NCBI Home Page NCBI Site Search page NCBI Guide that lists and describes the NCBI resources
Conserved domains on  [gi|1868045105|ref|XP_035307142|]
View 

phosphatidylinositol 3-kinase regulatory subunit beta isoform X1 [Cricetulus griseus]

Protein Classification

tyrosine-protein kinase( domain architecture ID 10186036)

tyrosine-protein kinase is a cytoplasmic (or nonreceptor) kinase that catalyzes the transfer of the gamma-phosphoryl group from ATP to tyrosine (tyr) residues in protein substrates; contains Src Homology 3 (SH3) and SH2 domains

Graphical summary

 Zoom to residue level

show extra options »

Show site features     Horizontal zoom: ×

List of domain hits

Name Accession Description Interval E-value
iSH2_PIK3R2 cd12926
Inter-Src homology 2 (iSH2) helical domain of Class IA Phosphoinositide 3-kinase Regulatory ...
431-591 4.63e-123

Inter-Src homology 2 (iSH2) helical domain of Class IA Phosphoinositide 3-kinase Regulatory subunit 2, PIK3R2, also called p85beta; PI3Ks catalyze the transfer of the gamma-phosphoryl group from ATP to the 3-hydroxyl of the inositol ring of D-myo-phosphatidylinositol (PtdIns) or its derivatives. They play an important role in a variety of fundamental cellular processes, including cell motility, the Ras pathway, vesicle trafficking and secretion, immune cell activation, and apoptosis. They are classified according to their substrate specificity, regulation, and domain structure. Class IA PI3Ks are heterodimers of a p110 catalytic (C) subunit and a p85-related regulatory (R) subunit. The R subunit down-regulates PI3K basal activity, stabilizes the C subunit, and plays a role in the activation downstream of tyrosine kinases. All R subunits contain two SH2 domains that flank an intervening helical domain (iSH2), which binds to the N-terminal adaptor-binding domain (ABD) of the catalytic subunit. p85beta, also called PIK3R2, contains N-terminal SH3 and GAP domains. It is expressed ubiquitously but at lower levels than p85alpha. Its expression is increased in breast and colon cancer, correlates with tumor progression, and enhanced invasion. During viral infection, the viral nonstructural (NS1) protein binds p85beta specifically, which leads to PI3K activation and the promotion of viral replication. Mice deficient with PIK3R2 develop normally and exhibit moderate metabolic and immunological defects.


:

Pssm-ID: 214019 [Multi-domain]  Cd Length: 161  Bit Score: 363.63  E-value: 4.63e-123
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 431 DSVEAVGAQLKVYHQQYQDKSREYDQLYEEYTRTSQELQMKRTAIEAFNETIKIFEEQGQTQEKCSKEYLERFRREGNEK 510
Cdd:cd12926     1 DSVEAVGAQLKVYHQQYQDKSREYDQLYEEYTRTSQELQMKRTAIEAFNETIKIFEEQGQTQEKCSKEYLERFRREGNEK 80
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 511 EMQRILLNSERLKSRIAEIHESRTKLEQDLRAQASDNREIDKRMNSLKPDLMQLRKIRDQYLVWLTQKGARQRKINEWLG 590
Cdd:cd12926    81 EMQRILLNSERLKSRIAEIHESRTKLEQDLRAQASDNREIDKRMNSLKPDLMQLRKIRDQYLVWLTQKGARQKKINEWLG 160

                  .
gi 1868045105 591 I 591
Cdd:cd12926   161 I 161
SH2_cSH2_p85_like cd09930
C-terminal Src homology 2 (cSH2) domain found in p85; Phosphoinositide 3-kinases (PI3Ks) are ...
609-712 2.36e-70

C-terminal Src homology 2 (cSH2) domain found in p85; Phosphoinositide 3-kinases (PI3Ks) are essential for cell growth, migration, and survival. p110, the catalytic subunit, is composed of an adaptor-binding domain, a Ras-binding domain, a C2 domain, a helical domain, and a kinase domain. The regulatory unit is called p85 and is composed of an SH3 domain, a RhoGap domain, a N-terminal SH2 (nSH2) domain, a inter SH2 (iSH2) domain, and C-terminal (cSH2) domain. There are 2 inhibitory interactions between p110alpha and p85 of P13K: 1) p85 nSH2 domain with the C2, helical, and kinase domains of p110alpha and 2) p85 iSH2 domain with C2 domain of p110alpha. There are 3 inhibitory interactions between p110beta and p85 of P13K: 1) p85 nSH2 domain with the C2, helical, and kinase domains of p110beta, 2) p85 iSH2 domain with C2 domain of p110alpha, and 3) p85 cSH2 domain with the kinase domain of p110alpha. It is interesting to note that p110beta is oncogenic as a wild type protein while p110alpha lacks this ability. One explanation is the idea that the regulation of p110beta by p85 is unique because of the addition of inhibitory contacts from the cSH2 domain and the loss of contacts in the iSH2 domain. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


:

Pssm-ID: 198184  Cd Length: 104  Bit Score: 224.60  E-value: 2.36e-70
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 609 PHHEERTWYVGKINRTQAEEMLSGKRDGTFLIRESSQRGCYACSVVVDGDTKHCVIYRTATGFGFAEPYNLYASLKELVL 688
Cdd:cd09930     1 PHHDERTWLVGDINRTQAEELLRGKPDGTFLIRESSTQGCYACSVVCNGEVKHCVIYKTETGYGFAEPYNLYESLKELVL 80
                          90       100
                  ....*....|....*....|....
gi 1868045105 689 HYQHASLVQHNDALTVTLAHPVRA 712
Cdd:cd09930    81 HYAHNSLEQHNDSLTVTLAYPVLA 104
SH2_nSH2_p85_like cd09942
N-terminal Src homology 2 (nSH2) domain found in p85; Phosphoinositide 3-kinases (PI3Ks) are ...
316-426 2.01e-69

N-terminal Src homology 2 (nSH2) domain found in p85; Phosphoinositide 3-kinases (PI3Ks) are essential for cell growth, migration, and survival. p110, the catalytic subunit, is composed of an adaptor-binding domain, a Ras-binding domain, a C2 domain, a helical domain, and a kinase domain. The regulatory unit is called p85 and is composed of an SH3 domain, a RhoGap domain, a N-terminal SH2 (nSH2) domain, an internal SH2 (iSH2) domain, and C-terminal (cSH2) domain. There are 2 inhibitory interactions between p110alpha and p85 of P13K: (1) p85 nSH2 domain with the C2, helical, and kinase domains of p110alpha and (2) p85 iSH2 domain with C2 domain of p110alpha. There are 3 inhibitory interactions between p110beta and p85 of P13K: (1) p85 nSH2 domain with the C2, helical, and kinase domains of p110beta, (2) p85 iSH2 domain with C2 domain of p110alpha, and (3) p85 cSH2 domain with the kinase domain of p110alpha. It is interesting to note that p110beta is oncogenic as a wild type protein while p110alpha lacks this ability. One explanation is the idea that the regulation of p110beta by p85 is unique because of the addition of inhibitory contacts from the cSH2 domain and the loss of contacts in the iSH2 domain. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


:

Pssm-ID: 198195  Cd Length: 110  Bit Score: 222.20  E-value: 2.01e-69
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 316 PPSLQDAEWYWGDISREEVNERLRDTPDGTFLVRDASSKiQGEYTLTLRKGGNNKLIKVFHRDGHYGFSEPLTFCSVVEL 395
Cdd:cd09942     1 PHSLQEAEWYWGDISREEVNEKMRDTPDGTFLVRDASTM-KGDYTLTLRKGGNNKLIKIFHRDGKYGFSDPLTFNSVVEL 79
                          90       100       110
                  ....*....|....*....|....*....|.
gi 1868045105 396 ISHYRHESLAQYNAKLDTRLLYPVSKYQQDQ 426
Cdd:cd09942    80 INYYRNNSLAEYNRKLDVKLLYPVSRFQQDQ 110
RhoGAP super family cl02570
RhoGAP: GTPase-activator protein (GAP) for Rho-like GTPases; GAPs towards Rho/Rac/Cdc42-like ...
110-289 1.97e-61

RhoGAP: GTPase-activator protein (GAP) for Rho-like GTPases; GAPs towards Rho/Rac/Cdc42-like small GTPases. Small GTPases (G proteins) cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when bound to GDP. The Rho family of small G proteins, which includes Cdc42Hs, activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. G proteins generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude. The RhoGAPs are one of the major classes of regulators of Rho G proteins.


