is phosphorylated by the protein kinase ATM, which activates the cellular response to double strand breaks in the DNA. Its phosphorylation by protein kinase A (PKA) is responsible for the activation of the N-methyl-d-aspartic acid (NMDA) receptor. Furthermore, MATR3 has been identified as both a Ca2+-dependent CaM-binding protein and a downstream substrate of caspases. Additional research indicates that matrin 3 also binds Rev/Rev responsive element (RRE)-containing viral RNA and functions as a cofactor that mediates the post-transcriptional regulation of HIV-1.


Pssm-ID: 410114 [Multi-domain]  Cd Length: 80  Bit Score: 76.41  E-value: 2.64e-17
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 1932715449  34 RVVHIRNIPNDA-TDTDIVHLGVPFGKVTNVLQLKGKNQAFLEMADEGSAVAMVDYFAKASPTVRGRVVYVQFS 106
Cdd:cd12715     1 RVIHLSNLPHSGySDAAVLKLAEPYGKVKNYILMRMKNQAFLEMESREDAMAMVDHCKKKPLWFQGRCVKVDLS 74
RRM1_2_MATR3_like cd12436
RNA recognition motif 1 (RRM1) and 2 (RRM2) found in the matrin 3 family of nuclear proteins; ...
34-107 4.93e-17

RNA recognition motif 1 (RRM1) and 2 (RRM2) found in the matrin 3 family of nuclear proteins; This subfamily corresponds to the RRM of the matrin 3 family of nuclear proteins consisting of Matrin 3 (MATR3), nuclear protein 220 (NP220) and similar proteins. MATR3 is a highly conserved inner nuclear matrix protein that has been implicated in various biological processes. NP220 is a large nucleoplasmic DNA-binding protein that binds to cytidine-rich sequences, such as CCCCC (G/C), in double-stranded DNA (dsDNA). Both, Matrin 3 and NP220, contain two RNA recognition motif (RRM), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a Cys2-His2 zinc finger-like motif at the C-terminal region.


Pssm-ID: 409870 [Multi-domain]  Cd Length: 76  Bit Score: 75.46  E-value: 4.93e-17
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 1932715449  34 RVVHIRNIPND-ATDTDIVHLGVPFGKVTNVLQLKGKNQAFLEMADEGSAVAMVDYFAKASPTVRGRVVYVQFSN 107
Cdd:cd12436     1 RVLYLTGLPVSkYSEEDVLKLAEPFGKVNNVLLIRSKREAFIEMETAEDAQAMLSYCKTKPITIKGKKVKVSVSQ 75
RRM_RBM20 cd12685
RNA recognition motif (RRM) found in vertebrate RNA-binding protein 20 (RBM20); This subfamily ...
34-106 1.43e-16

RNA recognition motif (RRM) found in vertebrate RNA-binding protein 20 (RBM20); This subfamily corresponds to the RRM of RBM20, an alternative splicing regulator associated with dilated cardiomyopathy (DCM). It contains only one copy of RNA-recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 410086 [Multi-domain]  Cd Length: 76  Bit Score: 74.20  E-value: 1.43e-16
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 1932715449  34 RVVHIRNIPNDA-TDTDIVHLGVPFGKVTNVLQLKGKNQAFLEMADEGSAVAMVDYFAKASPTVRGRVVYVQFS 106
Cdd:cd12685     1 RVVHICNLPEGScTENDVINLGLPFGKVTNYILMRSTNQAFLEMAYTEAAQAMVQYYQEKPAMINEEKLLIRMS 74
RRM_SF cd00590
RNA recognition motif (RRM) superfamily; RRM, also known as RBD (RNA binding domain) or RNP ...
310-377 4.06e-12

RNA recognition motif (RRM) superfamily; RRM, also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), is a highly abundant domain in eukaryotes found in proteins involved in post-transcriptional gene expression processes including mRNA and rRNA processing, RNA export, and RNA stability. This domain is 90 amino acids in length and consists of a four-stranded beta-sheet packed against two alpha-helices. RRM usually interacts with ssRNA, but is also known to interact with ssDNA as well as proteins. RRM binds a variable number of nucleotides, ranging from two to eight. The active site includes three aromatic side-chains located within the conserved RNP1 and RNP2 motifs of the domain. The RRM domain is found in a variety heterogeneous nuclear ribonucleoproteins (hnRNPs), proteins implicated in regulation of alternative splicing, and protein components of small nuclear ribonucleoproteins (snRNPs).


Pssm-ID: 409669 [Multi-domain]  Cd Length: 72  Bit Score: 61.53  E-value: 4.06e-12
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1932715449 310 LLVSNLNEQmVTPDALFTLFGVYGDVIRVKILFNKKDS----ALIQMAEPQQAQLAMSHLDKIKVYGKPIRV 377
Cdd:cd00590     1 LFVGNLPPD-TTEEDLRELFSKFGEVVSVRIVRDRDGKskgfAFVEFESPEDAEKALEALNGTELGGRPLKV 71
RRM smart00360
RNA recognition motif;
309-377 7.36e-12

RNA recognition motif;


Pssm-ID: 214636 [Multi-domain]  Cd Length: 73  Bit Score: 60.69  E-value: 7.36e-12
                           10        20        30        40        50        60        70
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 1932715449  309 VLLVSNLNEQmVTPDALFTLFGVYGDVIRVKILFNK-----KDSALIQMAEPQQAQLAMSHLDKIKVYGKPIRV 377
Cdd:smart00360   1 TLFVGNLPPD-TTEEELRELFSKFGKVESVRLVRDKetgksKGFAFVEFESEEDAEKALEALNGKELDGRPLKV 73
RRM1_hnRNPL_like cd12689
RNA recognition motif 1 (RRM1) found in heterogeneous nuclear ribonucleoprotein L (hnRNP-L) ...
32-111 9.35e-12

RNA recognition motif 1 (RRM1) found in heterogeneous nuclear ribonucleoprotein L (hnRNP-L) and similar proteins; This subfamily corresponds to the RRM1 of heterogeneous nuclear ribonucleoprotein L (hnRNP-L), heterogeneous nuclear ribonucleoprotein L-like (hnRNP-LL), and similar proteins. hnRNP-L is a higher eukaryotic specific subunit of human KMT3a (also known as HYPB or hSet2) complex required for histone H3 Lys-36 trimethylation activity. It plays both, nuclear and cytoplasmic, roles in mRNA export of intronless genes, IRES-mediated translation, mRNA stability, and splicing. hnRNP-LL plays a critical and unique role in the signal-induced regulation of CD45 and acts as a global regulator of alternative splicing in activated T cells. It is closely related in domain structure and sequence to hnRNP-L, which contains three RNA-recognition motifs (RRMs), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 410090 [Multi-domain]  Cd Length: 80  Bit Score: 60.75  E-value: 9.35e-12
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1932715449  32 PSRVVHIRNIPNDATDTDIVHLGVPFGKVTNVLQLKGKNQAFLEMADEGSAVAMVDYFAKASPTVRGRVVYVQFSNHREL 111
Cdd:cd12689     1 PSPVVHVRGLSEHVTEADLVEALQNFGPISYVTMMPKKRQALVEFEDIEGAKACVNYAQQNPIYVGGRPAYFNYSTSQKI 80
RRM_8 pfam11835
RRM-like domain; This domain is related to the RRM domains suggesting it may have an ...
127-209 8.77e-11

RRM-like domain; This domain is related to the RRM domains suggesting it may have an RNA-binding function.


Pssm-ID: 432114  Cd Length: 89  Bit Score: 58.24  E-value: 8.77e-11
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1932715449 127 GGGANTVLRVVVDNQIYPVTLDLLHSIFSRAGKVLKIVTFTKSNSFQALIQFSDVMGAQAAKLALDGQSIYNACCTLRIE 206
Cdd:pfam11835   6 GGDSGAVLRVTVSHILYPVTSEVLHQVYDTYGAVAVQVLAVSTWHVEALVSFMSSCDAERARSATHGRNIYDGGCLLDVQ 85

                  ...
gi 1932715449 207 YSK 209
Cdd:pfam11835  86 HAQ 88
RRM1_2_NP220 cd12716
RNA recognition motif 1 (RRM1) and 2 (RRM2) found in vertebrate nuclear protein 220 (NP220); ...
35-101 3.86e-09

RNA recognition motif 1 (RRM1) and 2 (RRM2) found in vertebrate nuclear protein 220 (NP220); This subgroup corresponds to RRM1 and RRM2 of NP220, also termed zinc finger protein 638 (ZN638), or cutaneous T-cell lymphoma-associated antigen se33-1, or zinc finger matrin-like protein, a large nucleoplasmic DNA-binding protein that binds to cytidine-rich sequences, such as CCCCC (G/C), in double-stranded DNA (dsDNA). NP220 contains multiple domains, including MH1, MH2, and MH3, domains homologous to the acidic nuclear protein matrin 3; RS, an arginine/serine-rich domain commonly found in pre-mRNA splicing factors; PstI-HindIII, a domain essential for DNA binding; acidic repeat, a domain with nine repeats of the sequence LVTVDEVIEEEDL; and a Cys2-His2 zinc finger-like motif that is also present in matrin 3. It may be involved in packaging, transferring, or processing transcripts. This subgroup corresponds to the domain of MH2 that contains two tandem RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 410115 [Multi-domain]  Cd Length: 76  Bit Score: 53.17  E-value: 3.86e-09
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 1932715449  35 VVHIRNIPNDA-TDTDIVHLGVPFGKVTNVLQLKGKNQAFLEMADEGSAVAMVDYFAKASPTVRGRVV 101
Cdd:cd12716     2 VVLISNLPEKGyTVEEISNLAKPFGGVNDILILSSHKKAYLEMNFKEAVDSMVKYYETFPVLVGGKRL 69
RRM COG0724
RNA recognition motif (RRM) domain [Translation, ribosomal structure and biogenesis];
310-381 6.06e-09

RNA recognition motif (RRM) domain [Translation, ribosomal structure and biogenesis];


Pssm-ID: 440488 [Multi-domain]  Cd Length: 85  Bit Score: 52.79  E-value: 6.06e-09
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 1932715449 310 LLVSNLNEQmVTPDALFTLFGVYGDVIRVKILFNKKDS-----ALIQMAEPQQAQLAMSHLDKIKVYGKPIRVTPSK 381
Cdd:COG0724     4 IYVGNLPYS-VTEEDLRELFSEYGEVTSVKLITDRETGrsrgfGFVEMPDDEEAQAAIEALNGAELMGRTLKVNEAR 79
RRM4_PTBPH3 cd12426
RNA recognition motif 4 (RRM4) found in plant polypyrimidine tract-binding protein homolog 3 ...
422-497 6.30e-09

RNA recognition motif 4 (RRM4) found in plant polypyrimidine tract-binding protein homolog 3 (PTBPH3); This subfamily corresponds to the RRM4 of PTBPH3. Although its biological roles remain unclear, PTBPH3 shows significant sequence similarity to polypyrimidine tract binding protein (PTB) that is an important negative regulator of alternative splicing in mammalian cells and also functions at several other aspects of mRNA metabolism, including mRNA localization, stabilization, polyadenylation, and translation. Like PTB, PTBPH3 contains four RNA recognition motifs (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 409860 [Multi-domain]  Cd Length: 79  Bit Score: 52.59  E-value: 6.30e-09
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 1932715449 422 PPSATLHLSNIPPTVSEEQIReAFTQTGGTVVAFKFFPKD-RKMALIQMGSVEESVTALIKMHNYQLsDSNHLRVSF 497
Cdd:cd12426     5 SPTKMIHVSSLPQDVTEEDVL-NHLQEHGAIVNTKVFESNgKKQALVLFENEEQATEALVCKHASSL-GGSTIRISF 79
RRM1_MATR3 cd12714
RNA recognition motif 1 (RRM1) found in vertebrate matrin-3; This subgroup corresponds to the ...
34-106 1.47e-08

RNA recognition motif 1 (RRM1) found in vertebrate matrin-3; This subgroup corresponds to the RRM1 of Matrin 3 (MATR3 or P130), a highly conserved inner nuclear matrix protein with a bipartite nuclear localization signal (NLS), two zinc finger domains predicted to bind DNA, and two RNA recognition motifs (RRM), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), that are known to interact with RNA. MATR3 has been implicated in various biological processes. It is involved in RNA processing by interacting with other nuclear proteins to anchor hyperedited RNAs to the nuclear matrix. It plays a role in mRNA stabilization through maintaining the stability of certain mRNA species. Besides, it modulates the activity of proximal promoters by binding to highly repetitive sequences of matrix/scaffold attachment region (MAR/SAR). The phosphorylation of MATR3 is assumed to cause neuronal death. It is phosphorylated by the protein kinase ATM, which activates the cellular response to double strand breaks in the DNA. Its phosphorylation by protein kinase A (PKA) is responsible for the activation of the N-methyl-d-aspartic acid (NMDA) receptor. Furthermore, MATR3 has been identified as both a Ca2+-dependent CaM-binding protein and a downstream substrate of caspases. Additional research indicates that matrin 3 also binds Rev/Rev responsive element (RRE)-containing viral RNA and functions as a cofactor that mediates the post-transcriptional regulation of HIV-1.