The actual alignment was detected with superfamily member cd04388:

Pssm-ID: 470621  Cd Length: 200  Bit Score: 204.34  E-value: 1.97e-61
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 110 TLADLAEQFSPPDPAPPILVKLVEAIEQAGLDSECYSRPELPAPRTDWSLS--------DVEQWDRNALYDAVKGFLLAL 181
Cdd:cd04388     1 TLPDLTEQFSPPDVAPPLLIKLVEAIEKKGLESSTLYRTQSSSSLTELRQIldcdaasvDLEQFDVAALADALKRYLLDL 80
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 182 PTPVVT-PEAAAEAHRA-----LREAAGPVGPVLEPPMLPLHHALTLRFLLQHLGRVARRAPVQATAVHSLASAFGPLLL 255
Cdd:cd04388    81 PNPVIPaPVYSEMISRAqevqsSDEYAQLLRKLIRSPNLPHQYWLTLQYLLKHFFRLCQSSSKNLLSARALAEIFSPLLF 160
                         170       180       190
                  ....*....|....*....|....*....|....
gi 1868045105 256 RTPPPggdtdgSEPGPGFPVLLLERLLQEHVDEQ 289
Cdd:cd04388   161 RFQPA------SSDSPEFHIRIIEVLITSEWNER 188
SH3_PI3K_p85beta cd11909
Src Homology 3 domain of the p85beta regulatory subunit of Class IA Phosphatidylinositol ...
7-80 4.38e-42

Src Homology 3 domain of the p85beta regulatory subunit of Class IA Phosphatidylinositol 3-kinases; Class I PI3Ks convert PtdIns(4,5)P2 to the critical second messenger PtdIns(3,4,5)P3. They are heterodimers and exist in multiple isoforms consisting of one catalytic subunit (out of four isoforms) and one of several regulatory subunits. Class IA PI3Ks associate with the p85 regulatory subunit family, which contains SH3, RhoGAP, and SH2 domains. The p85 subunits recruit the PI3K p110 catalytic subunit to the membrane, where p110 phosphorylates inositol lipids. Vertebrates harbor two p85 isoforms, called alpha and beta. In addition to regulating the p110 subunit, p85beta binds CD28 and may be involved in the activation and differentiation of antigen-stimulated T cells. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies.


:

Pssm-ID: 212842  Cd Length: 74  Bit Score: 146.90  E-value: 4.38e-42
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 1868045105   7 FQYRAVYPFRRERPEDLELLPGDLLVVSRVALQALGVADGGERCPHNVGWMPGFNERTRQRGDFPGTYVEFLGP 80
Cdd:cd11909     1 FQYRALYPYRKEREEDIDLLPGDVLTVSRAALQALGVKEGGEQCPQSIGWILGLNERTKQRGDFPGTYVEFLGP 74
 
Name Accession Description Interval E-value
iSH2_PIK3R2 cd12926
Inter-Src homology 2 (iSH2) helical domain of Class IA Phosphoinositide 3-kinase Regulatory ...
431-591 4.63e-123

Inter-Src homology 2 (iSH2) helical domain of Class IA Phosphoinositide 3-kinase Regulatory subunit 2, PIK3R2, also called p85beta; PI3Ks catalyze the transfer of the gamma-phosphoryl group from ATP to the 3-hydroxyl of the inositol ring of D-myo-phosphatidylinositol (PtdIns) or its derivatives. They play an important role in a variety of fundamental cellular processes, including cell motility, the Ras pathway, vesicle trafficking and secretion, immune cell activation, and apoptosis. They are classified according to their substrate specificity, regulation, and domain structure. Class IA PI3Ks are heterodimers of a p110 catalytic (C) subunit and a p85-related regulatory (R) subunit. The R subunit down-regulates PI3K basal activity, stabilizes the C subunit, and plays a role in the activation downstream of tyrosine kinases. All R subunits contain two SH2 domains that flank an intervening helical domain (iSH2), which binds to the N-terminal adaptor-binding domain (ABD) of the catalytic subunit. p85beta, also called PIK3R2, contains N-terminal SH3 and GAP domains. It is expressed ubiquitously but at lower levels than p85alpha. Its expression is increased in breast and colon cancer, correlates with tumor progression, and enhanced invasion. During viral infection, the viral nonstructural (NS1) protein binds p85beta specifically, which leads to PI3K activation and the promotion of viral replication. Mice deficient with PIK3R2 develop normally and exhibit moderate metabolic and immunological defects.


Pssm-ID: 214019 [Multi-domain]  Cd Length: 161  Bit Score: 363.63  E-value: 4.63e-123
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 431 DSVEAVGAQLKVYHQQYQDKSREYDQLYEEYTRTSQELQMKRTAIEAFNETIKIFEEQGQTQEKCSKEYLERFRREGNEK 510
Cdd:cd12926     1 DSVEAVGAQLKVYHQQYQDKSREYDQLYEEYTRTSQELQMKRTAIEAFNETIKIFEEQGQTQEKCSKEYLERFRREGNEK 80
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 511 EMQRILLNSERLKSRIAEIHESRTKLEQDLRAQASDNREIDKRMNSLKPDLMQLRKIRDQYLVWLTQKGARQRKINEWLG 590
Cdd:cd12926    81 EMQRILLNSERLKSRIAEIHESRTKLEQDLRAQASDNREIDKRMNSLKPDLMQLRKIRDQYLVWLTQKGARQKKINEWLG 160

                  .
gi 1868045105 591 I 591
Cdd:cd12926   161 I 161
PI3K_P85_iSH2 pfam16454
Phosphatidylinositol 3-kinase regulatory subunit P85 inter-SH2 domain; This domain is found ...
422-590 3.76e-81

Phosphatidylinositol 3-kinase regulatory subunit P85 inter-SH2 domain; This domain is found between the two SH2 domains in phosphatidylinositol 3-kinase regulatory subunit P85. It forms a complex with the adaptor-binding domain of phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha.


Pssm-ID: 465121 [Multi-domain]  Cd Length: 161  Bit Score: 255.27  E-value: 3.76e-81
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 422 YQQDQVVKEDSVEAVGAQLKVYHQQYQDKSREYDQLYEEYTRTSQELQMKRTAIEAFNETIKIFEEQGQTQEKCSKEYle 501
Cdd:pfam16454   1 QQEDEVVKEDDIEAVGKKLIEIHKQYLEKSREYDRLYEEYNKTSQEIQMKRQALEAFNEAIKMFEEQIKLQERFSKEA-- 78
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 502 rfrregNEKEMQRILLNSERLKSRIAEIHESRTKLEQDLRAQASDNREIDKRMNSLKPDLMQLRKIRDQYLVWLTQKGAR 581
Cdd:pfam16454  79 ------QPHEIERLLENYELLKSRLKELHDSKEQLEEDLKTQKEYNRELEREMNSLKPELIQLRKQKDQYLEWLKRKGVT 152

                  ....*....
gi 1868045105 582 QRKINEWLG 590
Cdd:pfam16454 153 QEQINAWLG 161
SH2_cSH2_p85_like cd09930
C-terminal Src homology 2 (cSH2) domain found in p85; Phosphoinositide 3-kinases (PI3Ks) are ...
609-712 2.36e-70

C-terminal Src homology 2 (cSH2) domain found in p85; Phosphoinositide 3-kinases (PI3Ks) are essential for cell growth, migration, and survival. p110, the catalytic subunit, is composed of an adaptor-binding domain, a Ras-binding domain, a C2 domain, a helical domain, and a kinase domain. The regulatory unit is called p85 and is composed of an SH3 domain, a RhoGap domain, a N-terminal SH2 (nSH2) domain, a inter SH2 (iSH2) domain, and C-terminal (cSH2) domain. There are 2 inhibitory interactions between p110alpha and p85 of P13K: 1) p85 nSH2 domain with the C2, helical, and kinase domains of p110alpha and 2) p85 iSH2 domain with C2 domain of p110alpha. There are 3 inhibitory interactions between p110beta and p85 of P13K: 1) p85 nSH2 domain with the C2, helical, and kinase domains of p110beta, 2) p85 iSH2 domain with C2 domain of p110alpha, and 3) p85 cSH2 domain with the kinase domain of p110alpha. It is interesting to note that p110beta is oncogenic as a wild type protein while p110alpha lacks this ability. One explanation is the idea that the regulation of p110beta by p85 is unique because of the addition of inhibitory contacts from the cSH2 domain and the loss of contacts in the iSH2 domain. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198184  Cd Length: 104  Bit Score: 224.60  E-value: 2.36e-70
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 609 PHHEERTWYVGKINRTQAEEMLSGKRDGTFLIRESSQRGCYACSVVVDGDTKHCVIYRTATGFGFAEPYNLYASLKELVL 688
Cdd:cd09930     1 PHHDERTWLVGDINRTQAEELLRGKPDGTFLIRESSTQGCYACSVVCNGEVKHCVIYKTETGYGFAEPYNLYESLKELVL 80
                          90       100
                  ....*....|....*....|....
gi 1868045105 689 HYQHASLVQHNDALTVTLAHPVRA 712
Cdd:cd09930    81 HYAHNSLEQHNDSLTVTLAYPVLA 104
SH2_nSH2_p85_like cd09942
N-terminal Src homology 2 (nSH2) domain found in p85; Phosphoinositide 3-kinases (PI3Ks) are ...
316-426 2.01e-69