Pssm-ID: 410113 [Multi-domain]  Cd Length: 76  Bit Score: 51.47  E-value: 1.47e-08
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 1932715449  34 RVVHIRNIPNDAT-DTDIVHLGVPFGKVTNVLQLKGKNQAFLEMADEGSAVAMVDYFAKASPTVRGRVVYVQFS 106
Cdd:cd12714     1 RVVHIMDFQRGKNlRYQLLQLAEPFGIITNHLILNKINEAFIEMATTEEAQAAVDYYMTTPALVFGKPVRVHLS 74
RRM3_hnRPLL cd12700
RNA recognition motif 3 (RRM3) found in vertebrate heterogeneous nuclear ribonucleoprotein ...
309-382 1.51e-08

RNA recognition motif 3 (RRM3) found in vertebrate heterogeneous nuclear ribonucleoprotein L-like (hnRNP-LL); The subgroup corresponds to the RRM3 of hnRNP-LL which plays a critical and unique role in the signal-induced regulation of CD45 and acts as a global regulator of alternative splicing in activated T cells. It is closely related in domain structure and sequence to heterogeneous nuclear ribonucleoprotein L (hnRNP-L), which is an abundant nuclear, multifunctional RNA-binding protein with three RNA-recognition motifs (RRMs), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 410100 [Multi-domain]  Cd Length: 74  Bit Score: 51.55  E-value: 1.51e-08
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 1932715449 309 VLLVSNLNEQMVTPDALFTLFGVYGDVIRVKILFNKKDSALIQMAEPQQAQLAMSHLDKIKVYGKPIRVTPSKH 382
Cdd:cd12700     1 VAMVSGLHQLKMNCSRVFNLFCLYGNIEKVKFMKTIPGTALVEMGDEYAVERAVTHLNNVKLFGKRLNVCVSKQ 74
RRM4_hnRNPL_like cd12427
RNA recognition motif 4 (RRM4) found in heterogeneous nuclear ribonucleoprotein L (hnRNP-L) ...
423-491 3.15e-08

RNA recognition motif 4 (RRM4) found in heterogeneous nuclear ribonucleoprotein L (hnRNP-L) and similar proteins; This subfamily corresponds to the RRM4 of heterogeneous nuclear ribonucleoprotein L (hnRNP-L), heterogeneous nuclear ribonucleoprotein L-like (hnRNP-LL), and similar proteins. hnRNP-L is a higher eukaryotic specific subunit of human KMT3a (also known as HYPB or hSet2) complex required for histone H3 Lys-36 trimethylation activity. It plays both, nuclear and cytoplasmic, roles in mRNA export of intronless genes, IRES-mediated translation, mRNA stability, and splicing. hnRNP-LL plays a critical and unique role in the signal-induced regulation of CD45 and acts as a global regulator of alternative splicing in activated T cells. It is closely related in domain structure and sequence to hnRNP-L, which contains three RNA-recognition motifs (RRMs), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 409861 [Multi-domain]  Cd Length: 84  Bit Score: 50.70  E-value: 3.15e-08
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 1932715449 423 PSATLHLSNIPPTVSEEQIREAFTQTGGT-VVAFKFFP-KDRKMA--LIQMGSVEESVTALIKMHNYQLSDSN 491
Cdd:cd12427     1 PSKVLHFFNAPPEITEETLKELFIEAGAPpPVKVKVFPsKSERSSsgLLEFESVEDALEALALCNHTPIKNPN 73
RRM_SF cd00590
RNA recognition motif (RRM) superfamily; RRM, also known as RBD (RNA binding domain) or RNP ...
427-496 6.87e-08

RNA recognition motif (RRM) superfamily; RRM, also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), is a highly abundant domain in eukaryotes found in proteins involved in post-transcriptional gene expression processes including mRNA and rRNA processing, RNA export, and RNA stability. This domain is 90 amino acids in length and consists of a four-stranded beta-sheet packed against two alpha-helices. RRM usually interacts with ssRNA, but is also known to interact with ssDNA as well as proteins. RRM binds a variable number of nucleotides, ranging from two to eight. The active site includes three aromatic side-chains located within the conserved RNP1 and RNP2 motifs of the domain. The RRM domain is found in a variety heterogeneous nuclear ribonucleoproteins (hnRNPs), proteins implicated in regulation of alternative splicing, and protein components of small nuclear ribonucleoproteins (snRNPs).


Pssm-ID: 409669 [Multi-domain]  Cd Length: 72  Bit Score: 49.59  E-value: 6.87e-08
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 1932715449 427 LHLSNIPPTVSEEQIREAFtQTGGTVVAFKFFP----KDRKMALIQMGSVEESVTALIKMHNYQLsDSNHLRVS 496
Cdd:cd00590     1 LFVGNLPPDTTEEDLRELF-SKFGEVVSVRIVRdrdgKSKGFAFVEFESPEDAEKALEALNGTEL-GGRPLKVS 72
RRM1_U1A_like cd12246
RNA recognition motif 1 (RRM1) found in the U1A/U2B"/SNF protein family; This subfamily ...
310-381 1.13e-07

RNA recognition motif 1 (RRM1) found in the U1A/U2B"/SNF protein family; This subfamily corresponds to the RRM1 of U1A/U2B"/SNF protein family which contains Drosophila sex determination protein SNF and its two mammalian counterparts, U1 small nuclear ribonucleoprotein A (U1 snRNP A or U1-A or U1A) and U2 small nuclear ribonucleoprotein B" (U2 snRNP B" or U2B"), all of which consist of two RNA recognition motifs (RRMs), connected by a variable, flexible linker. SNF is an RNA-binding protein found in the U1 and U2 snRNPs of Drosophila where it is essential in sex determination and possesses a novel dual RNA binding specificity. SNF binds with high affinity to both Drosophila U1 snRNA stem-loop II (SLII) and U2 snRNA stem-loop IV (SLIV). It can also bind to poly(U) RNA tracts flanking the alternatively spliced Sex-lethal (Sxl) exon, as does Drosophila Sex-lethal protein (SXL). U1A is an RNA-binding protein associated with the U1 snRNP, a small RNA-protein complex involved in pre-mRNA splicing. U1A binds with high affinity and specificity to stem-loop II (SLII) of U1 snRNA. It is predominantly a nuclear protein that shuttles between the nucleus and the cytoplasm independently of interactions with U1 snRNA. Moreover, U1A may be involved in RNA 3'-end processing, specifically cleavage, splicing and polyadenylation, through interacting with a large number of non-snRNP proteins. U2B", initially identified to bind to stem-loop IV (SLIV) at the 3' end of U2 snRNA, is a unique protein that comprises of the U2 snRNP. Additional research indicates U2B" binds to U1 snRNA stem-loop II (SLII) as well and shows no preference for SLIV or SLII on the basis of binding affinity. Moreover, U2B" does not require an auxiliary protein for binding to RNA, and its nuclear transport is independent of U2 snRNA binding.


Pssm-ID: 409692 [Multi-domain]  Cd Length: 78  Bit Score: 49.07  E-value: 1.13e-07
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 1932715449 310 LLVSNLNEQMVTPD---ALFTLFGVYGDVIRVKILFNKKD--SALIQMAEPQQAQLAMSHLDKIKVYGKPIRVTPSK 381
Cdd:cd12246     2 LYINNLNEKIKKDElkrSLYALFSQFGPVLDIVASKSLKMrgQAFVVFKDVESATNALRALQGFPFYGKPMRIQYAK 78
RRM_1 pfam00076
RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic ...
310-376 4.34e-07

RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic of an RNA binding protein. RRMs are found in a variety of RNA binding proteins, including various hnRNP proteins, proteins implicated in regulation of alternative splicing, and protein components of snRNPs. The motif also appears in a few single stranded DNA binding proteins. The RRM structure consists of four strands and two helices arranged in an alpha/beta sandwich, with a third helix present during RNA binding in some cases The C-terminal beta strand (4th strand) and final helix are hard to align and have been omitted in the SEED alignment The LA proteins have an N terminal rrm which is included in the seed. There is a second region towards the C terminus that has some features characteriztic of a rrm but does not appear to have the important structural core of a rrm. The LA proteins are one of the main autoantigens in Systemic lupus erythematosus (SLE), an autoimmune disease.


Pssm-ID: 425453 [Multi-domain]  Cd Length: 70  Bit Score: 47.23  E-value: 4.34e-07
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 1932715449 310 LLVSNLNEQmVTPDALFTLFGVYGDVIRVKILF----NKKDSALIQMAEPQQAQLAMSHLDKIKVYGKPIR 376
Cdd:pfam00076   1 LFVGNLPPD-TTEEDLKDLFSKFGPIKSIRLVRdetgRSKGFAFVEFEDEEDAEKAIEALNGKELGGRELK 70
RRM1_2_MATR3_like cd12436
RNA recognition motif 1 (RRM1) and 2 (RRM2) found in the matrin 3 family of nuclear proteins; ...
309-381 7.95e-07

RNA recognition motif 1 (RRM1) and 2 (RRM2) found in the matrin 3 family of nuclear proteins; This subfamily corresponds to the RRM of the matrin 3 family of nuclear proteins consisting of Matrin 3 (MATR3), nuclear protein 220 (NP220) and similar proteins. MATR3 is a highly conserved inner nuclear matrix protein that has been implicated in various biological processes. NP220 is a large nucleoplasmic DNA-binding protein that binds to cytidine-rich sequences, such as CCCCC (G/C), in double-stranded DNA (dsDNA). Both, Matrin 3 and NP220, contain two RNA recognition motif (RRM), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a Cys2-His2 zinc finger-like motif at the C-terminal region.


Pssm-ID: 409870 [Multi-domain]  Cd Length: 76  Bit Score: 46.57  E-value: 7.95e-07
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 1932715449 309 VLLVSNLNEQMVTPDALFTLFGVYGDVIRVkILFNKKDSALIQMAEPQQAQLAMSH--LDKIKVYGKPIRVTPSK 381
Cdd:cd12436     2 VLYLTGLPVSKYSEEDVLKLAEPFGKVNNV-LLIRSKREAFIEMETAEDAQAMLSYckTKPITIKGKKVKVSVSQ 75
RRM3_hnRNPL cd12699
RNA recognition motif 3 (RRM3) found in vertebrate heterogeneous nuclear ribonucleoprotein L ...
307-382 8.19e-07

RNA recognition motif 3 (RRM3) found in vertebrate heterogeneous nuclear ribonucleoprotein L (hnRNP-L); This subgroup corresponds to the RRM3 of hnRNP-L, a higher eukaryotic specific subunit of human KMT3a (also known as HYPB or hSet2) complex required for histone H3 Lys-36 trimethylation activity. It plays both, nuclear and cytoplasmic, roles in mRNA export of intronless genes, IRES-mediated translation, mRNA stability, and splicing. hnRNP-L shows significant sequence homology with polypyrimidine tract-binding protein (PTB or hnRNP I). Both, hnRNP-L and PTB, are localized in the nucleus but excluded from the nucleolus. hnRNP-L is an RNA-binding protein with three RNA recognition motifs (RRMs), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 410099 [Multi-domain]  Cd Length: 77  Bit Score: 46.84  E-value: 8.19e-07
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 1932715449 307 SCVLLVSNLNEQMVTPDALFTLFGVYGDVIRVKILFNKKDSALIQMAEPQQAQLAMSHLDKIKVYGKPIRVTPSKH 382
Cdd:cd12699     2 SPVLMVYGLDQSKMNCDRVFNVFCLYGNVEKVKFMKSKPGAAMVEMADGYAVDRAITHLNNNFMFGQKLNVCVSKQ 77
RRM1_U1A_like cd12246
RNA recognition motif 1 (RRM1) found in the U1A/U2B"/SNF protein family; This subfamily ...
149-209 4.23e-06

RNA recognition motif 1 (RRM1) found in the U1A/U2B"/SNF protein family; This subfamily corresponds to the RRM1 of U1A/U2B"/SNF protein family which contains Drosophila sex determination protein SNF and its two mammalian counterparts, U1 small nuclear ribonucleoprotein A (U1 snRNP A or U1-A or U1A) and U2 small nuclear ribonucleoprotein B" (U2 snRNP B" or U2B"), all of which consist of two RNA recognition motifs (RRMs), connected by a variable, flexible linker. SNF is an RNA-binding protein found in the U1 and U2 snRNPs of Drosophila where it is essential in sex determination and possesses a novel dual RNA binding specificity. SNF binds with high affinity to both Drosophila U1 snRNA stem-loop II (SLII) and U2 snRNA stem-loop IV (SLIV). It can also bind to poly(U) RNA tracts flanking the alternatively spliced Sex-lethal (Sxl) exon, as does Drosophila Sex-lethal protein (SXL). U1A is an RNA-binding protein associated with the U1 snRNP, a small RNA-protein complex involved in pre-mRNA splicing. U1A binds with high affinity and specificity to stem-loop II (SLII) of U1 snRNA. It is predominantly a nuclear protein that shuttles between the nucleus and the cytoplasm independently of interactions with U1 snRNA. Moreover, U1A may be involved in RNA 3'-end processing, specifically cleavage, splicing and polyadenylation, through interacting with a large number of non-snRNP proteins. U2B", initially identified to bind to stem-loop IV (SLIV) at the 3' end of U2 snRNA, is a unique protein that comprises of the U2 snRNP. Additional research indicates U2B" binds to U1 snRNA stem-loop II (SLII) as well and shows no preference for SLIV or SLII on the basis of binding affinity. Moreover, U2B" does not require an auxiliary protein for binding to RNA, and its nuclear transport is independent of U2 snRNA binding.


Pssm-ID: 409692 [Multi-domain]  Cd Length: 78  Bit Score: 44.45  E-value: 4.23e-06
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|...
gi 1932715449 149 LLHSIFSRAGKVLKIVTFtKSNSF--QALIQFSDVMGAQAAKLALDGQSIYNAccTLRIEYSK 209
Cdd:cd12246    19 SLYALFSQFGPVLDIVAS-KSLKMrgQAFVVFKDVESATNALRALQGFPFYGK--PMRIQYAK 78
RRM smart00360
RNA recognition motif;
35-103 4.49e-06

RNA recognition motif;


Pssm-ID: 214636 [Multi-domain]  Cd Length: 73  Bit Score: 44.51  E-value: 4.49e-06
                           10        20        30        40        50        60        70
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 1932715449   35 VVHIRNIPNDATDTDIVHLGVPFGKVTNV------LQLKGKNQAFLEMADEGSAVAMVDYFAKAspTVRGRVVYV 103
Cdd:smart00360   1 TLFVGNLPPDTTEEELRELFSKFGKVESVrlvrdkETGKSKGFAFVEFESEEDAEKALEALNGK--ELDGRPLKV 73
RRM_SF cd00590
RNA recognition motif (RRM) superfamily; RRM, also known as RBD (RNA binding domain) or RNP ...
143-206 5.32e-06

RNA recognition motif (RRM) superfamily; RRM, also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), is a highly abundant domain in eukaryotes found in proteins involved in post-transcriptional gene expression processes including mRNA and rRNA processing, RNA export, and RNA stability. This domain is 90 amino acids in length and consists of a four-stranded beta-sheet packed against two alpha-helices. RRM usually interacts with ssRNA, but is also known to interact with ssDNA as well as proteins. RRM binds a variable number of nucleotides, ranging from two to eight. The active site includes three aromatic side-chains located within the conserved RNP1 and RNP2 motifs of the domain. The RRM domain is found in a variety heterogeneous nuclear ribonucleoproteins (hnRNPs), proteins implicated in regulation of alternative splicing, and protein components of small nuclear ribonucleoproteins (snRNPs).


Pssm-ID: 409669 [Multi-domain]  Cd Length: 72  Bit Score: 44.20  E-value: 5.32e-06
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 1932715449 143 YPVTLDLLHSIFSRAGKVLKIVTFTKSNSFQ---ALIQFSDVMGAQAAKLALDGQSIYNacCTLRIE 206
Cdd:cd00590     8 PDTTEEDLRELFSKFGEVVSVRIVRDRDGKSkgfAFVEFESPEDAEKALEALNGTELGG--RPLKVS 72
RRM2_NsCP33_like cd21608
RNA recognition motif 2 (RRM2) found in Nicotiana sylvestris chloroplastic 33 kDa ...
310-379 5.76e-06

RNA recognition motif 2 (RRM2) found in Nicotiana sylvestris chloroplastic 33 kDa ribonucleoprotein (NsCP33) and similar proteins; The family includes NsCP33, Arabidopsis thaliana chloroplastic 31 kDa ribonucleoprotein (CP31A) and mitochondrial glycine-rich RNA-binding protein 2 (AtGR-RBP2). NsCP33 may be involved in splicing and/or processing of chloroplast RNA's. AtCP31A, also called RNA-binding protein 1/2/3 (AtRBP33), or RNA-binding protein CP31A, or RNA-binding protein RNP-T, or RNA-binding protein cp31, is required for specific RNA editing events in chloroplasts and stabilizes specific chloroplast mRNAs, as well as for normal chloroplast development under cold stress conditions by stabilizing transcripts of numerous mRNAs under these conditions. CP31A may modulate telomere replication through RNA binding domains. AtGR-RBP2, also called AtRBG2, or glycine-rich protein 2 (AtGRP2), or mitochondrial RNA-binding protein 1a (At-mRBP1a), plays a role in RNA transcription or processing during stress. It binds RNAs and DNAs sequence with a preference to single-stranded nucleic acids. AtGR-RBP2 displays strong affinity to poly(U) sequence. It exerts cold and freezing tolerance, probably by exhibiting an RNA chaperone activity during the cold and freezing adaptation process. Some members in this family contain two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The model corresponds to the second RRM motif.