N-terminal Src homology 2 (nSH2) domain found in p85; Phosphoinositide 3-kinases (PI3Ks) are essential for cell growth, migration, and survival. p110, the catalytic subunit, is composed of an adaptor-binding domain, a Ras-binding domain, a C2 domain, a helical domain, and a kinase domain. The regulatory unit is called p85 and is composed of an SH3 domain, a RhoGap domain, a N-terminal SH2 (nSH2) domain, an internal SH2 (iSH2) domain, and C-terminal (cSH2) domain. There are 2 inhibitory interactions between p110alpha and p85 of P13K: (1) p85 nSH2 domain with the C2, helical, and kinase domains of p110alpha and (2) p85 iSH2 domain with C2 domain of p110alpha. There are 3 inhibitory interactions between p110beta and p85 of P13K: (1) p85 nSH2 domain with the C2, helical, and kinase domains of p110beta, (2) p85 iSH2 domain with C2 domain of p110alpha, and (3) p85 cSH2 domain with the kinase domain of p110alpha. It is interesting to note that p110beta is oncogenic as a wild type protein while p110alpha lacks this ability. One explanation is the idea that the regulation of p110beta by p85 is unique because of the addition of inhibitory contacts from the cSH2 domain and the loss of contacts in the iSH2 domain. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198195  Cd Length: 110  Bit Score: 222.20  E-value: 2.01e-69
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 316 PPSLQDAEWYWGDISREEVNERLRDTPDGTFLVRDASSKiQGEYTLTLRKGGNNKLIKVFHRDGHYGFSEPLTFCSVVEL 395
Cdd:cd09942     1 PHSLQEAEWYWGDISREEVNEKMRDTPDGTFLVRDASTM-KGDYTLTLRKGGNNKLIKIFHRDGKYGFSDPLTFNSVVEL 79
                          90       100       110
                  ....*....|....*....|....*....|.
gi 1868045105 396 ISHYRHESLAQYNAKLDTRLLYPVSKYQQDQ 426
Cdd:cd09942    80 INYYRNNSLAEYNRKLDVKLLYPVSRFQQDQ 110
RhoGAP_p85 cd04388
RhoGAP_p85: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain present ...
110-289 1.97e-61

RhoGAP_p85: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain present in the p85 isoforms of the regulatory subunit of the class IA PI3K (phosphatidylinositol 3'-kinase). This domain is also called Bcr (breakpoint cluster region protein) homology (BH) domain. Class IA PI3Ks are heterodimers, containing a regulatory subunit (p85) and a catalytic subunit (p110) and are activated by growth factor receptor tyrosine kinases (RTKs); this activation is mediated by the p85 subunit. p85 isoforms, alpha and beta, contain a C-terminal p110-binding domain flanked by two SH2 domains, an N-terminal SH3 domain, and a RhoGAP domain flanked by two proline-rich regions. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239853  Cd Length: 200  Bit Score: 204.34  E-value: 1.97e-61
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 110 TLADLAEQFSPPDPAPPILVKLVEAIEQAGLDSECYSRPELPAPRTDWSLS--------DVEQWDRNALYDAVKGFLLAL 181
Cdd:cd04388     1 TLPDLTEQFSPPDVAPPLLIKLVEAIEKKGLESSTLYRTQSSSSLTELRQIldcdaasvDLEQFDVAALADALKRYLLDL 80
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 182 PTPVVT-PEAAAEAHRA-----LREAAGPVGPVLEPPMLPLHHALTLRFLLQHLGRVARRAPVQATAVHSLASAFGPLLL 255
Cdd:cd04388    81 PNPVIPaPVYSEMISRAqevqsSDEYAQLLRKLIRSPNLPHQYWLTLQYLLKHFFRLCQSSSKNLLSARALAEIFSPLLF 160
                         170       180       190
                  ....*....|....*....|....*....|....
gi 1868045105 256 RTPPPggdtdgSEPGPGFPVLLLERLLQEHVDEQ 289
Cdd:cd04388   161 RFQPA------SSDSPEFHIRIIEVLITSEWNER 188
SH3_PI3K_p85beta cd11909
Src Homology 3 domain of the p85beta regulatory subunit of Class IA Phosphatidylinositol ...
7-80 4.38e-42

Src Homology 3 domain of the p85beta regulatory subunit of Class IA Phosphatidylinositol 3-kinases; Class I PI3Ks convert PtdIns(4,5)P2 to the critical second messenger PtdIns(3,4,5)P3. They are heterodimers and exist in multiple isoforms consisting of one catalytic subunit (out of four isoforms) and one of several regulatory subunits. Class IA PI3Ks associate with the p85 regulatory subunit family, which contains SH3, RhoGAP, and SH2 domains. The p85 subunits recruit the PI3K p110 catalytic subunit to the membrane, where p110 phosphorylates inositol lipids. Vertebrates harbor two p85 isoforms, called alpha and beta. In addition to regulating the p110 subunit, p85beta binds CD28 and may be involved in the activation and differentiation of antigen-stimulated T cells. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies.


Pssm-ID: 212842  Cd Length: 74  Bit Score: 146.90  E-value: 4.38e-42
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 1868045105   7 FQYRAVYPFRRERPEDLELLPGDLLVVSRVALQALGVADGGERCPHNVGWMPGFNERTRQRGDFPGTYVEFLGP 80
Cdd:cd11909     1 FQYRALYPYRKEREEDIDLLPGDVLTVSRAALQALGVKEGGEQCPQSIGWILGLNERTKQRGDFPGTYVEFLGP 74
RhoGAP smart00324
GTPase-activator protein for Rho-like GTPases; GTPase activator proteins towards Rho/Rac ...
122-285 2.60e-30

GTPase-activator protein for Rho-like GTPases; GTPase activator proteins towards Rho/Rac/Cdc42-like small GTPases. etter domain limits and outliers.


Pssm-ID: 214618  Cd Length: 174  Bit Score: 117.37  E-value: 2.60e-30
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105  122 DPAPPILVKLVEAIEQAGLDSECYSRPELPAPRTDWSLSDVEQ----------WDRNALYDAVKGFLLALPTPVVTPEAA 191
Cdd:smart00324   1 KPIPIIVEKCIEYLEKRGLDTEGIYRVSGSKSRVKELRDAFDSgpdpdldlseYDVHDVAGLLKLFLRELPEPLITYELY 80
                           90       100       110       120       130       140       150       160
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105  192 AEAHRALR---EAAGPVGPVLEPPMLPLHHALTLRFLLQHLGRVARRAPVQATAVHSLASAFGPLLLRTPPPggdTDGSE 268
Cdd:smart00324  81 EEFIEAAKledETERLRALRELLSLLPPANRATLRYLLAHLNRVAEHSEENKMTARNLAIVFGPTLLRPPDG---EVASL 157
                          170
                   ....*....|....*..
gi 1868045105  269 PGPGFPVLLLERLLQEH 285
Cdd:smart00324 158 KDIRHQNTVIEFLIENA 174
SH2 smart00252
Src homology 2 domains; Src homology 2 domains bind phosphotyrosine-containing polypeptides ...
323-404 7.06e-24

Src homology 2 domains; Src homology 2 domains bind phosphotyrosine-containing polypeptides via 2 surface pockets. Specificity is provided via interaction with residues that are distinct from the phosphotyrosine. Only a single occurrence of a SH2 domain has been found in S. cerevisiae.


Pssm-ID: 214585 [Multi-domain]  Cd Length: 84  Bit Score: 95.76  E-value: 7.06e-24
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105  323 EWYWGDISREEVNERLRDTPDGTFLVRDaSSKIQGEYTLTLRKGGNNKLIKVFH-RDGHYGFSEPLTFCSVVELISHYRH 401
Cdd:smart00252   2 PWYHGFISREEAEKLLKNEGDGDFLVRD-SESSPGDYVLSVRVKGKVKHYRIRRnEDGKFYLEGGRKFPSLVELVEHYQK 80

                   ...
gi 1868045105  402 ESL 404
Cdd:smart00252  81 NSL 83
SH2 pfam00017
SH2 domain;
616-690 1.16e-23

SH2 domain;


Pssm-ID: 425423 [Multi-domain]  Cd Length: 77  Bit Score: 94.98  E-value: 1.16e-23
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 1868045105 616 WYVGKINRTQAEEML-SGKRDGTFLIRES-SQRGCYACSVVVDGDTKHCVIYRTATG--FGFAEPYnlYASLKELVLHY 690
Cdd:pfam00017   1 WYHGKISRQEAERLLlNGKPDGTFLVRESeSTPGGYTLSVRDDGKVKHYKIQSTDNGgyYISGGVK--FSSLAELVEHY 77
SH2 smart00252
Src homology 2 domains; Src homology 2 domains bind phosphotyrosine-containing polypeptides ...
616-696 1.68e-23

Src homology 2 domains; Src homology 2 domains bind phosphotyrosine-containing polypeptides via 2 surface pockets. Specificity is provided via interaction with residues that are distinct from the phosphotyrosine. Only a single occurrence of a SH2 domain has been found in S. cerevisiae.


Pssm-ID: 214585 [Multi-domain]  Cd Length: 84  Bit Score: 94.60  E-value: 1.68e-23
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105  616 WYVGKINRTQAEEMLSGKRDGTFLIRESSQ-RGCYACSVVVDGDTKHCVIYRTATGFGFAEPYNLYASLKELVLHYQHAS 694
Cdd:smart00252   3 WYHGFISREEAEKLLKNEGDGDFLVRDSESsPGDYVLSVRVKGKVKHYRIRRNEDGKFYLEGGRKFPSLVELVEHYQKNS 82

                   ..
gi 1868045105  695 LV 696
Cdd:smart00252  83 LG 84
SH2 pfam00017
SH2 domain;
324-399 9.57e-22

SH2 domain;


Pssm-ID: 425423 [Multi-domain]  Cd Length: 77  Bit Score: 89.58  E-value: 9.57e-22
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 1868045105 324 WYWGDISREEVNERLRDT-PDGTFLVRDASSKiQGEYTLTLRKGGNNKLIKV-FHRDGHYGFSEPLTFCSVVELISHY 399
Cdd:pfam00017   1 WYHGKISRQEAERLLLNGkPDGTFLVRESEST-PGGYTLSVRDDGKVKHYKIqSTDNGGYYISGGVKFSSLAELVEHY 77
RhoGAP pfam00620
RhoGAP domain; GTPase activator proteins towards Rho/Rac/Cdc42-like small GTPases.
125-259 2.37e-21

RhoGAP domain; GTPase activator proteins towards Rho/Rac/Cdc42-like small GTPases.


Pssm-ID: 459875  Cd Length: 148  Bit Score: 90.68  E-value: 2.37e-21
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 125 PPILVKLVEAIEQAGLDSE-CYSRPELPAPRTDW---------SLSDVEQWDRNALYDAVKGFLLALPTPVVTPEAAAEA 194
Cdd:pfam00620   1 PLIVRKCVEYLEKRGLDTEgIFRVSGSASRIKELreafdrgpdVDLDLEEEDVHVVASLLKLFLRELPEPLLTFELYEEF 80
                          90       100       110       120       130       140       150
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 195 HRALR-----EAAGPVGPVLEPpmLPLHHALTLRFLLQHLGRVARRAPVQATAVHSLASAFGPLLLRTPP 259
Cdd:pfam00620  81 IEAAKlpdeeERLEALRELLRK--LPPANRDTLRYLLAHLNRVAQNSDVNKMNAHNLAIVFGPTLLRPPD 148
SH3 smart00326
Src homology 3 domains; Src homology 3 (SH3) domains bind to target proteins through sequences ...
5-76 7.57e-06

Src homology 3 domains; Src homology 3 (SH3) domains bind to target proteins through sequences containing proline and hydrophobic amino acids. Pro-containing polypeptides may bind to SH3 domains in 2 different binding orientations.


Pssm-ID: 214620 [Multi-domain]  Cd Length: 56  Bit Score: 43.68  E-value: 7.57e-06
                           10        20        30        40        50        60        70
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1868045105    5 EGFQYRAVYPFRRERPEDLELLPGDLLVVSRValqalgvadggercpHNVGWMPGFNERtRQRGDFPGTYVE 76
Cdd:smart00326   1 EGPQVRALYDYTAQDPDELSFKKGDIITVLEK---------------SDDGWWKGRLGR-GKEGLFPSNYVE 56
SMC_prok_B TIGR02168
chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of ...
391-600 3.77e-05

chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of chromosomes) proteins bind DNA and act in organizing and segregating chromosomes for partition. SMC proteins are found in bacteria, archaea, and eukaryotes. This family represents the SMC protein of most bacteria. The smc gene is often associated with scpB (TIGR00281) and scpA genes, where scp stands for segregation and condensation protein. SMC was shown (in Caulobacter crescentus) to be induced early in S phase but present and bound to DNA throughout the cell cycle. [Cellular processes, Cell division, DNA metabolism, Chromosome-associated proteins]


Pssm-ID: 274008 [Multi-domain]  Cd Length: 1179  Bit Score: 47.36  E-value: 3.77e-05
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105  391 SVVELISHYRHESLAQYNAKLDTrLLYPVSKYQQDQVVKEDSVEAVGAQLKVYHQQYQDKSREYDQLYEEYTRTSQELQM 470
Cdd:TIGR02168  270 EELRLEVSELEEEIEELQKELYA-LANEISRLEQQKQILRERLANLERQLEELEAQLEELESKLDELAEELAELEEKLEE 348
                           90       100       110       120       130       140       150       160
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105  471 KRTAIEAFNETIKIFEEQGQTQEKCSKEY---LERFRREGNEKEMQRILLNSE--RLKSRIAEIHESRTKLEQDLRAQAS 545
Cdd:TIGR02168  349 LKEELESLEAELEELEAELEELESRLEELeeqLETLRSKVAQLELQIASLNNEieRLEARLERLEDRRERLQQEIEELLK 428
                          170       180       190       200       210       220
                   ....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105  546 -----DNREIDKRMNSLKPDLMQLRKIRDQYLVWLTQKGARQRKINEWLGIKNETEDQYS 600
Cdd:TIGR02168  429 kleeaELKELQAELEELEEELEELQEELERLEEALEELREELEEAEQALDAAERELAQLQ 488
YhaN COG4717
Uncharacterized conserved protein YhaN, contains AAA domain [Function unknown];
445-614 1.91e-04

Uncharacterized conserved protein YhaN, contains AAA domain [Function unknown];


Pssm-ID: 443752 [Multi-domain]  Cd Length: 641  Bit Score: 44.76  E-value: 1.91e-04
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 445 QQYQDKSREYDQLYEEYTRTSQELQMKRTAIEAFNETIKIFEEQGQTQEKCSKeyLERFRREGNEKEmQRIllnsERLKS 524
Cdd:COG4717    81 KEAEEKEEEYAELQEELEELEEELEELEAELEELREELEKLEKLLQLLPLYQE--LEALEAELAELP-ERL----EELEE 153
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 525 RIAEIHESRTKLEQDLRAQASDNREIDKRMNSLKPD-LMQLRKIRDQYLVWLTQKGARQRKINEWLGIKNETEDQYSLME 603
Cdd:COG4717   154 RLEELRELEEELEELEAELAELQEELEELLEQLSLAtEEELQDLAEELEELQQRLAELEEELEEAQEELEELEEELEQLE 233
                         170
                  ....*....|.
gi 1868045105 604 DEDALPHHEER 614
Cdd:COG4717   234 NELEAAALEER 244
PRK03918 PRK03918
DNA double-strand break repair ATPase Rad50;
452-569 1.52e-03

DNA double-strand break repair ATPase Rad50;


Pssm-ID: 235175 [Multi-domain]  Cd Length: 880  Bit Score: 41.97  E-value: 1.52e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 452 REYDQLYEEYTRTSQELQMKRTAIEAFNetiKIFEEQgqTQEKCSKEYLERfrregnEKEMQRILLNSERLKSRIAEIHE 531
Cdd:PRK03918  626 EELDKAFEELAETEKRLEELRKELEELE---KKYSEE--EYEELREEYLEL------SRELAGLRAELEELEKRREEIKK 694
                          90       100       110
                  ....*....|....*....|....*....|....*....
gi 1868045105 532 SRTKLEQDLRAQASDNREIDKrMNSLKPDLMQLR-KIRD 569
Cdd:PRK03918  695 TLEKLKEELEEREKAKKELEK-LEKALERVEELReKVKK 732
PksD COG3321
Acyl transferase domain in polyketide synthase (PKS) enzymes [Secondary metabolites ...
13-288 4.66e-03

Acyl transferase domain in polyketide synthase (PKS) enzymes [Secondary metabolites biosynthesis, transport and catabolism];


Pssm-ID: 442550 [Multi-domain]  Cd Length: 1386  Bit Score: 40.63  E-value: 4.66e-03
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105   13 YPFRRE-RPEDLELLPGDLLVVSRVALQALGVADGGERCPHNVGWMPGFNERTRQRGDFPGTYVEFLGPVALARPGPRPR 91
Cdd:COG3321    866 YPFQREdAAAALLAAALAAALAAAAALGALLLAALAAALAAALLALAAAAAAALALAAAALAALLALVALAAAAAALLAL 945
                           90       100       110       120       130       140       150       160
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105   92 GPRPLPARPLDGPSESGLTLADLAEQFSPPDPAPPILVKLVEAIEQAGLDSECYSRPELPAPRTDWSLSDVEQWDRNALY 171
Cdd:COG3321    946 AAAAAAAAAALAAAEAGALLLLAAAAAAAAAAAAAAAAAAAAAAAAAAAALAAAAALALLAAAALLLAAAAAAAALLALA 1025
                          170       180       190       200       210       220       230       240
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105  172 DAVKGFLLALPTPVVTPEAAAEAHRALREAAGPVGPVLEPPMLPLHHALTLRFLLQHLGRVARRAPVQATAVHSLASAFG 251
Cdd:COG3321   1026 ALLAAAAAALAAAAAAAAAAAALAALAAAAAAAAALALALAALLLLAALAELALAAAALALAAALAAAALALALAALAAA 1105
                          250       260       270
                   ....*....|....*....|....*....|....*..
gi 1868045105  252 PLLLRTPPPGGDTDGSEPGPGFPVLLLERLLQEHVDE 288
Cdd:COG3321   1106 LLLLALLAALALAAAAAALLALAALLAAAAAAAALAA 1142
 