Pssm-ID: 410187 [Multi-domain]  Cd Length: 76  Bit Score: 44.08  E-value: 5.76e-06
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 1932715449 310 LLVSNLNEQmVTPDALFTLFGVYGDVIRVKILFNKKDS-----ALIQMAEPQQAQLAMSHLDKIKVYGKPIRVTP 379
Cdd:cd21608     2 LYVGNLSWD-TTEDDLRDLFSEFGEVESAKVITDRETGrsrgfGFVTFSTAEAAEAAIDALNGKELDGRSIVVNE 75
RRM2_PTBP1_like cd12693
RNA recognition motif 2 (RRM2) found in polypyrimidine tract-binding protein 1 (PTB or hnRNP I) ...
320-371 7.08e-06

RNA recognition motif 2 (RRM2) found in polypyrimidine tract-binding protein 1 (PTB or hnRNP I) and similar proteins; This subfamily corresponds to the RRM2 of polypyrimidine tract-binding protein 1 (PTB or hnRNP I), polypyrimidine tract-binding protein 2 (PTBP2 or nPTB), regulator of differentiation 1 (Rod1), and similar proteins found in Metazoa. PTB is an important negative regulator of alternative splicing in mammalian cells and also functions at several other aspects of mRNA metabolism, including mRNA localization, stabilization, polyadenylation, and translation. PTBP2 is highly homologous to PTB and is perhaps specific to the vertebrates. Unlike PTB, PTBP2 is enriched in the brain and in some neural cell lines. It binds more stably to the downstream control sequence (DCS) RNA than PTB does but is a weaker repressor of splicing in vitro. PTBP2 also greatly enhances the binding of two other proteins, heterogeneous nuclear ribonucleoprotein (hnRNP) H and KH-type splicing-regulatory protein (KSRP), to the DCS RNA. The binding properties of PTBP2 and its reduced inhibitory activity on splicing imply roles in controlling the assembly of other splicing-regulatory proteins. PTBP2 also contains four RRMs. ROD1 coding protein Rod1 is a mammalian PTB homolog of a regulator of differentiation in the fission yeast Schizosaccharomyces pombe, where the nrd1 gene encodes an RNA binding protein negatively regulates the onset of differentiation. ROD1 is predominantly expressed in hematopoietic cells or organs. It may play a role controlling differentiation in mammals. All members in this family contain four RNA recognition motifs (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 410093 [Multi-domain]  Cd Length: 96  Bit Score: 44.64  E-value: 7.08e-06
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....
gi 1932715449 320 VTPDALFTLFGVYGDVIRVkILFNKKDS--ALIQMAEPQQAQLAMSHLDKIKVY 371
Cdd:cd12693    15 VTLDVLHQIFSKFGTVLKI-ITFTKNNQfqALIQFADAVSAQAAKLSLDGQNIY 67
RRM_SF cd00590
RNA recognition motif (RRM) superfamily; RRM, also known as RBD (RNA binding domain) or RNP ...
36-104 1.02e-05

RNA recognition motif (RRM) superfamily; RRM, also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), is a highly abundant domain in eukaryotes found in proteins involved in post-transcriptional gene expression processes including mRNA and rRNA processing, RNA export, and RNA stability. This domain is 90 amino acids in length and consists of a four-stranded beta-sheet packed against two alpha-helices. RRM usually interacts with ssRNA, but is also known to interact with ssDNA as well as proteins. RRM binds a variable number of nucleotides, ranging from two to eight. The active site includes three aromatic side-chains located within the conserved RNP1 and RNP2 motifs of the domain. The RRM domain is found in a variety heterogeneous nuclear ribonucleoproteins (hnRNPs), proteins implicated in regulation of alternative splicing, and protein components of small nuclear ribonucleoproteins (snRNPs).


Pssm-ID: 409669 [Multi-domain]  Cd Length: 72  Bit Score: 43.43  E-value: 1.02e-05
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 1932715449  36 VHIRNIPNDATDTDIVHLGVPFGKVTNV-----LQLKGKNQAFLEMADEGSAVAMVDYFAKAspTVRGRVVYVQ 104
Cdd:cd00590     1 LFVGNLPPDTTEEDLRELFSKFGEVVSVrivrdRDGKSKGFAFVEFESPEDAEKALEALNGT--ELGGRPLKVS 72
RRM_Aly_REF_like cd12418
RNA recognition motif (RRM) found in the Aly/REF family; This subfamily corresponds to the RRM ...
308-378 1.03e-05

RNA recognition motif (RRM) found in the Aly/REF family; This subfamily corresponds to the RRM of Aly/REF family which includes THO complex subunit 4 (THOC4, also termed Aly/REF), S6K1 Aly/REF-like target (SKAR, also termed PDIP3 or PDIP46) and similar proteins. THOC4 is an mRNA transporter protein with a well conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). It is involved in RNA transportation from the nucleus, and was initially identified as a transcription coactivator of LEF-1 and AML-1 for the TCRalpha enhancer function. In addition, THOC4 specifically binds to rhesus (RH) promoter in erythroid, and might be a novel transcription cofactor for erythroid-specific genes. SKAR shows high sequence homology with THOC4 and possesses one RRM as well. SKAR is widely expressed and localizes to the nucleus. It may be a critical player in the function of S6K1 in cell and organism growth control by binding the activated, hyperphosphorylated form of S6K1 but not S6K2. Furthermore, SKAR functions as a protein partner of the p50 subunit of DNA polymerase delta. In addition, SKAR may have particular importance in pancreatic beta cell size determination and insulin secretion.


Pssm-ID: 409852 [Multi-domain]  Cd Length: 75  Bit Score: 43.34  E-value: 1.03e-05
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 1932715449 308 CVLLVSNLNeQMVTPDALFTLFGVYGDVIRVKILFNKKD----SALIQMAEPQQAQLAMSHLDKIKVYGKPIRVT 378
Cdd:cd12418     1 TRVRVSNLH-PDVTEEDLRELFGRVGPVKSVKINYDRSGrstgTAYVVFERPEDAEKAIKQFDGVLLDGQPMKVE 74
RRM_1 pfam00076
RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic ...
136-198 1.03e-05

RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic of an RNA binding protein. RRMs are found in a variety of RNA binding proteins, including various hnRNP proteins, proteins implicated in regulation of alternative splicing, and protein components of snRNPs. The motif also appears in a few single stranded DNA binding proteins. The RRM structure consists of four strands and two helices arranged in an alpha/beta sandwich, with a third helix present during RNA binding in some cases The C-terminal beta strand (4th strand) and final helix are hard to align and have been omitted in the SEED alignment The LA proteins have an N terminal rrm which is included in the seed. There is a second region towards the C terminus that has some features characteriztic of a rrm but does not appear to have the important structural core of a rrm. The LA proteins are one of the main autoantigens in Systemic lupus erythematosus (SLE), an autoimmune disease.


Pssm-ID: 425453 [Multi-domain]  Cd Length: 70  Bit Score: 43.38  E-value: 1.03e-05
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 1932715449 136 VVVDNQIYPVTLDLLHSIFSRAGKVLKI---VTFTKSNSFQALIQFSDVMGAQAAKLALDGQSIYN 198
Cdd:pfam00076   1 LFVGNLPPDTTEEDLKDLFSKFGPIKSIrlvRDETGRSKGFAFVEFEDEEDAEKAIEALNGKELGG 66
RRM_HP0827_like cd12399
RNA recognition motif (RRM) found in Helicobacter pylori HP0827 protein and similar proteins; ...
427-498 1.56e-05

RNA recognition motif (RRM) found in Helicobacter pylori HP0827 protein and similar proteins; This subfamily corresponds to the RRM of H. pylori HP0827, a putative ssDNA-binding protein 12rnp2 precursor, containing one RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). The ssDNA binding may be important in activation of HP0827.


Pssm-ID: 409833 [Multi-domain]  Cd Length: 75  Bit Score: 42.89  E-value: 1.56e-05
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 1932715449 427 LHLSNIPPTVSEEQIREAFTQTGGtvVAFKFFPKDRK------MALIQMGSVEESVTALIKMHNYQLsDSNHLRVSFS 498
Cdd:cd12399     1 LYVGNLPYSASEEQLKSLFGQFGA--VFDVKLPMDREtkrprgFGFVELQEEESAEKAIAKLDGTDF-MGRTIRVNEA 75
RRM1_2_CID8_like cd12225
RNA recognition motif 1 and 2 (RRM1, RRM2) found in Arabidopsis thaliana CTC-interacting ...
312-381 1.95e-05

RNA recognition motif 1 and 2 (RRM1, RRM2) found in Arabidopsis thaliana CTC-interacting domain protein CID8, CID9, CID10, CID11, CID12, CID 13 and similar proteins; This subgroup corresponds to the RRM domains found in A. thaliana CID8, CID9, CID10, CID11, CID12, CID 13 and mainly their plant homologs. These highly related RNA-binding proteins contain an N-terminal PAM2 domain (PABP-interacting motif 2), two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a basic region that resembles a bipartite nuclear localization signal. The biological role of this family remains unclear.


Pssm-ID: 409672 [Multi-domain]  Cd Length: 76  Bit Score: 42.84  E-value: 1.95e-05
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1932715449 312 VSNLnEQMVTPDALFTLFGVYGDVIRVKILFNKKD--SALIQMAEPQQAQLAMShLDKIKVYGKPIRVTPSK 381
Cdd:cd12225     5 VGGI-DGSLSEDELADYFSNCGEVTQVRLCGDRVHtrFAWVEFATDASALSALN-LDGTTLGGHPLRVSPSK 74
RRM3_hnRNPR_like cd12251
RNA recognition motif 3 (RRM3) found in heterogeneous nuclear ribonucleoprotein R (hnRNP R) ...
309-381 3.35e-05

RNA recognition motif 3 (RRM3) found in heterogeneous nuclear ribonucleoprotein R (hnRNP R) and similar proteins; This subfamily corresponds to the RRM3 in hnRNP R, hnRNP Q, and APOBEC-1 complementation factor (ACF). hnRNP R is a ubiquitously expressed nuclear RNA-binding protein that specifically bind mRNAs with a preference for poly(U) stretches and has been implicated in mRNA processing and mRNA transport, and also acts as a regulator to modify binding to ribosomes and RNA translation. hnRNP Q is also a ubiquitously expressed nuclear RNA-binding protein. It has been identified as a component of the spliceosome complex, as well as a component of the apobec-1 editosome, and has been implicated in the regulation of specific mRNA transport. ACF is an RNA-binding subunit of a core complex that interacts with apoB mRNA to facilitate C to U RNA editing. It may also act as an apoB mRNA recognition factor and chaperone and play a key role in cell growth and differentiation. This family also includes two functionally unknown RNA-binding proteins, RBM46 and RBM47. All members contain three conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409697 [Multi-domain]  Cd Length: 72  Bit Score: 41.85  E-value: 3.35e-05
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 1932715449 309 VLLVSNLNEQmVTPDALFTLFGVYGDVIRVKILfnkKDSALIQMAEPQQAQLAMSHLDKIKVYGKPIRVTPSK 381
Cdd:cd12251     3 VLYVRNLMLS-TTEEKLRELFSEYGKVERVKKI---KDYAFVHFEERDDAVKAMEEMNGKELEGSEIEVSLAK 71
RRM1_hnRNPL cd12780
RNA recognition motif 1 (RRM1) found in vertebrate heterogeneous nuclear ribonucleoprotein L ...
32-111 3.67e-05

RNA recognition motif 1 (RRM1) found in vertebrate heterogeneous nuclear ribonucleoprotein L (hnRNP-L); This subgroup corresponds to the RRM1 of hnRNP-L, a higher eukaryotic specific subunit of human KMT3a (also known as HYPB or hSet2) complex required for histone H3 Lys-36 trimethylation activity. It plays both, nuclear and cytoplasmic, roles in mRNA export of intronless genes, IRES-mediated translation, mRNA stability, and splicing. hnRNP-L shows significant sequence homology to polypyrimidine tract-binding protein (PTB or hnRNP I). Both, hnRNP-L and PTB, are localized in the nucleus but excluded from the nucleolus. hnRNP-L is an RNA-binding protein with three RNA recognition motifs (RRMs), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 410172 [Multi-domain]  Cd Length: 80  Bit Score: 42.15  E-value: 3.67e-05
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1932715449  32 PSRVVHIRNIPNDATDTDIVHLGVPFGKVTNVLQLKGKNQAFLEMADEGSAVAMVDYFAKASPTVRGRVVYVQFSNHREL 111
Cdd:cd12780     1 PSPVVHIRGLIDGVVEADLVEALQEFGTISYVVVMPKKRQALVEFEDILGACNAVNYAADNQIYIAGHPAFVNYSTSQKI 80
RRM_scw1_like cd12245
RNA recognition motif (RRM) found in yeast cell wall integrity protein scw1 and similar ...
423-499 5.86e-05

RNA recognition motif (RRM) found in yeast cell wall integrity protein scw1 and similar proteins; This subfamily corresponds to the RRM of the family including yeast cell wall integrity protein scw1, yeast Whi3 protein, yeast Whi4 protein and similar proteins. The strong cell wall protein 1, scw1, is a nonessential cytoplasmic RNA-binding protein that regulates septation and cell-wall structure in fission yeast. It may function as an inhibitor of septum formation, such that its loss of function allows weak SIN signaling to promote septum formation. It's RRM domain shows high homology to two budding yeast proteins, Whi3 and Whi4. Whi3 is a dose-dependent modulator of cell size and has been implicated in cell cycle control in the yeast Saccharomyces cerevisiae. It functions as a negative regulator of ceroid-lipofuscinosis, neuronal 3 (Cln3), a G1 cyclin that promotes transcription of many genes to trigger the G1/S transition in budding yeast. It specifically binds the CLN3 mRNA and localizes it into discrete cytoplasmic loci that may locally restrict Cln3 synthesis to modulate cell cycle progression. Moreover, Whi3 plays a key role in cell fate determination in budding yeast. The RRM domain is essential for Whi3 function. Whi4 is a partially redundant homolog of Whi3, also containing one RRM. Some uncharacterized family members of this subfamily contain two RRMs; their RRM1 shows high sequence homology to the RRM of RNA-binding protein with multiple splicing (RBP-MS)-like proteins.