Name Accession Description Interval E-value
iSH2_PIK3R2 cd12926
Inter-Src homology 2 (iSH2) helical domain of Class IA Phosphoinositide 3-kinase Regulatory ...
431-591 4.63e-123

Inter-Src homology 2 (iSH2) helical domain of Class IA Phosphoinositide 3-kinase Regulatory subunit 2, PIK3R2, also called p85beta; PI3Ks catalyze the transfer of the gamma-phosphoryl group from ATP to the 3-hydroxyl of the inositol ring of D-myo-phosphatidylinositol (PtdIns) or its derivatives. They play an important role in a variety of fundamental cellular processes, including cell motility, the Ras pathway, vesicle trafficking and secretion, immune cell activation, and apoptosis. They are classified according to their substrate specificity, regulation, and domain structure. Class IA PI3Ks are heterodimers of a p110 catalytic (C) subunit and a p85-related regulatory (R) subunit. The R subunit down-regulates PI3K basal activity, stabilizes the C subunit, and plays a role in the activation downstream of tyrosine kinases. All R subunits contain two SH2 domains that flank an intervening helical domain (iSH2), which binds to the N-terminal adaptor-binding domain (ABD) of the catalytic subunit. p85beta, also called PIK3R2, contains N-terminal SH3 and GAP domains. It is expressed ubiquitously but at lower levels than p85alpha. Its expression is increased in breast and colon cancer, correlates with tumor progression, and enhanced invasion. During viral infection, the viral nonstructural (NS1) protein binds p85beta specifically, which leads to PI3K activation and the promotion of viral replication. Mice deficient with PIK3R2 develop normally and exhibit moderate metabolic and immunological defects.


Pssm-ID: 214019 [Multi-domain]  Cd Length: 161  Bit Score: 363.63  E-value: 4.63e-123
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 431 DSVEAVGAQLKVYHQQYQDKSREYDQLYEEYTRTSQELQMKRTAIEAFNETIKIFEEQGQTQEKCSKEYLERFRREGNEK 510
Cdd:cd12926     1 DSVEAVGAQLKVYHQQYQDKSREYDQLYEEYTRTSQELQMKRTAIEAFNETIKIFEEQGQTQEKCSKEYLERFRREGNEK 80
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 511 EMQRILLNSERLKSRIAEIHESRTKLEQDLRAQASDNREIDKRMNSLKPDLMQLRKIRDQYLVWLTQKGARQRKINEWLG 590
Cdd:cd12926    81 EMQRILLNSERLKSRIAEIHESRTKLEQDLRAQASDNREIDKRMNSLKPDLMQLRKIRDQYLVWLTQKGARQKKINEWLG 160

                  .
gi 1868045105 591 I 591
Cdd:cd12926   161 I 161
iSH2_PIK3R3 cd12925
Inter-Src homology 2 (iSH2) helical domain of Class IA Phosphoinositide 3-kinase Regulatory ...
431-591 1.14e-96

Inter-Src homology 2 (iSH2) helical domain of Class IA Phosphoinositide 3-kinase Regulatory subunit 3, PIK3R3, also called p55gamma; PI3Ks catalyze the transfer of the gamma-phosphoryl group from ATP to the 3-hydroxyl of the inositol ring of D-myo-phosphatidylinositol (PtdIns) or its derivatives. They play an important role in a variety of fundamental cellular processes, including cell motility, the Ras pathway, vesicle trafficking and secretion, immune cell activation, and apoptosis. They are classified according to their substrate specificity, regulation, and domain structure. Class IA PI3Ks are heterodimers of a p110 catalytic (C) subunit and a p85-related regulatory (R) subunit. The R subunit down-regulates PI3K basal activity, stabilizes the C subunit, and plays a role in the activation downstream of tyrosine kinases. All R subunits contain two SH2 domains that flank an intervening helical domain (iSH2), which binds to the N-terminal adaptor-binding domain (ABD) of the catalytic subunit. p55gamma, also called PIK3R3 or p55PIK, also contains a unique N-terminal 24-amino acid residue (N24) that interacts with cell cycle modulators to promote cell cycle progression.


Pssm-ID: 214018 [Multi-domain]  Cd Length: 161  Bit Score: 295.81  E-value: 1.14e-96
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 431 DSVEAVGAQLKVYHQQYQDKSREYDQLYEEYTRTSQELQMKRTAIEAFNETIKIFEEQGQTQEKCSKEYLERFRREGNEK 510
Cdd:cd12925     1 DNIDAVGRKLQEYHSQYQEKSKEYDRLYEEYTKTSQEIQMKRTAIEAFNETIKIFEEQCHTQERYSKEYIERFRREGNEK 80
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 511 EMQRILLNSERLKSRIAEIHESRTKLEQDLRAQASDNREIDKRMNSLKPDLMQLRKIRDQYLVWLTQKGARQRKINEWLG 590
Cdd:cd12925    81 EIERIMMNYEKLKSRLGEIHDSKMRLEQDLKTQALDNREIDKKMNSIKPDLIQLRKIRDQYLVWLNHKGVRQKRINDWLG 160

                  .
gi 1868045105 591 I 591
Cdd:cd12925   161 I 161
iSH2_PIK3R1 cd12924
Inter-Src homology 2 (iSH2) helical domain of Class IA Phosphoinositide 3-kinase Regulatory ...
431-591 2.56e-90

Inter-Src homology 2 (iSH2) helical domain of Class IA Phosphoinositide 3-kinase Regulatory subunit 1, PIK3R1, also called p85alpha; PI3Ks catalyze the transfer of the gamma-phosphoryl group from ATP to the 3-hydroxyl of the inositol ring of D-myo-phosphatidylinositol (PtdIns) or its derivatives. They play an important role in a variety of fundamental cellular processes, including cell motility, the Ras pathway, vesicle trafficking and secretion, immune cell activation and apoptosis. They are classified according to their substrate specificity, regulation, and domain structure. Class IA PI3Ks are heterodimers of a p110 catalytic (C) subunit and a p85-related regulatory (R) subunit. The R subunit down-regulates PI3K basal activity, stabilizes the C subunit, and plays a role in the activation downstream of tyrosine kinases. All R subunits contain two SH2 domains that flank an intervening helical domain (iSH2), which binds to the N-terminal adaptor-binding domain (ABD) of the catalytic subunit. In addition, p85alpha, also called PIK3R1, contains N-terminal SH3 and GAP domains. p85alpha carry functions independent of its PI3K regulatory role. It can independently stimulate signaling pathways involved in cytoskeletal rearrangements. Insulin-sensitive tissues express splice variants of the PIK3R1 gene, p50alpha and p55alpha, which may play important roles in insulin signaling during lipid and glucose metabolism. Mice deficient with PIK3R1 die perinatally, indicating its importance in development.


Pssm-ID: 214017 [Multi-domain]  Cd Length: 161  Bit Score: 279.27  E-value: 2.56e-90
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 431 DSVEAVGAQLKVYHQQYQDKSREYDQLYEEYTRTSQELQMKRTAIEAFNETIKIFEEQGQTQEKCSKEYLERFRREGNEK 510
Cdd:cd12924     1 DNIEAVGKKLHEYNTQFQEKSREYDRLYEEYTRTSQEIQMKRTAIEAFNETIKIFEEQCQTQERYSKEYIEKFKREGNEK 80
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 511 EMQRILLNSERLKSRIAEIHESRTKLEQDLRAQASDNREIDKRMNSLKPDLMQLRKIRDQYLVWLTQKGARQRKINEWLG 590
Cdd:cd12924    81 EIQRIMHNYEKLKSRISEIVDSRRRLEEDLKKQAAEYREIDKRMNSIKPDLIQLRKTRDQYLMWLTQKGVRQKKLNEWLG 160

                  .
gi 1868045105 591 I 591
Cdd:cd12924   161 N 161
PI3K_P85_iSH2 pfam16454
Phosphatidylinositol 3-kinase regulatory subunit P85 inter-SH2 domain; This domain is found ...
422-590 3.76e-81

Phosphatidylinositol 3-kinase regulatory subunit P85 inter-SH2 domain; This domain is found between the two SH2 domains in phosphatidylinositol 3-kinase regulatory subunit P85. It forms a complex with the adaptor-binding domain of phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha.


Pssm-ID: 465121 [Multi-domain]  Cd Length: 161  Bit Score: 255.27  E-value: 3.76e-81
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 422 YQQDQVVKEDSVEAVGAQLKVYHQQYQDKSREYDQLYEEYTRTSQELQMKRTAIEAFNETIKIFEEQGQTQEKCSKEYle 501
Cdd:pfam16454   1 QQEDEVVKEDDIEAVGKKLIEIHKQYLEKSREYDRLYEEYNKTSQEIQMKRQALEAFNEAIKMFEEQIKLQERFSKEA-- 78
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 502 rfrregNEKEMQRILLNSERLKSRIAEIHESRTKLEQDLRAQASDNREIDKRMNSLKPDLMQLRKIRDQYLVWLTQKGAR 581
Cdd:pfam16454  79 ------QPHEIERLLENYELLKSRLKELHDSKEQLEEDLKTQKEYNRELEREMNSLKPELIQLRKQKDQYLEWLKRKGVT 152

                  ....*....
gi 1868045105 582 QRKINEWLG 590
Cdd:pfam16454 153 QEQINAWLG 161
iSH2_PI3K_IA_R cd12923
Inter-Src homology 2 (iSH2) helical domain of Class IA Phosphoinositide 3-kinase Regulatory ...
431-590 1.08e-70

Inter-Src homology 2 (iSH2) helical domain of Class IA Phosphoinositide 3-kinase Regulatory subunits; PI3Ks catalyze the transfer of the gamma-phosphoryl group from ATP to the 3-hydroxyl of the inositol ring of D-myo-phosphatidylinositol (PtdIns) or its derivatives. They play an important role in a variety of fundamental cellular processes, including cell motility, the Ras pathway, vesicle trafficking and secretion, immune cell activation, and apoptosis. They are classified according to their substrate specificity, regulation, and domain structure. Class IA PI3Ks are heterodimers of a p110 catalytic (C) subunit and a p85-related regulatory (R) subunit. The R subunit down-regulates PI3K basal activity, stabilizes the C subunit, and plays a role in the activation downstream of tyrosine kinases. All R subunits contain two SH2 domains that flank an intervening helical domain (iSH2), which binds to the N-terminal adaptor-binding domain (ABD) of the catalytic subunit. In vertebrates, there are three genes (PIK3R1, PIK3R2, and PIK3R3) that encode for different Class IA PI3K R subunits.


Pssm-ID: 214016 [Multi-domain]  Cd Length: 152  Bit Score: 227.11  E-value: 1.08e-70
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 431 DSVEAVGAQLKVYHQQYQDKSREYDQLYEEYTRTSQELQMKRTAIEAFNETIKIFEEQGQTQEKCSKEYlerfrregNEK 510
Cdd:cd12923     1 DDVEKLAKKLKEINKEYLDKSREYDELYEKYNKLSQEIQLKRQALEAFEEAVKMFEEQLRTQEKFQKEA--------QPH 72
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 511 EMQRILLNSERLKSRIAEIHESRTKLEQDLRAQASDNREIDKRMNSLKPDLMQLRKIRDQYLVWLTQKGARQRKINEWLG 590
Cdd:cd12923    73 EKQRLMENNELLKSRLKELEESKEQLEEDLRKQVAYNRELEREMNSLKPELMQLRKQKDQYLRWLKRKGVSQEEINQLLK 152
SH2_cSH2_p85_like cd09930
C-terminal Src homology 2 (cSH2) domain found in p85; Phosphoinositide 3-kinases (PI3Ks) are ...
609-712 2.36e-70

C-terminal Src homology 2 (cSH2) domain found in p85; Phosphoinositide 3-kinases (PI3Ks) are essential for cell growth, migration, and survival. p110, the catalytic subunit, is composed of an adaptor-binding domain, a Ras-binding domain, a C2 domain, a helical domain, and a kinase domain. The regulatory unit is called p85 and is composed of an SH3 domain, a RhoGap domain, a N-terminal SH2 (nSH2) domain, a inter SH2 (iSH2) domain, and C-terminal (cSH2) domain. There are 2 inhibitory interactions between p110alpha and p85 of P13K: 1) p85 nSH2 domain with the C2, helical, and kinase domains of p110alpha and 2) p85 iSH2 domain with C2 domain of p110alpha. There are 3 inhibitory interactions between p110beta and p85 of P13K: 1) p85 nSH2 domain with the C2, helical, and kinase domains of p110beta, 2) p85 iSH2 domain with C2 domain of p110alpha, and 3) p85 cSH2 domain with the kinase domain of p110alpha. It is interesting to note that p110beta is oncogenic as a wild type protein while p110alpha lacks this ability. One explanation is the idea that the regulation of p110beta by p85 is unique because of the addition of inhibitory contacts from the cSH2 domain and the loss of contacts in the iSH2 domain. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198184  Cd Length: 104  Bit Score: 224.60  E-value: 2.36e-70
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 609 PHHEERTWYVGKINRTQAEEMLSGKRDGTFLIRESSQRGCYACSVVVDGDTKHCVIYRTATGFGFAEPYNLYASLKELVL 688
Cdd:cd09930     1 PHHDERTWLVGDINRTQAEELLRGKPDGTFLIRESSTQGCYACSVVCNGEVKHCVIYKTETGYGFAEPYNLYESLKELVL 80
                          90       100
                  ....*....|....*....|....
gi 1868045105 689 HYQHASLVQHNDALTVTLAHPVRA 712
Cdd:cd09930    81 HYAHNSLEQHNDSLTVTLAYPVLA 104
SH2_nSH2_p85_like cd09942
N-terminal Src homology 2 (nSH2) domain found in p85; Phosphoinositide 3-kinases (PI3Ks) are ...
316-426 2.01e-69

N-terminal Src homology 2 (nSH2) domain found in p85; Phosphoinositide 3-kinases (PI3Ks) are essential for cell growth, migration, and survival. p110, the catalytic subunit, is composed of an adaptor-binding domain, a Ras-binding domain, a C2 domain, a helical domain, and a kinase domain. The regulatory unit is called p85 and is composed of an SH3 domain, a RhoGap domain, a N-terminal SH2 (nSH2) domain, an internal SH2 (iSH2) domain, and C-terminal (cSH2) domain. There are 2 inhibitory interactions between p110alpha and p85 of P13K: (1) p85 nSH2 domain with the C2, helical, and kinase domains of p110alpha and (2) p85 iSH2 domain with C2 domain of p110alpha. There are 3 inhibitory interactions between p110beta and p85 of P13K: (1) p85 nSH2 domain with the C2, helical, and kinase domains of p110beta, (2) p85 iSH2 domain with C2 domain of p110alpha, and (3) p85 cSH2 domain with the kinase domain of p110alpha. It is interesting to note that p110beta is oncogenic as a wild type protein while p110alpha lacks this ability. One explanation is the idea that the regulation of p110beta by p85 is unique because of the addition of inhibitory contacts from the cSH2 domain and the loss of contacts in the iSH2 domain. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198195  Cd Length: 110  Bit Score: 222.20  E-value: 2.01e-69
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 316 PPSLQDAEWYWGDISREEVNERLRDTPDGTFLVRDASSKiQGEYTLTLRKGGNNKLIKVFHRDGHYGFSEPLTFCSVVEL 395
Cdd:cd09942     1 PHSLQEAEWYWGDISREEVNEKMRDTPDGTFLVRDASTM-KGDYTLTLRKGGNNKLIKIFHRDGKYGFSDPLTFNSVVEL 79
                          90       100       110
                  ....*....|....*....|....*....|.
gi 1868045105 396 ISHYRHESLAQYNAKLDTRLLYPVSKYQQDQ 426
Cdd:cd09942    80 INYYRNNSLAEYNRKLDVKLLYPVSRFQQDQ 110
RhoGAP_p85 cd04388
RhoGAP_p85: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain present ...
110-289 1.97e-61

RhoGAP_p85: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain present in the p85 isoforms of the regulatory subunit of the class IA PI3K (phosphatidylinositol 3'-kinase). This domain is also called Bcr (breakpoint cluster region protein) homology (BH) domain. Class IA PI3Ks are heterodimers, containing a regulatory subunit (p85) and a catalytic subunit (p110) and are activated by growth factor receptor tyrosine kinases (RTKs); this activation is mediated by the p85 subunit. p85 isoforms, alpha and beta, contain a C-terminal p110-binding domain flanked by two SH2 domains, an N-terminal SH3 domain, and a RhoGAP domain flanked by two proline-rich regions. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239853  Cd Length: 200  Bit Score: 204.34  E-value: 1.97e-61
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 110 TLADLAEQFSPPDPAPPILVKLVEAIEQAGLDSECYSRPELPAPRTDWSLS--------DVEQWDRNALYDAVKGFLLAL 181
Cdd:cd04388     1 TLPDLTEQFSPPDVAPPLLIKLVEAIEKKGLESSTLYRTQSSSSLTELRQIldcdaasvDLEQFDVAALADALKRYLLDL 80
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 182 PTPVVT-PEAAAEAHRA-----LREAAGPVGPVLEPPMLPLHHALTLRFLLQHLGRVARRAPVQATAVHSLASAFGPLLL 255
Cdd:cd04388    81 PNPVIPaPVYSEMISRAqevqsSDEYAQLLRKLIRSPNLPHQYWLTLQYLLKHFFRLCQSSSKNLLSARALAEIFSPLLF 160
                         170       180       190
                  ....*....|....*....|....*....|....
gi 1868045105 256 RTPPPggdtdgSEPGPGFPVLLLERLLQEHVDEQ 289
Cdd:cd04388   161 RFQPA------SSDSPEFHIRIIEVLITSEWNER 188
SH3_PI3K_p85beta cd11909
Src Homology 3 domain of the p85beta regulatory subunit of Class IA Phosphatidylinositol ...
7-80 4.38e-42