Pssm-ID: 409691 [Multi-domain]  Cd Length: 79  Bit Score: 41.46  E-value: 5.86e-05
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1932715449 423 PSATLHLSNIPPTVSEEQIREAFtqtgGTVVAFKFFPKDRK----MALIQMGSVEESVTALIKMHNYQLSDSNH--LRVS 496
Cdd:cd12245     1 PCNTLFVANLGPNVSEQELRQLF----SRQPGFRRLRMHNKgggpVCFVEFEDVPFATQALNHLQGAILSSSDRggIRIE 76

                  ...
gi 1932715449 497 FSK 499
Cdd:cd12245    77 YAK 79
RRM4_Prp24 cd12299
RNA recognition motif 4 in fungal pre-messenger RNA splicing protein 24 (Prp24) and similar ...
426-487 7.80e-05

RNA recognition motif 4 in fungal pre-messenger RNA splicing protein 24 (Prp24) and similar proteins; This subfamily corresponds to the RRM4 of Prp24, also termed U4/U6 snRNA-associated-splicing factor PRP24 (U4/U6 snRNP), an RNA-binding protein with four well conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). It facilitates U6 RNA base-pairing with U4 RNA during spliceosome assembly. Prp24 specifically binds free U6 RNA primarily with RRMs 1 and 2 and facilitates pairing of U6 RNA bases with U4 RNA bases. Additionally, it may also be involved in dissociation of the U4/U6 complex during spliceosome activation.


Pssm-ID: 409740 [Multi-domain]  Cd Length: 71  Bit Score: 40.70  E-value: 7.80e-05
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1932715449 426 TLHLSNIPPTVSEEQIREAFTQTGGTVVAFKFFPkDRKMALIQMGSVEESVTALIKMHNYQL 487
Cdd:cd12299     2 TIGLFNLSDTVNEEQIRAFFEKIGPDIRKILLVP-DHEGALVEFEDESDAGKASLSLDGSQF 62
RRM smart00360
RNA recognition motif;
135-203 8.11e-05

RNA recognition motif;


Pssm-ID: 214636 [Multi-domain]  Cd Length: 73  Bit Score: 41.04  E-value: 8.11e-05
                           10        20        30        40        50        60        70
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 1932715449  135 RVVVDNQIYPVTLDLLHSIFSRAGKVLKIVTFTKSNSFQ----ALIQFSDVMGAQAAKLALDGQSIYNACCTL 203
Cdd:smart00360   1 TLFVGNLPPDTTEEELRELFSKFGKVESVRLVRDKETGKskgfAFVEFESEEDAEKALEALNGKELDGRPLKV 73
RRM3_hnRNPR_like cd12251
RNA recognition motif 3 (RRM3) found in heterogeneous nuclear ribonucleoprotein R (hnRNP R) ...
427-499 1.49e-04

RNA recognition motif 3 (RRM3) found in heterogeneous nuclear ribonucleoprotein R (hnRNP R) and similar proteins; This subfamily corresponds to the RRM3 in hnRNP R, hnRNP Q, and APOBEC-1 complementation factor (ACF). hnRNP R is a ubiquitously expressed nuclear RNA-binding protein that specifically bind mRNAs with a preference for poly(U) stretches and has been implicated in mRNA processing and mRNA transport, and also acts as a regulator to modify binding to ribosomes and RNA translation. hnRNP Q is also a ubiquitously expressed nuclear RNA-binding protein. It has been identified as a component of the spliceosome complex, as well as a component of the apobec-1 editosome, and has been implicated in the regulation of specific mRNA transport. ACF is an RNA-binding subunit of a core complex that interacts with apoB mRNA to facilitate C to U RNA editing. It may also act as an apoB mRNA recognition factor and chaperone and play a key role in cell growth and differentiation. This family also includes two functionally unknown RNA-binding proteins, RBM46 and RBM47. All members contain three conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409697 [Multi-domain]  Cd Length: 72  Bit Score: 39.92  E-value: 1.49e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 1932715449 427 LHLSNIPPTVSEEQIREAFTQTgGTVVAFKffpKDRKMALIQMGSVEESVTALIKMHNYQLSDSNhLRVSFSK 499
Cdd:cd12251     4 LYVRNLMLSTTEEKLRELFSEY-GKVERVK---KIKDYAFVHFEERDDAVKAMEEMNGKELEGSE-IEVSLAK 71
RRM2_MEI2_like cd12529
RNA recognition motif 2 (RRM2) found in plant Mei2-like proteins; This subgroup corresponds to ...
310-377 2.00e-04

RNA recognition motif 2 (RRM2) found in plant Mei2-like proteins; This subgroup corresponds to the RRM2 of Mei2-like proteins that represent an ancient eukaryotic RNA-binding proteins family. Their corresponding Mei2-like genes appear to have arisen early in eukaryote evolution, been lost from some lineages such as Saccharomyces cerevisiae and metazoans, and diversified in the plant lineage. The plant Mei2-like genes may function in cell fate specification during development, rather than as stimulators of meiosis. Members in this family contain three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The C-terminal RRM (RRM3) is unique to Mei2-like proteins and is highly conserved between plants and fungi. To date, the intracellular localization, RNA target(s), cellular interactions and phosphorylation states of Mei2-like proteins in plants remain unclear.


Pssm-ID: 409948 [Multi-domain]  Cd Length: 71  Bit Score: 39.80  E-value: 2.00e-04
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 1932715449 310 LLVSNLNEQmVTPDALFTLFGVYGDVIRVKILFNKKDSALIQMAEPQQAQLAMSHLDKIKVYGKPIRV 377
Cdd:cd12529     4 LVVFNLDPS-ISNDDLHQIFGAYGEIKEIRETPNKRHHKFIEFYDVRSAEAALKALNKSEIAGKRIKL 70
RRM_FOX1_like cd12407
RNA recognition motif (RRM) found in vertebrate RNA binding protein fox-1 homologs and similar ...
310-377 2.08e-04

RNA recognition motif (RRM) found in vertebrate RNA binding protein fox-1 homologs and similar proteins; This subfamily corresponds to the RRM of several tissue-specific alternative splicing isoforms of vertebrate RNA binding protein Fox-1 homologs, which show high sequence similarity to the Caenorhabditis elegans feminizing locus on X (Fox-1) gene encoding Fox-1 protein. RNA binding protein Fox-1 homolog 1 (RBFOX1), also termed ataxin-2-binding protein 1 (A2BP1), or Fox-1 homolog A, or hexaribonucleotide-binding protein 1 (HRNBP1), is predominantly expressed in neurons, skeletal muscle and heart. It regulates alternative splicing of tissue-specific exons by binding to UGCAUG elements. Moreover, RBFOX1 binds to the C-terminus of ataxin-2 and forms an ataxin-2/A2BP1 complex involved in RNA processing. RNA binding protein fox-1 homolog 2 (RBFOX2), also termed Fox-1 homolog B, or hexaribonucleotide-binding protein 2 (HRNBP2), or RNA-binding motif protein 9 (RBM9), or repressor of tamoxifen transcriptional activity, is expressed in ovary, whole embryo, and human embryonic cell lines in addition to neurons and muscle. RBFOX2 activates splicing of neuron-specific exons through binding to downstream UGCAUG elements. RBFOX2 also functions as a repressor of tamoxifen activation of the estrogen receptor. RNA binding protein Fox-1 homolog 3 (RBFOX3 or NeuN or HRNBP3), also termed Fox-1 homolog C, is a nuclear RNA-binding protein that regulates alternative splicing of the RBFOX2 pre-mRNA, producing a message encoding a dominant negative form of the RBFOX2 protein. Its message is detected exclusively in post-mitotic regions of embryonic brain. Like RBFOX1, both RBFOX2 and RBFOX3 bind to the hexanucleotide UGCAUG elements and modulate brain and muscle-specific splicing of exon EIIIB of fibronectin, exon N1 of c-src, and calcitonin/CGRP. Members in this family also harbor one RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409841 [Multi-domain]  Cd Length: 76  Bit Score: 39.69  E-value: 2.08e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 1932715449 310 LLVSNLNEQMVTPDaLFTLFGVYGDVIRVKILFNKKDS---ALIQMAEPQQAQLAMSHLDKIKVYGKPIRV 377
Cdd:cd12407     3 LHVSNIPFRFRDPD-LRQMFGQFGTILDVEIIFNERGSkgfGFVTFANSADADRAREKLNGTVVEGRKIEV 72
RRM1_SF3B4 cd12334
RNA recognition motif 1 (RRM1) found in splicing factor 3B subunit 4 (SF3B4) and similar ...
310-377 2.24e-04

RNA recognition motif 1 (RRM1) found in splicing factor 3B subunit 4 (SF3B4) and similar proteins; This subfamily corresponds to the RRM1 of SF3B4, also termed pre-mRNA-splicing factor SF3b 49 kDa (SF3b50), or spliceosome-associated protein 49 (SAP 49). SF3B4 a component of the multiprotein complex splicing factor 3b (SF3B), an integral part of the U2 small nuclear ribonucleoprotein (snRNP) and the U11/U12 di-snRNP. SF3B is essential for the accurate excision of introns from pre-messenger RNA, and is involved in the recognition of the pre-mRNA's branch site within the major and minor spliceosomes. SF3B4 functions to tether U2 snRNP with pre-mRNA at the branch site during spliceosome assembly. It is an evolutionarily highly conserved protein with orthologs across diverse species. SF3B4 contains two closely adjacent N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). It binds directly to pre-mRNA and also interacts directly and highly specifically with another SF3B subunit called SAP 145.


Pssm-ID: 409771 [Multi-domain]  Cd Length: 74  Bit Score: 39.51  E-value: 2.24e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 1932715449 310 LLVSNLNEQmVTPDALFTLFGVYGDVIRVKIlfnKKDS--------ALIQMAEPQQAQLAMSHLDKIKVYGKPIRV 377
Cdd:cd12334     1 VYVGNLDEK-VTEELLWELFIQAGPVVNVHM---PKDRvtqqhqgyGFVEFLSEEDADYAIKIMNMIKLYGKPIRV 72
RRM1_p54nrb_like cd12332
RNA recognition motif 1 (RRM1) found in the p54nrb/PSF/PSP1 family; This subfamily corresponds ...
308-377 2.31e-04

RNA recognition motif 1 (RRM1) found in the p54nrb/PSF/PSP1 family; This subfamily corresponds to the RRM1 of the p54nrb/PSF/PSP1 family, including 54 kDa nuclear RNA- and DNA-binding protein (p54nrb or NonO or NMT55), polypyrimidine tract-binding protein (PTB)-associated-splicing factor (PSF or POMp100), paraspeckle protein 1 (PSP1 or PSPC1), which are ubiquitously expressed and are conserved in vertebrates. p54nrb is a multi-functional protein involved in numerous nuclear processes including transcriptional regulation, splicing, DNA unwinding, nuclear retention of hyperedited double-stranded RNA, viral RNA processing, control of cell proliferation, and circadian rhythm maintenance. PSF is also a multi-functional protein that binds RNA, single-stranded DNA (ssDNA), double-stranded DNA (dsDNA) and many factors, and mediates diverse activities in the cell. PSP1 is a novel nucleolar factor that accumulates within a new nucleoplasmic compartment, termed paraspeckles, and diffusely distributes in the nucleoplasm. The cellular function of PSP1 remains unknown currently. This subfamily also includes some p54nrb/PSF/PSP1 homologs from invertebrate species, such as the Drosophila melanogaster gene no-ontransient A (nonA) encoding puff-specific protein Bj6 (also termed NONA) and Chironomus tentans hrp65 gene encoding protein Hrp65. D. melanogaster NONA is involved in eye development and behavior, and may play a role in circadian rhythm maintenance, similar to vertebrate p54nrb. C. tentans Hrp65 is a component of nuclear fibers associated with ribonucleoprotein particles in transit from the gene to the nuclear pore. All family members contain a DBHS domain (for Drosophila behavior, human splicing), which comprises two conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a charged protein-protein interaction module. PSF has an additional large N-terminal domain that differentiates it from other family members.


Pssm-ID: 409769 [Multi-domain]  Cd Length: 71  Bit Score: 39.59  E-value: 2.31e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 1932715449 308 CVLLVSNLNEQMvTPDALFTLFGVYGDVIRVKIlfNK-KDSALIQMAEPQQAQLAMSHLDKIKVYGKPIRV 377
Cdd:cd12332     2 CRLFVGNLPNDI-TEEEFKELFQKYGEVSEVFL--NKgKGFGFIRLDTRANAEAAKAELDGTPRKGRQLRV 69
RRM2_PTBP1_hnRNPL_like cd12422
RNA recognition motif (RRM) found in polypyrimidine tract-binding protein 1 (PTB or hnRNP I), ...
309-371 2.43e-04

RNA recognition motif (RRM) found in polypyrimidine tract-binding protein 1 (PTB or hnRNP I), heterogeneous nuclear ribonucleoprotein L (hnRNP-L), and similar proteins; This subfamily corresponds to the RRM2 of polypyrimidine tract-binding protein 1 (PTB or hnRNP I), polypyrimidine tract-binding protein 2 (PTBP2 or nPTB), regulator of differentiation 1 (Rod1), heterogeneous nuclear ribonucleoprotein L (hnRNP-L), heterogeneous nuclear ribonucleoprotein L-like (hnRNP-LL), polypyrimidine tract-binding protein homolog 3 (PTBPH3), polypyrimidine tract-binding protein homolog 1 and 2 (PTBPH1 and PTBPH2), and similar proteins, and RRM3 of PTBPH1 and PTBPH2. PTB is an important negative regulator of alternative splicing in mammalian cells and also functions at several other aspects of mRNA metabolism, including mRNA localization, stabilization, polyadenylation, and translation. PTBP2 is highly homologous to PTB and is perhaps specific to the vertebrates. Unlike PTB, PTBP2 is enriched in the brain and in some neural cell lines. It binds more stably to the downstream control sequence (DCS) RNA than PTB does but is a weaker repressor of splicing in vitro. PTBP2 also greatly enhances the binding of two other proteins, heterogeneous nuclear ribonucleoprotein (hnRNP) H and KH-type splicing-regulatory protein (KSRP), to the DCS RNA. The binding properties of PTBP2 and its reduced inhibitory activity on splicing imply roles in controlling the assembly of other splicing-regulatory proteins. Rod1 is a mammalian polypyrimidine tract binding protein (PTB) homolog of a regulator of differentiation in the fission yeast Schizosaccharomyces pombe, where the nrd1 gene encodes an RNA binding protein negatively regulates the onset of differentiation. ROD1 is predominantly expressed in hematopoietic cells or organs. It might play a role controlling differentiation in mammals. hnRNP-L is a higher eukaryotic specific subunit of human KMT3a (also known as HYPB or hSet2) complex required for histone H3 Lys-36 trimethylation activity. It plays both, nuclear and cytoplasmic, roles in mRNA export of intronless genes, IRES-mediated translation, mRNA stability, and splicing. hnRNP-LL protein plays a critical and unique role in the signal-induced regulation of CD45 and acts as a global regulator of alternative splicing in activated T cells. This family also includes polypyrimidine tract binding protein homolog 3 (PTBPH3) found in plant. Although its biological roles remain unclear, PTBPH3 shows significant sequence similarity to other family members, all of which contain four RNA recognition motifs (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain). Although their biological roles remain unclear, both PTBPH1 and PTBPH2 show significant sequence similarity to PTB. However, in contrast to PTB, they have three RRMs.


Pssm-ID: 409856 [Multi-domain]  Cd Length: 85  Bit Score: 39.86  E-value: 2.43e-04
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 1932715449 309 VLLV--SNLnEQMVTPDALFTLFGVYGDVIRVkILFNKKDS--ALIQMAEPQQAQLAMSHLDKIKVY 371
Cdd:cd12422     1 VLLVtvTNL-LYPVTVDVLHQVFSPYGAVEKI-VIFEKGTGvqALVQFDSVESAEAAKKALNGRNIY 65
RRM_RBM7 cd12592
RNA recognition motif (RRM) found in vertebrate RNA-binding protein 7 (RBM7); This subfamily ...
310-377 2.43e-04

RNA recognition motif (RRM) found in vertebrate RNA-binding protein 7 (RBM7); This subfamily corresponds to the RRM of RBM7, a ubiquitously expressed pre-mRNA splicing factor that enhances messenger RNA (mRNA) splicing in a cell-specific manner or in a certain developmental process, such as spermatogenesis. RBM7 interacts with splicing factors SAP145 (the spliceosomal splicing factor 3b subunit 2) and SRp20. It may play a more specific role in meiosis entry and progression. Together with additional testis-specific RNA-binding proteins, RBM7 may regulate the splicing of specific pre-mRNA species that are important in the meiotic cell cycle. RBM7 contains an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a region lacking known homology at the C-terminus.


Pssm-ID: 410005 [Multi-domain]  Cd Length: 75  Bit Score: 39.43  E-value: 2.43e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1932715449 310 LLVSNLNEQmVTPDALFTLFGVYGDVIRVKILFNK----KDSALIQMAEPQQAQLAMSHLDKIKVYGKPIRV 377
Cdd:cd12592     4 LFVGNLDTK-VTEELLFELFLQAGPVIKVKIPKDKdgkpKQFAFVNFKHEVSVPYAMNLLNGIKLYGRPLKI 74
RRM_SAFB_like cd12417
RNA recognition motif (RRM) found in the scaffold attachment factor (SAFB) family; This ...
310-377 2.46e-04

RNA recognition motif (RRM) found in the scaffold attachment factor (SAFB) family; This subfamily corresponds to the RRM domain of the SAFB family, including scaffold attachment factor B1 (SAFB1), scaffold attachment factor B2 (SAFB2), SAFB-like transcriptional modulator (SLTM), and similar proteins, which are ubiquitously expressed. SAFB1, SAFB2 and SLTM have been implicated in many diverse cellular processes including cell growth and transformation, stress response, and apoptosis. They share high sequence similarities and all contain a scaffold attachment factor-box (SAF-box, also known as SAP domain) DNA-binding motif, an RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a region rich in glutamine and arginine residues. SAFB1 is a nuclear protein with a distribution similar to that of SLTM, but unlike that of SAFB2, which is also found in the cytoplasm. To a large extent, SAFB1 and SLTM might share similar functions, such as the inhibition of an oestrogen reporter gene. The additional cytoplasmic localization of SAFB2 implies that it could play additional roles in the cytoplasmic compartment which are distinct from the nuclear functions shared with SAFB1 and SLTM.


Pssm-ID: 409851 [Multi-domain]  Cd Length: 74  Bit Score: 39.54  E-value: 2.46e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 1932715449 310 LLVSNLNEQmVTPDALFTLFGVYGDVIRVKILFNKKDS-----ALIQMAEPQQAQLAMSHLDKIKVYGKPIRV 377
Cdd:cd12417     2 LWISGLSDT-TKAADLKKIFSKYGKVVSAKVVTSARTPgsrcyGYVTMASVEEADLCIKSLNKTELHGRVITV 73
ELAV_HUD_SF TIGR01661
ELAV/HuD family splicing factor; This model describes the ELAV/HuD subfamily of splicing ...
145-378 2.50e-04

ELAV/HuD family splicing factor; This model describes the ELAV/HuD subfamily of splicing factors found in metazoa. HuD stands for the human paraneoplastic encephalomyelitis antigen D of which there are 4 variants in human. ELAV stnds for the Drosophila Embryonic lethal abnormal visual protein. ELAV-like splicing factors are also known in human as HuB (ELAV-like protein 2), HuC (ELAV-like protein 3, Paraneoplastic cerebellar degeneration-associated antigen) and HuR (ELAV-like protein 1). These genes are most closely related to the sex-lethal subfamily of splicing factors found in Dipteran insects (TIGR01659). These proteins contain 3 RNA-recognition motifs (rrm: pfam00076).


Pssm-ID: 273741 [Multi-domain]  Cd Length: 352  Bit Score: 43.39  E-value: 2.50e-04
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1932715449 145 VTLDLLHSIFSRAGKVL-------KIVTFTKSNSFqalIQFSDVMGAQAAKLALDGQSIYNacCTLRIeyskltnlNVKY 217
Cdd:TIGR01661 101 MTQHELESIFSPFGQIItsrilsdNVTGLSKGVGF---IRFDKRDEADRAIKTLNGTTPSG--CTEPI--------TVKF 167
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1932715449 218 NNDKSRDFTNPTLP----------TGDPTLDIGLAGSLGILASPFAAAGPGLTSPLTAAYAASATAGLPLGGFAL--SPS 285
Cdd:TIGR01661 168 ANNPSSSNSKGLLSqleavqnpqtTRVPLSTILTAAGIGPMHHAAARFRPSAGDFTAVLAHQQQQHAVAQQHAAQraSPP 247
                         170       180       190       200       210       220       230       240
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1932715449 286 APSAATALGMAGIRLPGQATTSCVLLVSNLneqmvTPD----ALFTLFGVYGDVIRVKIL----FNK-KDSALIQMAEPQ 356
Cdd:TIGR01661 248 ATDGQTAGLAAGAQISASDGAGYCIFVYNL-----SPDtdetVLWQLFGPFGAVQNVKIIrdltTNQcKGYGFVSMTNYD 322
                         250       260
                  ....*....|....*....|..
gi 1932715449 357 QAQLAMSHLDKIKVYGKPIRVT 378
Cdd:TIGR01661 323 EAAMAILSLNGYTLGNRVLQVS 344
RRM1_3_MRN1 cd12261
RNA recognition motif 1 (RRM1) and 3 (RRM3) found in RNA-binding protein MRN1 and similar ...
34-106 2.56e-04

RNA recognition motif 1 (RRM1) and 3 (RRM3) found in RNA-binding protein MRN1 and similar proteins; This subfamily corresponds to the RRM1 and RRM3 of MRN1, also termed multicopy suppressor of RSC-NHP6 synthetic lethality protein 1, or post-transcriptional regulator of 69 kDa, which is an RNA-binding protein found in yeast. Although its specific biological role remains unclear, MRN1 might be involved in translational regulation. Members in this family contain four copies of conserved RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 240707 [Multi-domain]  Cd Length: 73  Bit Score: 39.51  E-value: 2.56e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 1932715449  34 RVVHIRNIPNDATDTDIVHLgVPFGKVTNVLQLKGKNQAFLEMADEGSAVAMVDYFAKASPTVRGRVVYVQFS 106
Cdd:cd12261     1 RTVYLGNLPEDTTIRDILSA-IRGGPLESIKLLPTKNSATVSFLDEAAAEAFYAYARNNGFYINGKRIKVGWG 72
RRM_SR140 cd12223
RNA recognition motif (RRM) found in U2-associated protein SR140 and similar proteins; This ...
310-377 2.63e-04

RNA recognition motif (RRM) found in U2-associated protein SR140 and similar proteins; This subgroup corresponds to the RRM of SR140 (also termed U2 snRNP-associated SURP motif-containing protein orU2SURP, or 140 kDa Ser/Arg-rich domain protein) which is a putative splicing factor mainly found in higher eukaryotes. Although it is initially identified as one of the 17S U2 snRNP-associated proteins, the molecular and physiological function of SR140 remains unclear. SR140 contains an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), a SWAP/SURP domain that is found in a number of pre-mRNA splicing factors in the middle region, and a C-terminal arginine/serine-rich domain (RS domain).


Pssm-ID: 409670 [Multi-domain]  Cd Length: 84  Bit Score: 39.58  E-value: 2.63e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 1932715449 310 LLVSNLNeQMVTPDALFTLFGVYGDVIRVKIL--------FNKKDSALIQMAEPQQAQLAMSHLDKIKVYGKPIRV 377
Cdd:cd12223     4 LYVGNLP-PSVTEEVLLREFGRFGPLASVKIMwprteeerRRNRNCGFVAFMSRADAERAMRELNGKDVMGYELKL 78
RRM1_Spen cd12308
RNA recognition motif 1 (RRM1) found in the Spen (split end) protein family; This subfamily ...
307-381 2.96e-04

RNA recognition motif 1 (RRM1) found in the Spen (split end) protein family; This subfamily corresponds to the RRM1 domain in the Spen (split end) family which includes RNA binding motif protein 15 (RBM15), putative RNA binding motif protein 15B (RBM15B), and similar proteins found in Metazoa. RBM15, also termed one-twenty two protein 1 (OTT1), conserved in eukaryotes, is a novel mRNA export factor and component of the NXF1 pathway. It binds to NXF1 and serves as receptor for the RNA export element RTE. It also possesses mRNA export activity and can facilitate the access of DEAD-box protein DBP5 to mRNA at the nuclear pore complex (NPC). RNA-binding protein 15B (RBM15B), also known as one twenty-two 3 (OTT3), is a paralog of RBM15 and therefore has post-transcriptional regulatory activity. It is a nuclear protein sharing with RBM15 the association with the splicing factor compartment and the nuclear envelope as well as the binding to mRNA export factors NXF1 and Aly/REF. Members in this family belong- to the Spen (split end) protein family, which share a domain architecture comprising of three N-terminal RNA recognition motifs (RRMs), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a C-terminal SPOC (Spen paralog and ortholog C-terminal) domain.


Pssm-ID: 409749 [Multi-domain]  Cd Length: 78  Bit Score: 39.53  E-value: 2.96e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 1932715449 307 SCVLLVSNLNEQ---MVTPDALFTLFGVYGDViRVKILFNKKDS-ALIQMAEPQQAQLAMSHLDKIKVYGKPIRVTPSK 381
Cdd:cd12308     1 YKTLCVSNLPAKlsdEEIEDVLYHEFKKFGDV-SVRLQHDGDERvAYVNFRHPEDAREAKHAKLRLVLFDRPLNVEPVY 78
RRM_RNPS1 cd12365
RNA recognition motif (RRM) found in RNA-binding protein with serine-rich domain 1 (RNPS1) and ...
310-378 4.64e-04

RNA recognition motif (RRM) found in RNA-binding protein with serine-rich domain 1 (RNPS1) and similar proteins; This subfamily corresponds to the RRM of RNPS1 and its eukaryotic homologs. RNPS1, also termed RNA-binding protein prevalent during the S phase, or SR-related protein LDC2, was originally characterized as a general pre-mRNA splicing activator, which activates both constitutive and alternative splicing of pre-mRNA in vitro.It has been identified as a protein component of the splicing-dependent mRNP complex, or exon-exon junction complex (EJC), and is directly involved in mRNA surveillance. Furthermore, RNPS1 is a splicing regulator whose activator function is controlled in part by CK2 (casein kinase II) protein kinase phosphorylation. It can also function as a squamous-cell carcinoma antigen recognized by T cells-3 (SART3)-binding protein, and is involved in the regulation of mRNA splicing. RNPS1 contains an N-terminal serine-rich (S) domain, a central RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and the C-terminal arginine/serine/proline-rich (RS/P) domain.


Pssm-ID: 409800 [Multi-domain]  Cd Length: 73  Bit Score: 38.69  E-value: 4.64e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 1932715449 310 LLVSNL--NeqmVTPDALFTLFGVYGDVIRVKILFNKKDS-----ALIQMAEPQQAQLAMSHLDKIKVYGKPIRVT 378
Cdd:cd12365     1 LHVGKLtrN---VTKDHLKEIFSVYGTVKNVDLPIDREPNlprgyAYVEFESPEDAEKAIKHMDGGQIDGQEVTVE 73
RRM1_PUB1 cd12614
RNA recognition motif 1 (RRM1) found in yeast nuclear and cytoplasmic polyadenylated ...
310-377 5.06e-04

RNA recognition motif 1 (RRM1) found in yeast nuclear and cytoplasmic polyadenylated RNA-binding protein PUB1 and similar proteins; This subgroup corresponds to the RRM1 of yeast protein PUB1, also termed ARS consensus-binding protein ACBP-60, or poly uridylate-binding protein, or poly(U)-binding protein. PUB1 has been identified as both, a heterogeneous nuclear RNA-binding protein (hnRNP) and a cytoplasmic mRNA-binding protein (mRNP), which may be stably bound to a translationally inactive subpopulation of mRNAs within the cytoplasm. It is distributed in both, the nucleus and the cytoplasm, and binds to poly(A)+ RNA (mRNA or pre-mRNA). Although it is one of the major cellular proteins cross-linked by UV light to polyadenylated RNAs in vivo, PUB1 is nonessential for cell growth in yeast. PUB1 also binds to T-rich single stranded DNA (ssDNA); however, there is no strong evidence implicating PUB1 in the mechanism of DNA replication. PUB1 contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a GAR motif (glycine and arginine rich stretch) that is located between RRM2 and RRM3.


Pssm-ID: 410026 [Multi-domain]  Cd Length: 74  Bit Score: 38.57  E-value: 5.06e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1932715449 310 LLVSNLNEQmVTPDALFTLFGVYGDVIRVKILFNKKDS----ALIQMAEPQQAQLAMSHLDKIKVYGKPIRV 377
Cdd:cd12614     1 LYVGNLDPR-VTEDLLQEIFAVTGPVENCKIIPDKNSKgvnyGFVEYYDRRSAEIAIQTLNGRQIFGQEIKV 71
RRM1_U2AF65 cd12230
RNA recognition motif 1 (RRM1) found in U2 large nuclear ribonucleoprotein auxiliary factor ...
427-487 5.40e-04

RNA recognition motif 1 (RRM1) found in U2 large nuclear ribonucleoprotein auxiliary factor U2AF 65 kDa subunit (U2AF65) and similar proteins; The subfamily corresponds to the RRM1 of U2AF65 and dU2AF50. U2AF65, also termed U2AF2, is the large subunit of U2 small nuclear ribonucleoprotein (snRNP) auxiliary factor (U2AF), which has been implicated in the recruitment of U2 snRNP to pre-mRNAs and is a highly conserved heterodimer composed of large and small subunits. U2AF65 specifically recognizes the intron polypyrimidine tract upstream of the 3' splice site and promotes binding of U2 snRNP to the pre-mRNA branchpoint. U2AF65 also plays an important role in the nuclear export of mRNA. It facilitates the formation of a messenger ribonucleoprotein export complex, containing both the NXF1 receptor and the RNA substrate. Moreover, U2AF65 interacts directly and specifically with expanded CAG RNA, and serves as an adaptor to link expanded CAG RNA to NXF1 for RNA export. U2AF65 contains an N-terminal RS domain rich in arginine and serine, followed by a proline-rich segment and three C-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The N-terminal RS domain stabilizes the interaction of U2 snRNP with the branch point (BP) by contacting the branch region, and further promotes base pair interactions between U2 snRNA and the BP. The proline-rich segment mediates protein-protein interactions with the RRM domain of the small U2AF subunit (U2AF35 or U2AF1). The RRM1 and RRM2 are sufficient for specific RNA binding, while RRM3 is responsible for protein-protein interactions. The family also includes Splicing factor U2AF 50 kDa subunit (dU2AF50), the Drosophila ortholog of U2AF65. dU2AF50 functions as an essential pre-mRNA splicing factor in flies. It associates with intronless mRNAs and plays a significant and unexpected role in the nuclear export of a large number of intronless mRNAs.