Src Homology 3 domain of the p85beta regulatory subunit of Class IA Phosphatidylinositol 3-kinases; Class I PI3Ks convert PtdIns(4,5)P2 to the critical second messenger PtdIns(3,4,5)P3. They are heterodimers and exist in multiple isoforms consisting of one catalytic subunit (out of four isoforms) and one of several regulatory subunits. Class IA PI3Ks associate with the p85 regulatory subunit family, which contains SH3, RhoGAP, and SH2 domains. The p85 subunits recruit the PI3K p110 catalytic subunit to the membrane, where p110 phosphorylates inositol lipids. Vertebrates harbor two p85 isoforms, called alpha and beta. In addition to regulating the p110 subunit, p85beta binds CD28 and may be involved in the activation and differentiation of antigen-stimulated T cells. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies.


Pssm-ID: 212842  Cd Length: 74  Bit Score: 146.90  E-value: 4.38e-42
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 1868045105   7 FQYRAVYPFRRERPEDLELLPGDLLVVSRVALQALGVADGGERCPHNVGWMPGFNERTRQRGDFPGTYVEFLGP 80
Cdd:cd11909     1 FQYRALYPYRKEREEDIDLLPGDVLTVSRAALQALGVKEGGEQCPQSIGWILGLNERTKQRGDFPGTYVEFLGP 74
SH3_PI3K_p85 cd11776
Src Homology 3 domain of the p85 regulatory subunit of Class IA Phosphatidylinositol 3-kinases; ...
7-78 4.63e-35

Src Homology 3 domain of the p85 regulatory subunit of Class IA Phosphatidylinositol 3-kinases; Class I PI3Ks convert PtdIns(4,5)P2 to the critical second messenger PtdIns(3,4,5)P3. They are heterodimers and exist in multiple isoforms consisting of one catalytic subunit (out of four isoforms) and one of several regulatory subunits. Class IA PI3Ks associate with the p85 regulatory subunit family, which contains SH3, RhoGAP, and SH2 domains. The p85 subunits recruit the PI3K p110 catalytic subunit to the membrane, where p110 phosphorylates inositol lipids. Vertebrates harbor two p85 isoforms, called alpha and beta. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies.


Pssm-ID: 212710  Cd Length: 72  Bit Score: 127.24  E-value: 4.63e-35
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1868045105   7 FQYRAVYPFRRERPEDLELLPGDLLVVSRVALQALGVADGGERCPHNVGWMPGFNERTRQRGDFPGTYVEFL 78
Cdd:cd11776     1 VQYRALYDYEKERDEDIILKTGDVLVVENPELLALGVPDGKETVPKPEGWLEGKNERTGERGDFPGTYVEFY 72
RhoGAP smart00324
GTPase-activator protein for Rho-like GTPases; GTPase activator proteins towards Rho/Rac ...
122-285 2.60e-30

GTPase-activator protein for Rho-like GTPases; GTPase activator proteins towards Rho/Rac/Cdc42-like small GTPases. etter domain limits and outliers.


Pssm-ID: 214618  Cd Length: 174  Bit Score: 117.37  E-value: 2.60e-30
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105  122 DPAPPILVKLVEAIEQAGLDSECYSRPELPAPRTDWSLSDVEQ----------WDRNALYDAVKGFLLALPTPVVTPEAA 191
Cdd:smart00324   1 KPIPIIVEKCIEYLEKRGLDTEGIYRVSGSKSRVKELRDAFDSgpdpdldlseYDVHDVAGLLKLFLRELPEPLITYELY 80
                           90       100       110       120       130       140       150       160
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105  192 AEAHRALR---EAAGPVGPVLEPPMLPLHHALTLRFLLQHLGRVARRAPVQATAVHSLASAFGPLLLRTPPPggdTDGSE 268
Cdd:smart00324  81 EEFIEAAKledETERLRALRELLSLLPPANRATLRYLLAHLNRVAEHSEENKMTARNLAIVFGPTLLRPPDG---EVASL 157
                          170
                   ....*....|....*..
gi 1868045105  269 PGPGFPVLLLERLLQEH 285
Cdd:smart00324 158 KDIRHQNTVIEFLIENA 174
SH3_PI3K_p85alpha cd11910
Src Homology 3 domain of the p85alpha regulatory subunit of Class IA Phosphatidylinositol ...
6-79 1.54e-28

Src Homology 3 domain of the p85alpha regulatory subunit of Class IA Phosphatidylinositol 3-kinases; Class I PI3Ks convert PtdIns(4,5)P2 to the critical second messenger PtdIns(3,4,5)P3. They are heterodimers and exist in multiple isoforms consisting of one catalytic subunit (out of four isoforms) and one of several regulatory subunits. Class IA PI3Ks associate with the p85 regulatory subunit family, which contains SH3, RhoGAP, and SH2 domains. The p85 subunits recruit the PI3K p110 catalytic subunit to the membrane, where p110 phosphorylates inositol lipids. Vertebrates harbor two p85 isoforms, called alpha and beta. In addition to regulating the p110 subunit, p85alpha interacts with activated FGFR3. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies.


Pssm-ID: 212843  Cd Length: 75  Bit Score: 108.83  E-value: 1.54e-28
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 1868045105   6 GFQYRAVYPFRRERPEDLELLPGDLLVVSRVALQALGVADGGERCPHNVGWMPGFNERTRQRGDFPGTYVEFLG 79
Cdd:cd11910     1 GYQYRALYDYKKEREEDIDLHLGDILTVNKGSLLALGFSEGQEARPEEIGWLNGYNETTGERGDFPGTYVEYIG 74
SH2 smart00252
Src homology 2 domains; Src homology 2 domains bind phosphotyrosine-containing polypeptides ...
323-404 7.06e-24

Src homology 2 domains; Src homology 2 domains bind phosphotyrosine-containing polypeptides via 2 surface pockets. Specificity is provided via interaction with residues that are distinct from the phosphotyrosine. Only a single occurrence of a SH2 domain has been found in S. cerevisiae.


Pssm-ID: 214585 [Multi-domain]  Cd Length: 84  Bit Score: 95.76  E-value: 7.06e-24
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105  323 EWYWGDISREEVNERLRDTPDGTFLVRDaSSKIQGEYTLTLRKGGNNKLIKVFH-RDGHYGFSEPLTFCSVVELISHYRH 401
Cdd:smart00252   2 PWYHGFISREEAEKLLKNEGDGDFLVRD-SESSPGDYVLSVRVKGKVKHYRIRRnEDGKFYLEGGRKFPSLVELVEHYQK 80

                   ...
gi 1868045105  402 ESL 404
Cdd:smart00252  81 NSL 83
SH2 pfam00017
SH2 domain;
616-690 1.16e-23

SH2 domain;


Pssm-ID: 425423 [Multi-domain]  Cd Length: 77  Bit Score: 94.98  E-value: 1.16e-23
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 1868045105 616 WYVGKINRTQAEEML-SGKRDGTFLIRES-SQRGCYACSVVVDGDTKHCVIYRTATG--FGFAEPYnlYASLKELVLHY 690
Cdd:pfam00017   1 WYHGKISRQEAERLLlNGKPDGTFLVRESeSTPGGYTLSVRDDGKVKHYKIQSTDNGgyYISGGVK--FSSLAELVEHY 77
SH2 smart00252
Src homology 2 domains; Src homology 2 domains bind phosphotyrosine-containing polypeptides ...
616-696 1.68e-23

Src homology 2 domains; Src homology 2 domains bind phosphotyrosine-containing polypeptides via 2 surface pockets. Specificity is provided via interaction with residues that are distinct from the phosphotyrosine. Only a single occurrence of a SH2 domain has been found in S. cerevisiae.