Pssm-ID: 409677 [Multi-domain]  Cd Length: 82  Bit Score: 38.68  E-value: 5.40e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 1932715449 427 LHLSNIPPTVSEEQIREAF----------TQTGGTVVAFKFFPkDRKMALIQMGSVEESVTAL----IKMHNYQL 487
Cdd:cd12230     4 LYVGNIPPGITEEELMDFFnqamraagltQAPGNPVLAVQINP-DKNFAFVEFRSVEETTAALaldgIIFKGQPL 77
RRM4_RBM19_RRM3_MRD1 cd12317
RNA recognition motif 4 (RRM4) found in RNA-binding protein 19 (RBM19) and RNA recognition ...
308-365 5.78e-04

RNA recognition motif 4 (RRM4) found in RNA-binding protein 19 (RBM19) and RNA recognition motif 3 (RRM3) found in multiple RNA-binding domain-containing protein 1 (MRD1); This subfamily corresponds to the RRM4 of RBM19 and the RRM3 of MRD1. RBM19, also termed RNA-binding domain-1 (RBD-1), is a nucleolar protein conserved in eukaryotes involved in ribosome biogenesis by processing rRNA and is essential for preimplantation development. It has a unique domain organization containing 6 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). MRD1 is encoded by a novel yeast gene MRD1 (multiple RNA-binding domain). It is well conserved in yeast and its homologues exist in all eukaryotes. MRD1 is present in the nucleolus and the nucleoplasm. It interacts with the 35 S precursor rRNA (pre-rRNA) and U3 small nucleolar RNAs (snoRNAs). MRD1 is essential for the initial processing at the A0-A2 cleavage sites in the 35 S pre-rRNA. MRD1 contains 5 conserved RRMs, which may play an important structural role in organizing specific rRNA processing events.


Pssm-ID: 409756 [Multi-domain]  Cd Length: 72  Bit Score: 38.39  E-value: 5.78e-04
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....*...
gi 1932715449 308 CVLLVSNLNEQmVTPDALFTLFGVYGDVIRVkILFNKKDSALIQMAEPQQAQLAMSHL 365
Cdd:cd12317     1 TVILVKNLPFG-ATEEELRELFEKFGTLGRL-LLPPSRTIALVEFLEPQDARRAFKKL 56
RRM3_HRB1_GBP2 cd21607
RNA recognition motif 3 (RRM3) found in Saccharomyces cerevisiae protein HRB1, ...
307-372 6.65e-04

RNA recognition motif 3 (RRM3) found in Saccharomyces cerevisiae protein HRB1, G-strand-binding protein 2 (GBP2) and similar proteins; The family includes Saccharomyces cerevisiae protein HRB1 (also called protein TOM34) and GBP2, both of which are SR-like mRNA-binding proteins which shuttle from the nucleus to the cytoplasm when bound to the mature mRNA molecules. They act as quality control factors for spliced mRNAs. GBP2, also called RAP1 localization factor 6, is a single-strand telomeric DNA-binding protein that binds single-stranded telomeric sequences of the type (TG[1-3])n in vitro. It also binds to RNA. GBP2 influences the localization of RAP1 in the nuclei and plays a role in modulating telomere length. Members in this family contain three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The model corresponds to the third RRM motif.


Pssm-ID: 410186 [Multi-domain]  Cd Length: 79  Bit Score: 38.46  E-value: 6.65e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1932715449 307 SCVLLVSNLNEQMVTPDaLFTLFGVYGDVIRVKILFNKKD----SALIQMAEPQQAQLAMSHLDKIkVYG 372
Cdd:cd21607     2 NNTIYCSNLPLSTAESD-LYDLFETIGKVNNAELKYDETGdptgSAVVEYENLDDADVCISKLNNY-NYG 69
RRM4_PTBPH3 cd12426
RNA recognition motif 4 (RRM4) found in plant polypyrimidine tract-binding protein homolog 3 ...
32-82 6.68e-04

RNA recognition motif 4 (RRM4) found in plant polypyrimidine tract-binding protein homolog 3 (PTBPH3); This subfamily corresponds to the RRM4 of PTBPH3. Although its biological roles remain unclear, PTBPH3 shows significant sequence similarity to polypyrimidine tract binding protein (PTB) that is an important negative regulator of alternative splicing in mammalian cells and also functions at several other aspects of mRNA metabolism, including mRNA localization, stabilization, polyadenylation, and translation. Like PTB, PTBPH3 contains four RNA recognition motifs (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 409860 [Multi-domain]  Cd Length: 79  Bit Score: 38.34  E-value: 6.68e-04
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|...
gi 1932715449  32 PSRVVHIRNIPNDATDTDIVHLGVPFGKVTN--VLQLKGKNQAFLEMADEGSA 82
Cdd:cd12426     6 PTKMIHVSSLPQDVTEEDVLNHLQEHGAIVNtkVFESNGKKQALVLFENEEQA 58
RRM2_gar2 cd12448
RNA recognition motif 2 (RRM2) found in yeast protein gar2 and similar proteins; This ...
310-377 7.90e-04

RNA recognition motif 2 (RRM2) found in yeast protein gar2 and similar proteins; This subfamily corresponds to the RRM2 of yeast protein gar2, a novel nucleolar protein required for 18S rRNA and 40S ribosomal subunit accumulation. It shares similar domain architecture with nucleolin from vertebrates and NSR1 from Saccharomyces cerevisiae. The highly phosphorylated N-terminal domain of gar2 is made up of highly acidic regions separated from each other by basic sequences, and contains multiple phosphorylation sites. The central domain of gar2 contains two closely adjacent N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The C-terminal RGG (or GAR) domain of gar2 is rich in glycine, arginine and phenylalanine residues.


Pssm-ID: 409882 [Multi-domain]  Cd Length: 73  Bit Score: 38.16  E-value: 7.90e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 1932715449 310 LLVSNLNEQMvTPDALFTLFGVYGDVIRVKILFNK-----KDSALIQMAEPQQAQLAMSHLDKIKVYGKPIRV 377
Cdd:cd12448     1 LFVGNLPFSA-TQDALYEAFSQHGSIVSVRLPTDRetgqpKGFGYVDFSTIDSAEAAIDALGGEYIDGRPIRL 72
RRM1_TIA1_like cd12352
RNA recognition motif 1 (RRM1) found in granule-associated RNA binding proteins p40-TIA-1 and ...
310-377 9.82e-04

RNA recognition motif 1 (RRM1) found in granule-associated RNA binding proteins p40-TIA-1 and TIAR; This subfamily corresponds to the RRM1 of nucleolysin TIA-1 isoform p40 (p40-TIA-1 or TIA-1) and nucleolysin TIA-1-related protein (TIAR), both of which are granule-associated RNA binding proteins involved in inducing apoptosis in cytotoxic lymphocyte (CTL) target cells. TIA-1 and TIAR share high sequence similarity. They are expressed in a wide variety of cell types. TIA-1 can be phosphorylated by a serine/threonine kinase that is activated during Fas-mediated apoptosis.TIAR is mainly localized in the nucleus of hematopoietic and nonhematopoietic cells. It is translocated from the nucleus to the cytoplasm in response to exogenous triggers of apoptosis. Both, TIA-1 and TIAR, bind specifically to poly(A) but not to poly(C) homopolymers. They are composed of three N-terminal highly homologous RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a glutamine-rich C-terminal auxiliary domain containing a lysosome-targeting motif. TIA-1 and TIAR interact with RNAs containing short stretches of uridylates and their RRM2 can mediate the specific binding to uridylate-rich RNAs. The C-terminal auxiliary domain may be responsible for interacting with other proteins. In addition, TIA-1 and TIAR share a potential serine protease-cleavage site (Phe-Val-Arg) localized at the junction between their RNA binding domains and their C-terminal auxiliary domains.


Pssm-ID: 409788 [Multi-domain]  Cd Length: 73  Bit Score: 37.77  E-value: 9.82e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 1932715449 310 LLVSNLNEQmVTPDALFTLFGVYGDVIRVKILFNKKDS---ALIQMAEPQQAQLAMSHLDKIKVYGKPIRV 377
Cdd:cd12352     1 LYVGNLDRQ-VTEDLILQLFSQIGPCKSCKMITEHGGNdpyCFVEFYEHNHAAAALQAMNGRKILGKEVKV 70
RRM1_PSRP2_like cd21609
RNA recognition motif 1 (RRM1) found in chloroplastic plastid-specific 30S ribosomal protein 2 ...
427-498 1.24e-03

RNA recognition motif 1 (RRM1) found in chloroplastic plastid-specific 30S ribosomal protein 2 (PSRP-2) and similar proteins; PSRP-2, also called chloroplastic 30S ribosomal protein 2, or chloroplastic small ribosomal subunit protein cS22, is a component of the chloroplast ribosome (chloro-ribosome), a dedicated translation machinery responsible for the synthesis of chloroplast genome-encoded proteins, including proteins of the transcription and translation machinery and components of the photosynthetic apparatus. It binds single strand DNA (ssDNA) and RNA in vitro. It exhibits RNA chaperone activity and regulates negatively resistance responses to abiotic stresses during seed germination (e.g. salt, dehydration, and low temperature) and seedling growth (e.g. salt). The family also includes Nicotiana sylvestris chloroplastic 33 kDa ribonucleoprotein (NsCP33) and Arabidopsis thaliana chloroplastic 31 kDa ribonucleoprotein (AtCP31A). NsCP33 may be involved in splicing and/or processing of chloroplast RNA's. AtCP31A, also called RNA-binding protein 1/2/3 (AtRBP33), or RNA-binding protein CP31A, or RNA-binding protein RNP-T, or RNA-binding protein cp31, is required for specific RNA editing events in chloroplasts and stabilizes specific chloroplast mRNAs, as well as for normal chloroplast development under cold stress conditions by stabilizing transcripts of numerous mRNAs under these conditions. CP31A may modulate telomere replication through RNA binding domains. Members in this family contain two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The model corresponds to the first RRM motif.


Pssm-ID: 410188 [Multi-domain]  Cd Length: 80  Bit Score: 37.79  E-value: 1.24e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 1932715449 427 LHLSNIPPTVSEEQIREAFTQTGGT----VVAFKFFPKDRKMALIQMGSVEESVTALIKMHNYQLSdSNHLRVSFS 498
Cdd:cd21609     2 LYVGNIPRNVTSEELAKIFEEAGTVeiaeVMYDRYTGRSRGFGFVTMGSVEDAKAAIEKLNGTEVG-GREIKVNIT 76
RRM3_PTBPH3 cd12698
RNA recognition motif 3 (RRM3) found in plant polypyrimidine tract-binding protein homolog 3 ...
145-209 1.28e-03

RNA recognition motif 3 (RRM3) found in plant polypyrimidine tract-binding protein homolog 3 (PTBPH3); This subgroup corresponds to the RRM3 of PTBPH3. Although its biological roles remain unclear, PTBPH3 shows significant sequence similarity to polypyrimidine tract binding protein (PTB) that is an important negative regulator of alternative splicing in mammalian cells and also functions at several other aspects of mRNA metabolism, including mRNA localization, stabilization, polyadenylation, and translation. Like PTB, PTBPH3 contains four RNA recognition motifs (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 410098 [Multi-domain]  Cd Length: 76  Bit Score: 37.72  E-value: 1.28e-03
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 1932715449 145 VTLDLLHSIFSRAGKVLKIVTF-TKSNSfqALIQFSDVMGAQAAKLALDGQSIYNAccTLRIEYSK 209
Cdd:cd12698    14 VDVDKLFNLFSLYGNIVRIKILrNKPDH--ALIQMSDPFQAELAVNYLKGAMLFGK--SLEVNFSK 75
RRM_RBM7_like cd12336
RNA recognition motif (RRM) found in RNA-binding protein 7 (RBM7) and similar proteins; This ...
308-377 1.35e-03

RNA recognition motif (RRM) found in RNA-binding protein 7 (RBM7) and similar proteins; This subfamily corresponds to the RRM of RBM7, RBM11 and their eukaryotic homologous. RBM7 is an ubiquitously expressed pre-mRNA splicing factor that enhances messenger RNA (mRNA) splicing in a cell-specific manner or in a certain developmental process, such as spermatogenesis. It interacts with splicing factors SAP145 (the spliceosomal splicing factor 3b subunit 2) and SRp20, and may play a more specific role in meiosis entry and progression. Together with additional testis-specific RNA-binding proteins, RBM7 may regulate the splicing of specific pre-mRNA species that are important in the meiotic cell cycle. RBM11 is a novel tissue-specific splicing regulator that is selectively expressed in brain, cerebellum and testis, and to a lower extent in kidney. It is localized in the nucleoplasm and enriched in SRSF2-containing splicing speckles. It may play a role in the modulation of alternative splicing during neuron and germ cell differentiation. Both, RBM7 and RBM11, contain an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a region lacking known homology at the C-terminus. The RRM is responsible for RNA binding, whereas the C-terminal region permits nuclear localization and homodimerization.


Pssm-ID: 409773 [Multi-domain]  Cd Length: 75  Bit Score: 37.67  E-value: 1.35e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 1932715449 308 CVLLVSNLNEQmVTPDALFTLFGVYGDVIRVKILFNK----KDSALIQMAEPQQAQLAMSHLDKIKVYGKPIRV 377
Cdd:cd12336     2 RTLFVGNLDPR-VTEEILYELFLQAGPLEGVKIPKDPngkpKNFAFVTFKHEVSVPYAIQLLNGIRLFGREIRI 74
RRM2_MEI2_EAR1_like cd12276
RNA recognition motif 2 (RRM2) found in Mei2-like proteins and terminal EAR1-like proteins; ...
136-204 1.89e-03

RNA recognition motif 2 (RRM2) found in Mei2-like proteins and terminal EAR1-like proteins; This subfamily corresponds to the RRM2 of Mei2-like proteins from plant and fungi, terminal EAR1-like proteins from plant, and other eukaryotic homologs. Mei2-like proteins represent an ancient eukaryotic RNA-binding proteins family whose corresponding Mei2-like genes appear to have arisen early in eukaryote evolution, been lost from some lineages such as Saccharomyces cerevisiae and metazoans, and diversified in the plant lineage. The plant Mei2-like genes may function in cell fate specification during development, rather than as stimulators of meiosis. In the fission yeast Schizosaccharomyces pombe, the Mei2 protein is an essential component of the switch from mitotic to meiotic growth. S. pombe Mei2 stimulates meiosis in the nucleus upon binding a specific non-coding RNA. The terminal EAR1-like protein 1 and 2 (TEL1 and TEL2) are mainly found in land plants. They may play a role in the regulation of leaf initiation. All members in this family are putative RNA-binding proteins carrying three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). In addition to the RRMs, the terminal EAR1-like proteins also contain TEL characteristic motifs that allow sequence and putative functional discrimination between them and Mei2-like proteins.


Pssm-ID: 409718 [Multi-domain]  Cd Length: 71  Bit Score: 36.85  E-value: 1.89e-03
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 1932715449 136 VVVDNQIYPVTLDLLHSIFSRAGKVLKIVTfTKSNSFQALIQFSDVMGAQAAKLALDGQSIYNACCTLR 204
Cdd:cd12276     4 LLVFNLDAPVSNDELKSLFSKFGEIKEIRP-TPDKPSQKFVEFYDVRDAEAALDGLNGRELLGGKLKVA 71
RRM1_PTBPH1_PTBPH2 cd12686
RNA recognition motif 1 (RRM1) found in plant polypyrimidine tract-binding protein homolog 1 ...
423-495 1.92e-03

RNA recognition motif 1 (RRM1) found in plant polypyrimidine tract-binding protein homolog 1 and 2 (PTBPH1 and PTBPH2); This subfamily corresponds to the RRM1 of PTBPH1 and PTBPH2. Although their biological roles remain unclear, PTBPH1 and PTBPH2 show significant sequence similarity to polypyrimidine tract binding protein (PTB) that is an important negative regulator of alternative splicing in mammalian cells and also functions at several other aspects of mRNA metabolism, including mRNA localization, stabilization, polyadenylation, and translation. Both, PTBPH1 and PTBPH2, contain three RNA recognition motifs (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 410087 [Multi-domain]  Cd Length: 81  Bit Score: 37.10  E-value: 1.92e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 1932715449 423 PSATLHLSNIPPTVSEEQIREaFTQTGGTVVAFKF-FPKDRKMALIQMGSVEESvtalIKMHNYQLSDSNHLRV 495
Cdd:cd12686     1 PSKVLHLRNLPWECTEEELIE-LCKPFGTVVNTKCnVGANKNQAFVEFADLNQA----ISMVSYYASSSEPAQV 69
RRM2_Nop4p cd12675
RNA recognition motif 2 (RRM2) found in yeast nucleolar protein 4 (Nop4p) and similar proteins; ...
308-377 2.02e-03

RNA recognition motif 2 (RRM2) found in yeast nucleolar protein 4 (Nop4p) and similar proteins; This subgroup corresponds to the RRM2 of Nop4p (also known as Nop77p), encoded by YPL043W from Saccharomyces cerevisiae. It is an essential nucleolar protein involved in processing and maturation of 27S pre-rRNA and biogenesis of 60S ribosomal subunits. Nop4p has four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 410076 [Multi-domain]  Cd Length: 83  Bit Score: 37.07  E-value: 2.02e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 1932715449 308 CVLLVSNLNEQMVTPDALFTLFGVYGDVIRVKILfNKKDS-----ALIQMAEPQQAQLAMSHLDKIKVYGKPIRV 377
Cdd:cd12675     1 PKLIIRNLPWSIKKPVHLKKLFGRYGKVVEATIP-RKKGGklsgfAFVTMKGRKNAEEALESVNGLEIDGRPVAV 74
RRM1_RIM4_like cd12453
RNA recognition motif 1 (RRM1) found in yeast meiotic activator RIM4 and similar proteins; ...
423-499 2.17e-03

RNA recognition motif 1 (RRM1) found in yeast meiotic activator RIM4 and similar proteins; This subfamily corresponds to the RRM1 of RIM4, also termed regulator of IME2 protein 4, a putative RNA binding protein that is expressed at elevated levels early in meiosis. It functions as a meiotic activator required for both the IME1- and IME2-dependent pathways of meiotic gene expression, as well as early events of meiosis, such as meiotic division and recombination, in Saccharomyces cerevisiae. RIM4 contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The family also includes a putative RNA-binding protein termed multicopy suppressor of sporulation protein Msa1. It is a putative RNA-binding protein encoded by a novel gene, msa1, from the fission yeast Schizosaccharomyces pombe. Msa1 may be involved in the inhibition of sexual differentiation by controlling the expression of Ste11-regulated genes, possibly through the pheromone-signaling pathway. Like RIM4, Msa1 also contains two RRMs, both of which are essential for the function of Msa1.


Pssm-ID: 409887 [Multi-domain]  Cd Length: 86  Bit Score: 37.39  E-value: 2.17e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1932715449 423 PSATLHLSNIPPTVSEEQIREAFT---QTGGTVVAFKFF--PKDRKMALIQMGSVEESVTALIKMHNYQLsDSNHLRVSF 497
Cdd:cd12453     1 PSACLFVASLSSARSDEELCAAVTnhfSKWGELLNVKVLkdWSNRPYAFVQYTNTEDAKNALVNGHNTLL-DGRHLRVEK 79

                  ..
gi 1932715449 498 SK 499
Cdd:cd12453    80 AK 81
RRM2_U1A_like cd12247
RNA recognition motif 2 (RRM2) found in the U1A/U2B"/SNF protein family; This subfamily ...
423-496 2.54e-03

RNA recognition motif 2 (RRM2) found in the U1A/U2B"/SNF protein family; This subfamily corresponds to the RRM2 of U1A/U2B"/SNF protein family, containing Drosophila sex determination protein SNF and its two mammalian counterparts, U1 small nuclear ribonucleoprotein A (U1 snRNP A or U1-A or U1A) and U2 small nuclear ribonucleoprotein B" (U2 snRNP B" or U2B"), all of which consist of two RNA recognition motifs (RRMs) connected by a variable, flexible linker. SNF is an RNA-binding protein found in the U1 and U2 snRNPs of Drosophila where it is essential in sex determination and possesses a novel dual RNA binding specificity. SNF binds with high affinity to both Drosophila U1 snRNA stem-loop II (SLII) and U2 snRNA stem-loop IV (SLIV). It can also bind to poly(U) RNA tracts flanking the alternatively spliced Sex-lethal (Sxl) exon, as does Drosophila Sex-lethal protein (SXL). U1A is an RNA-binding protein associated with the U1 snRNP, a small RNA-protein complex involved in pre-mRNA splicing. U1A binds with high affinity and specificity to stem-loop II (SLII) of U1 snRNA. It is predominantly a nuclear protein that shuttles between the nucleus and the cytoplasm independently of interactions with U1 snRNA. Moreover, U1A may be involved in RNA 3'-end processing, specifically cleavage, splicing and polyadenylation, through interacting with a large number of non-snRNP proteins. U2B", initially identified to bind to stem-loop IV (SLIV) at the 3' end of U2 snRNA, is a unique protein that comprises of the U2 snRNP. Additional research indicates U2B" binds to U1 snRNA stem-loop II (SLII) as well and shows no preference for SLIV or SLII on the basis of binding affinity. U2B" does not require an auxiliary protein for binding to RNA and its nuclear transport is independent on U2 snRNA binding.


Pssm-ID: 409693 [Multi-domain]  Cd Length: 72  Bit Score: 36.77  E-value: 2.54e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 1932715449 423 PSATLHLSNIPPTVSEEQIREAFTQTGGtvvaFK--FFPKDRKMALIQMGSVEESVTALIKMHNYQLSDSNHLRVS 496
Cdd:cd12247     1 PNKILFLQNLPEETTKEMLEMLFNQFPG----FKevRLVPRRGIAFVEFETEEQATVALQALQGFKITPGHAMKIS 72
RRM4_hnRNPL cd12704
RNA recognition motif 4 (RRM4) found in vertebrate heterogeneous nuclear ribonucleoprotein L ...
423-491 2.58e-03

RNA recognition motif 4 (RRM4) found in vertebrate heterogeneous nuclear ribonucleoprotein L (hnRNP-L); This subgroup corresponds to the RRM4 of hnRNP-L, a higher eukaryotic specific subunit of human KMT3a (also known as HYPB or hSet2) complex required for histone H3 Lys-36 trimethylation activity. It plays both, nuclear and cytoplasmic, roles in mRNA export of intronless genes, IRES-mediated translation, mRNA stability, and splicing. hnRNP-L shows significant sequence homology with polypyrimidine tract-binding protein (PTB or hnRNP I). Both hnRNP-L and PTB are localized in the nucleus but excluded from the nucleolus. hnRNP-L is an RNA-binding protein with three RNA recognition motifs (RRMs), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 410103  Cd Length: 84  Bit Score: 36.80  E-value: 2.58e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 1932715449 423 PSATLHLSNIPPTVSEEQIREAFTQTG-GTVVAFKFFP--KDRKMA-LIQMGSVEESVTALIKMHNYQLSDSN 491
Cdd:cd12704     1 PSNVLHFFNAPPEVTEENFFEICDELGvKRPTSVKVFSgkSERSSSgLLEWDSKSDALETLGLLNHYQMKNPN 73
RRM_CFIm68_CFIm59 cd12372
RNA recognition motif (RRM) found in pre-mRNA cleavage factor Im 68 kDa subunit (CFIm68 or ...
329-379 3.58e-03

RNA recognition motif (RRM) found in pre-mRNA cleavage factor Im 68 kDa subunit (CFIm68 or CPSF6), pre-mRNA cleavage factor Im 59 kDa subunit (CFIm59 or CPSF7), and similar proteins; This subfamily corresponds to the RRM of cleavage factor Im (CFIm) subunits. Cleavage factor Im (CFIm) is a highly conserved component of the eukaryotic mRNA 3' processing machinery that functions in UGUA-mediated poly(A) site recognition, the regulation of alternative poly(A) site selection, mRNA export, and mRNA splicing. It is a complex composed of a small 25 kDa (CFIm25) subunit and a larger 59/68/72 kDa subunit. Two separate genes, CPSF6 and CPSF7, code for two isoforms of the large subunit, CFIm68 and CFIm59. Structurally related CFIm68 and CFIm59, also termed cleavage and polyadenylation specificity factor subunit 6 (CPSF7), or cleavage and polyadenylation specificity factor 59 kDa subunit (CPSF59), are functionally redundant. Both contains an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), a central proline-rich region, and a C-terminal RS-like domain. Their N-terminal RRM mediates the interaction with CFIm25, and also serves to enhance RNA binding and facilitate RNA looping.


Pssm-ID: 409807 [Multi-domain]  Cd Length: 76  Bit Score: 36.14  E-value: 3.58e-03
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....*.
gi 1932715449 329 FGVYgDVIRVKILFNK-----KDSALIQMAEPQQAQLAMSHLDKIKVYGKPIRVTP 379
Cdd:cd12372    22 FGVV-DVKEIKFFEHKangksKGYAYVEFASPAAAAAVKEKLEKREFNGRPCVVTP 76
RRM1_Hu_like cd12375
RNA recognition motif 1 (RRM1) found in the Hu proteins family, Drosophila sex-lethal (SXL), ...
311-377 3.70e-03

RNA recognition motif 1 (RRM1) found in the Hu proteins family, Drosophila sex-lethal (SXL), and similar proteins; This subfamily corresponds to the RRM1 of Hu proteins and SXL. The Hu proteins family represents a group of RNA-binding proteins involved in diverse biological processes. Since the Hu proteins share high homology with the Drosophila embryonic lethal abnormal vision (ELAV) protein, the Hu family is sometimes referred to as the ELAV family. Drosophila ELAV is exclusively expressed in neurons and is required for the correct differentiation and survival of neurons in flies. The neuronal members of the Hu family include Hu-antigen B (HuB or ELAV-2 or Hel-N1), Hu-antigen C (HuC or ELAV-3 or PLE21), and Hu-antigen D (HuD or ELAV-4), which play important roles in neuronal differentiation, plasticity and memory. HuB is also expressed in gonads. Hu-antigen R (HuR or ELAV-1 or HuA) is ubiquitously expressed Hu family member. It has a variety of biological functions mostly related to the regulation of cellular response to DNA damage and other types of stress. Hu proteins perform their cytoplasmic and nuclear molecular functions by coordinately regulating functionally related mRNAs. In the cytoplasm, Hu proteins recognize and bind to AU-rich RNA elements (AREs) in the 3' untranslated regions (UTRs) of certain target mRNAs, such as GAP-43, vascular epithelial growth factor (VEGF), the glucose transporter GLUT1, eotaxin and c-fos, and stabilize those ARE-containing mRNAs. They also bind and regulate the translation of some target mRNAs, such as neurofilament M, GLUT1, and p27. In the nucleus, Hu proteins function as regulators of polyadenylation and alternative splicing. Each Hu protein contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an ARE. RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions. This family also includes the sex-lethal protein (SXL) from Drosophila melanogaster. SXL governs sexual differentiation and X chromosome dosage compensation in flies. It induces female-specific alternative splicing of the transformer (tra) pre-mRNA by binding to the tra uridine-rich polypyrimidine tract at the non-sex-specific 3' splice site during the sex-determination process. SXL binds to its own pre-mRNA and promotes female-specific alternative splicing. It contains an N-terminal Gly/Asn-rich domain that may be responsible for the protein-protein interaction, and tandem RRMs that show high preference to bind single-stranded, uridine-rich target RNA transcripts.


Pssm-ID: 409810 [Multi-domain]  Cd Length: 76  Bit Score: 36.23  E-value: 3.70e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1932715449 311 LVSNLNEQMVTPDALFTLFGVYGDVIRVKILFNKKDS-----ALIQMAEPQQAQLAMSHLDKIKVYGKPIRV 377
Cdd:cd12375     2 LIVNYLPQSMTQEELRSLFGAIGPIESCKLVRDKITGqslgyGFVNYRDPNDARKAINTLNGLDLENKRLKV 73
RRM1_RBM15B cd12554
RNA recognition motif 1 (RRM1) found in putative RNA binding motif protein 15B (RBM15B) from ...
310-379 4.30e-03

RNA recognition motif 1 (RRM1) found in putative RNA binding motif protein 15B (RBM15B) from vertebrate; This subfamily corresponds to the RRM1 of RBM15B, also termed one twenty-two 3 (OTT3), a paralog of RNA binding motif protein 15 (RBM15), also known as One-twenty two protein 1 (OTT1). Like RBM15, RBM15B has post-transcriptional regulatory activity. It is a nuclear protein sharing with RBM15 the association with the splicing factor compartment and the nuclear envelope as well as the binding to mRNA export factors NXF1 and Aly/REF. RBM15B belongs to the Spen (split end) protein family, which shares a domain architecture comprising of three N-terminal RNA recognition motifs (RRMs), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a C-terminal SPOC (Spen paralog and ortholog C-terminal) domain.


Pssm-ID: 409970 [Multi-domain]  Cd Length: 80  Bit Score: 36.34  E-value: 4.30e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 1932715449 310 LLVSNLNEQMVTP---DALFTLFGVYGDvIRVKILFNKKDS--ALIQMAEPQQAQLAMSHLDKIKVYGKPIRVTP 379
Cdd:cd12554     5 LLVSNLGSQLPDElleDGLFHEFKKFGE-VSVKLSHTPELGrvAYVNFRHPEDAKEARHAKGRLVLYDRPLKVEP 78
RRM_occluded pfam16842
Occluded RNA-recognition motif; This family is an unusual, usually C-terminal, RNA-recognition ...
424-495 4.79e-03

Occluded RNA-recognition motif; This family is an unusual, usually C-terminal, RNA-recognition motif found in fungi. In yeast it is the fourth RRM domain on the essential splicing factor Prp24. Structurally, it has a non-canonical RRM fold with the expected beta-aloha-beta-beta-alpha-beta RRM-fold is flanked by N- and C-terminal alpha-helices. These two additional flanking alpha-helices occlude the beta-sheet face. The electropositive surface thereby presented is an alternative RNA-binding surface that allows both binding and unwinding of the U6 small nuclear RNA's internal stem loop, at least in vitro.


Pssm-ID: 465282 [Multi-domain]  Cd Length: 79  Bit Score: 35.95  E-value: 4.79e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1932715449 424 SATLHLSNIPPTVSEEQIREAFTQTGGTVVAFKFFPkDRKMALIQMGSVEESVTALIKMHNYQLsDSNHLRV 495
Cdd:pfam16842   1 DRTISLLPLPDTVNDARIRALVEEKEGPIVKIVLVP-DHQGAIVEFKDVADAGKASLALDGSEF-EGRKLRC 70
RRM3_PTBPH1_PTBPH2 cd12690
RNA recognition motif 3 (RRM3) found in plant polypyrimidine tract-binding protein homolog 1 ...
307-371 4.83e-03

RNA recognition motif 3 (RRM3) found in plant polypyrimidine tract-binding protein homolog 1 and 2 (PTBPH1 and PTBPH2); This subfamily corresponds to the RRM3 of PTBPH1 and PTBPH2. Although their biological roles remain unclear, PTBPH1 and PTBPH2 show significant sequence similarity to polypyrimidine tract binding protein (PTB) that is an important negative regulator of alternative splicing in mammalian cells and also functions at several other aspects of mRNA metabolism, including mRNA localization, stabilization, polyadenylation, and translation. Both, PTBPH1 and PTBPH2, contain three RNA recognition motifs (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 410091 [Multi-domain]  Cd Length: 97  Bit Score: 36.38  E-value: 4.83e-03
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 1932715449 307 SCVLLVSNLNEQM-VTPDALFTLFGVYGDVIRVKIlFNKKDS--ALIQMAEPQQAQLAMSHLDKIKVY 371
Cdd:cd12690     1 SNVLLASIENMQYaVTLDVLHTVFSAFGFVQKIAI-FEKNGGfqALIQYPDVPTAVVAKEALEGHCIY 67
RRM_RBM8 cd12324
RNA recognition motif (RRM) found in RNA-binding protein RBM8A, RBM8B nd similar proteins; ...
309-377 4.91e-03

RNA recognition motif (RRM) found in RNA-binding protein RBM8A, RBM8B nd similar proteins; This subfamily corresponds to the RRM of RBM8, also termed binder of OVCA1-1 (BOV-1), or RNA-binding protein Y14, which is one of the components of the exon-exon junction complex (EJC). It has two isoforms, RBM8A and RBM8B, both of which are identical except that RBM8B is 16 amino acids shorter at its N-terminus. RBM8, together with other EJC components (such as Magoh, Aly/REF, RNPS1, Srm160, and Upf3), plays critical roles in postsplicing processing, including nuclear export and cytoplasmic localization of the mRNA, and the nonsense-mediated mRNA decay (NMD) surveillance process. RBM8 binds to mRNA 20-24 nucleotides upstream of a spliced exon-exon junction. It is also involved in spliced mRNA nuclear export, and the process of nonsense-mediated decay of mRNAs with premature stop codons. RBM8 forms a specific heterodimer complex with the EJC protein Magoh which then associates with Aly/REF, RNPS1, DEK, and SRm160 on the spliced mRNA, and inhibits ATP turnover by eIF4AIII, thereby trapping the EJC core onto RNA. RBM8 contains an N-terminal putative bipartite nuclear localization signal, one RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), in the central region, and a C-terminal serine-arginine rich region (SR domain) and glycine-arginine rich region (RG domain).


Pssm-ID: 409762 [Multi-domain]  Cd Length: 88  Bit Score: 36.44  E-value: 4.91e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 1932715449 309 VLLVSNLNEQmVTPDALFTLFGVYGDVIRVKILFNK-----KDSALIQMAEPQQAQLAMSHLDKIKVYGKPIRV 377
Cdd:cd12324     8 IIFVTGVHEE-AQEEDIHDKFAEFGEIKNLHLNLDRrtgfvKGYALVEYETKKEAQAAIEGLNGKELLGQTISV 80
RRM_1 pfam00076
RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic ...
429-487 5.37e-03

RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic of an RNA binding protein. RRMs are found in a variety of RNA binding proteins, including various hnRNP proteins, proteins implicated in regulation of alternative splicing, and protein components of snRNPs. The motif also appears in a few single stranded DNA binding proteins. The RRM structure consists of four strands and two helices arranged in an alpha/beta sandwich, with a third helix present during RNA binding in some cases The C-terminal beta strand (4th strand) and final helix are hard to align and have been omitted in the SEED alignment The LA proteins have an N terminal rrm which is included in the seed. There is a second region towards the C terminus that has some features characteriztic of a rrm but does not appear to have the important structural core of a rrm. The LA proteins are one of the main autoantigens in Systemic lupus erythematosus (SLE), an autoimmune disease.


Pssm-ID: 425453 [Multi-domain]  Cd Length: 70  Bit Score: 35.67  E-value: 5.37e-03
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|...
gi 1932715449 429 LSNIPPTVSEEQIREAFTQTGGtVVAFKFFPKDRK----MALIQMGSVEESVTALIKMHNYQL 487
Cdd:pfam00076   3 VGNLPPDTTEEDLKDLFSKFGP-IKSIRLVRDETGrskgFAFVEFEDEEDAEKAIEALNGKEL 64
RRM1_2_CID8_like cd12225
RNA recognition motif 1 and 2 (RRM1, RRM2) found in Arabidopsis thaliana CTC-interacting ...
426-500 5.44e-03

RNA recognition motif 1 and 2 (RRM1, RRM2) found in Arabidopsis thaliana CTC-interacting domain protein CID8, CID9, CID10, CID11, CID12, CID 13 and similar proteins; This subgroup corresponds to the RRM domains found in A. thaliana CID8, CID9, CID10, CID11, CID12, CID 13 and mainly their plant homologs. These highly related RNA-binding proteins contain an N-terminal PAM2 domain (PABP-interacting motif 2), two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a basic region that resembles a bipartite nuclear localization signal. The biological role of this family remains unclear.


Pssm-ID: 409672 [Multi-domain]  Cd Length: 76  Bit Score: 35.90  E-value: 5.44e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 1932715449 426 TLHLSNIPPTVSEEQIREAFTQTgGTVVAFKF--FPKDRKMALIQMGSVEESVTALikMHNYQLSDSNHLRVSFSKS 500
Cdd:cd12225     2 TIHVGGIDGSLSEDELADYFSNC-GEVTQVRLcgDRVHTRFAWVEFATDASALSAL--NLDGTTLGGHPLRVSPSKT 75
RRM_Srp1p_AtRSp31_like cd12233
RNA recognition motif (RRM) found in fission yeast pre-mRNA-splicing factor Srp1p, Arabidopsis ...
310-377 5.81e-03

RNA recognition motif (RRM) found in fission yeast pre-mRNA-splicing factor Srp1p, Arabidopsis thaliana arginine/serine-rich-splicing factor RSp31 and similar proteins; This subfamily corresponds to the RRM of Srp1p and RRM2 of plant SR splicing factors. Srp1p is encoded by gene srp1 from fission yeast Schizosaccharomyces pombe. It plays a role in the pre-mRNA splicing process, but is not essential for growth. Srp1p is closely related to the SR protein family found in Metazoa. It contains an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), a glycine hinge and a RS domain in the middle, and a C-terminal domain. The family also includes a novel group of arginine/serine (RS) or serine/arginine (SR) splicing factors existing in plants, such as A. thaliana RSp31, RSp35, RSp41 and similar proteins. Like vertebrate RS splicing factors, these proteins function as plant splicing factors and play crucial roles in constitutive and alternative splicing in plants. They all contain two RRMs at their N-terminus and an RS domain at their C-terminus.


Pssm-ID: 240679 [Multi-domain]  Cd Length: 70  Bit Score: 35.50  E-value: 5.81e-03
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 1932715449 310 LLVSNLNEQMVTPDALFTLFGVYGDVIRVKIlfnKKDSALIQMAEPQQAQLAMSHLDKIKVYGKPIRV 377
Cdd:cd12233     2 LFVVGFDPGTTREEDIEKLFEPFGPLVRCDI---RKTFAFVEFEDSEDATKALEALHGSRIDGSVLTV 66
RRM1_RBM19 cd12564
RNA recognition motif 1 (RRM1) found in RNA-binding protein 19 (RBM19) and similar proteins; ...
431-484 6.40e-03

RNA recognition motif 1 (RRM1) found in RNA-binding protein 19 (RBM19) and similar proteins; This subgroup corresponds to the RRM1 of RBM19, also termed RNA-binding domain-1 (RBD-1), a nucleolar protein conserved in eukaryotes. It is involved in ribosome biogenesis by processing rRNA. In addition, it is essential for preimplantation development. RBM19 has a unique domain organization containing 6 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409980 [Multi-domain]  Cd Length: 76  Bit Score: 35.75  E-value: 6.40e-03
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....*..
gi 1932715449 431 NIPPTVSEEQIREAFTQTGG-TVVAFKFFP--KDRKMALIQMGSVEESVTALIKMHN 484
Cdd:cd12564     7 NLPSSITEDRLRKLFSAFGTiTDVQLKYTKdgKFRRFGFVGFKSEEEAQKALKHFNN 63
RRM1_SHARP cd12348
RNA recognition motif 1 (RRM1) found in SMART/HDAC1-associated repressor protein (SHARP) and ...
427-497 6.75e-03

RNA recognition motif 1 (RRM1) found in SMART/HDAC1-associated repressor protein (SHARP) and similar proteins; This subfamily corresponds to the RRM1 of SHARP, also termed Msx2-interacting protein (MINT), or SPEN homolog, an estrogen-inducible transcriptional repressor that interacts directly with the nuclear receptor corepressor SMRT, histone deacetylases (HDACs) and components of the NuRD complex. SHARP recruits HDAC activity and binds to the steroid receptor RNA coactivator SRA through four conserved N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), further suppressing SRA-potentiated steroid receptor transcription activity. Thus, SHARP has the capacity to modulate both liganded and nonliganded nuclear receptors. SHARP also has been identified as a component of transcriptional repression complexes in Notch/RBP-Jkappa signaling pathways. In addition to the N-terminal RRMs, SHARP possesses a C-terminal SPOC domain (Spen paralog and ortholog C-terminal domain), which is highly conserved among Spen proteins.


Pssm-ID: 409784 [Multi-domain]  Cd Length: 75  Bit Score: 35.67  E-value: 6.75e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 1932715449 427 LHLSNIPPTVSEEQIREAFTQTgGTVVAFKFFPKDRKMA-------LIQMGSVEESVTALIKMhnyqlsDSNHLRVSF 497
Cdd:cd12348     2 LWVGNLPENVREEKIIEHFKRF-GRVESVKILPKRGSEGgvaafvdFVDIKSAQKAHSAVNKM------GGRDLRTDY 72
RRM1_RBM26_like cd12257
RNA recognition motif 1 (RRM1) found in vertebrate RNA-binding protein 26 (RBM26) and similar ...
307-363 8.26e-03

RNA recognition motif 1 (RRM1) found in vertebrate RNA-binding protein 26 (RBM26) and similar proteins; This subfamily corresponds to the RRM1 of RBM26, and the RRM of RBM27. RBM26, also known as cutaneous T-cell lymphoma (CTCL) tumor antigen se70-2, represents a cutaneous lymphoma (CL)-associated antigen. It contains two RNA recognition motifs (RRMs), also known as RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The RRMs may play some functional roles in RNA-binding or protein-protein interactions. RBM27 contains only one RRM; its biological function remains unclear.


Pssm-ID: 409702 [Multi-domain]  Cd Length: 72  Bit Score: 35.23  E-value: 8.26e-03
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....*..
gi 1932715449 307 SCVLLVSNLNEQMVTPDALFTLFGVYGDVIRVKILFNKKdSALIQMAEPQQAQLAMS 363
Cdd:cd12257     1 KTTLEVRNIPPELNNITKLREHFSKFGTIVNIQVNYNPE-SALVQFSTSEEANKAYR 56
RRM3_PTBP1_like cd12423
RNA recognition motif 3 (RRM3) found in polypyrimidine tract-binding protein 1 (PTB or hnRNP I) ...
145-209 9.21e-03

RNA recognition motif 3 (RRM3) found in polypyrimidine tract-binding protein 1 (PTB or hnRNP I) and similar proteins; This subfamily corresponds to the RRM3 of polypyrimidine tract-binding protein 1 (PTB or hnRNP I), polypyrimidine tract-binding protein 2 (PTBP2 or nPTB), regulator of differentiation 1 (Rod1), and similar proteins found in Metazoa. PTB is an important negative regulator of alternative splicing in mammalian cells and also functions at several other aspects of mRNA metabolism, including mRNA localization, stabilization, polyadenylation, and translation. PTBP2 is highly homologous to PTB and is perhaps specific to the vertebrates. Unlike PTB, PTBP2 is enriched in the brain and in some neural cell lines. It binds more stably to the downstream control sequence (DCS) RNA than PTB does but is a weaker repressor of splicing in vitro. PTBP2 also greatly enhances the binding of two other proteins, heterogeneous nuclear ribonucleoprotein (hnRNP) H and KH-type splicing-regulatory protein (KSRP), to the DCS RNA. The binding properties of PTBP2 and its reduced inhibitory activity on splicing imply roles in controlling the assembly of other splicing-regulatory proteins. PTBP2 also contains four RRMs. ROD1 coding protein Rod1 is a mammalian PTB homolog of a regulator of differentiation in the fission yeast Schizosaccharomyces pombe, where the nrd1 gene encodes an RNA binding protein negatively regulates the onset of differentiation. ROD1 is predominantly expressed in hematopoietic cells or organs. It may play a role controlling differentiation in mammals. All members in this family contain four RNA recognition motifs (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 409857 [Multi-domain]  Cd Length: 74  Bit Score: 34.90  E-value: 9.21e-03
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 1932715449 145 VTLDLLHSIFSRAGKVLKI-VTFTKSNSfqALIQFSDVMGAQAAKLALDGQSIYNAccTLRIEYSK 209
Cdd:cd12423    12 VTPDALFTLFGVYGDVLRVkILFNKKDT--ALIQMADPQQAQTALQHLNGIKLFGK--PIRVTLSK 73
 
Blast search parameters
Data Source: Precalculated data, version = cdd.v.3.21
Preset Options:Database: CDSEARCH/cdd   Low complexity filter: no  Composition Based Adjustment: yes   E-value threshold: 0.01

References:

  • Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
  • Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
  • Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
Help | Disclaimer | Write to the Help Desk
NCBI | NLM | NIH