Pssm-ID: 214585 [Multi-domain]  Cd Length: 84  Bit Score: 94.60  E-value: 1.68e-23
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105  616 WYVGKINRTQAEEMLSGKRDGTFLIRESSQ-RGCYACSVVVDGDTKHCVIYRTATGFGFAEPYNLYASLKELVLHYQHAS 694
Cdd:smart00252   3 WYHGFISREEAEKLLKNEGDGDFLVRDSESsPGDYVLSVRVKGKVKHYRIRRNEDGKFYLEGGRKFPSLVELVEHYQKNS 82

                   ..
gi 1868045105  695 LV 696
Cdd:smart00252  83 LG 84
SH2 pfam00017
SH2 domain;
324-399 9.57e-22

SH2 domain;


Pssm-ID: 425423 [Multi-domain]  Cd Length: 77  Bit Score: 89.58  E-value: 9.57e-22
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 1868045105 324 WYWGDISREEVNERLRDT-PDGTFLVRDASSKiQGEYTLTLRKGGNNKLIKV-FHRDGHYGFSEPLTFCSVVELISHY 399
Cdd:pfam00017   1 WYHGKISRQEAERLLLNGkPDGTFLVRESEST-PGGYTLSVRDDGKVKHYKIqSTDNGGYYISGGVKFSSLAELVEHY 77
RhoGAP pfam00620
RhoGAP domain; GTPase activator proteins towards Rho/Rac/Cdc42-like small GTPases.
125-259 2.37e-21

RhoGAP domain; GTPase activator proteins towards Rho/Rac/Cdc42-like small GTPases.


Pssm-ID: 459875  Cd Length: 148  Bit Score: 90.68  E-value: 2.37e-21
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 125 PPILVKLVEAIEQAGLDSE-CYSRPELPAPRTDW---------SLSDVEQWDRNALYDAVKGFLLALPTPVVTPEAAAEA 194
Cdd:pfam00620   1 PLIVRKCVEYLEKRGLDTEgIFRVSGSASRIKELreafdrgpdVDLDLEEEDVHVVASLLKLFLRELPEPLLTFELYEEF 80
                          90       100       110       120       130       140       150
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 195 HRALR-----EAAGPVGPVLEPpmLPLHHALTLRFLLQHLGRVARRAPVQATAVHSLASAFGPLLLRTPP 259
Cdd:pfam00620  81 IEAAKlpdeeERLEALRELLRK--LPPANRDTLRYLLAHLNRVAQNSDVNKMNAHNLAIVFGPTLLRPPD 148
SH2_Vav_family cd09940
Src homology 2 (SH2) domain found in the Vav family; Vav proteins are involved in several ...
323-419 1.56e-20

Src homology 2 (SH2) domain found in the Vav family; Vav proteins are involved in several processes that require cytoskeletal reorganization, such as the formation of the immunological synapse (IS), phagocytosis, platelet aggregation, spreading, and transformation. Vavs function as guanine nucleotide exchange factors (GEFs) for the Rho/Rac family of GTPases. Vav family members have several conserved motifs/domains including: a leucine-rich region, a leucine-zipper, a calponin homology (CH) domain, an acidic domain, a Dbl-homology (DH) domain, a pleckstrin homology (PH) domain, a cysteine-rich domain, 2 SH3 domains, a proline-rich region, and a SH2 domain. Vavs are the only known Rho GEFs that have both the DH/PH motifs and SH2/SH3 domains in the same protein. The leucine-rich helix-loop-helix (HLH) domain is thought to be involved in protein heterodimerization with other HLH proteins and it may function as a negative regulator by forming inactive heterodimers. The CH domain is usually involved in the association with filamentous actin, but in Vav it controls NFAT stimulation, Ca2+ mobilization, and its transforming activity. Acidic domains are involved in protein-protein interactions and contain regulatory tyrosines. The DH domain is a GDP-GTP exchange factor on Rho/Rac GTPases. The PH domain in involved in interactions with GTP-binding proteins, lipids and/or phosphorylated serine/threonine residues. The SH3 domain is involved in localization of proteins to specific sites within the cell interacting with protein with proline-rich sequences. The SH2 domain mediates a high affinity interaction with tyrosine phosphorylated proteins. There are three Vav mammalian family members: Vav1 which is expressed in the hematopoietic system, Vav2 and Vav3 are more ubiquitously expressed. The members here include insect and amphibian Vavs. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198193  Cd Length: 102  Bit Score: 86.96  E-value: 1.56e-20
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 323 EWYWGDISREEVNERLRDTPDGTFLVRdASSKIQGEYTLTLRKGGNNKLIKVFHR-DGHYGFSEPLTFCSVVELISHYRH 401
Cdd:cd09940     6 LWFVGEMERDTAENRLENRPDGTYLVR-VRPQGETQYALSIKYNGDVKHMKIEQRsDGLYYLSESRHFKSLVELVNYYER 84
                          90
                  ....*....|....*...
gi 1868045105 402 ESLAQYNAKLDTRLLYPV 419
Cdd:cd09940    85 NSLGENFAGLDTTLKWPY 102
SH2 cd00173
Src homology 2 (SH2) domain; In general, SH2 domains are involved in signal transduction; they ...
616-690 4.82e-20

Src homology 2 (SH2) domain; In general, SH2 domains are involved in signal transduction; they bind pTyr-containing polypeptide ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. They are present in a wide array of proteins including: adaptor proteins (Nck1, Crk, Grb2), scaffolds (Slp76, Shc, Dapp1), kinases (Src, Syk, Fps, Tec), phosphatases (Shp-1, Shp-2), transcription factors (STAT1), Ras signaling molecules (Ras-Gap), ubiquitination factors (c-Cbl), cytoskeleton regulators (Tensin), signal regulators (SAP), and phospholipid second messengers (PLCgamma), amongst others.


Pssm-ID: 198173 [Multi-domain]  Cd Length: 79  Bit Score: 84.81  E-value: 4.82e-20
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 1868045105 616 WYVGKINRTQAEEMLSGKRDGTFLIRES-SQRGCYACSVVVD-GDTKHCVIYRTATGFGFAEPYNL-YASLKELVLHY 690
Cdd:cd00173     2 WFHGSISREEAERLLRGKPDGTFLVRESsSEPGDYVLSVRSGdGKVKHYLIERNEGGYYLLGGSGRtFPSLPELVEHY 79
SH2_cSH2_p85_like cd09930
C-terminal Src homology 2 (cSH2) domain found in p85; Phosphoinositide 3-kinases (PI3Ks) are ...
317-419 3.57e-19

C-terminal Src homology 2 (cSH2) domain found in p85; Phosphoinositide 3-kinases (PI3Ks) are essential for cell growth, migration, and survival. p110, the catalytic subunit, is composed of an adaptor-binding domain, a Ras-binding domain, a C2 domain, a helical domain, and a kinase domain. The regulatory unit is called p85 and is composed of an SH3 domain, a RhoGap domain, a N-terminal SH2 (nSH2) domain, a inter SH2 (iSH2) domain, and C-terminal (cSH2) domain. There are 2 inhibitory interactions between p110alpha and p85 of P13K: 1) p85 nSH2 domain with the C2, helical, and kinase domains of p110alpha and 2) p85 iSH2 domain with C2 domain of p110alpha. There are 3 inhibitory interactions between p110beta and p85 of P13K: 1) p85 nSH2 domain with the C2, helical, and kinase domains of p110beta, 2) p85 iSH2 domain with C2 domain of p110alpha, and 3) p85 cSH2 domain with the kinase domain of p110alpha. It is interesting to note that p110beta is oncogenic as a wild type protein while p110alpha lacks this ability. One explanation is the idea that the regulation of p110beta by p85 is unique because of the addition of inhibitory contacts from the cSH2 domain and the loss of contacts in the iSH2 domain. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198184  Cd Length: 104  Bit Score: 83.23  E-value: 3.57e-19
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 317 PSLQDAEWYWGDISREEVNERLRDTPDGTFLVRDASSkiQGEYTLTLRKGGNNKLIKVFHRDGHYGFSEPLT-FCSVVEL 395
Cdd:cd09930     1 PHHDERTWLVGDINRTQAEELLRGKPDGTFLIRESST--QGCYACSVVCNGEVKHCVIYKTETGYGFAEPYNlYESLKEL 78
                          90       100
                  ....*....|....*....|....
gi 1868045105 396 ISHYRHESLAQYNAKLDTRLLYPV 419
Cdd:cd09930    79 VLHYAHNSLEQHNDSLTVTLAYPV 102
SH2_nSH2_p85_like cd09942
N-terminal Src homology 2 (nSH2) domain found in p85; Phosphoinositide 3-kinases (PI3Ks) are ...
612-713 4.16e-19

N-terminal Src homology 2 (nSH2) domain found in p85; Phosphoinositide 3-kinases (PI3Ks) are essential for cell growth, migration, and survival. p110, the catalytic subunit, is composed of an adaptor-binding domain, a Ras-binding domain, a C2 domain, a helical domain, and a kinase domain. The regulatory unit is called p85 and is composed of an SH3 domain, a RhoGap domain, a N-terminal SH2 (nSH2) domain, an internal SH2 (iSH2) domain, and C-terminal (cSH2) domain. There are 2 inhibitory interactions between p110alpha and p85 of P13K: (1) p85 nSH2 domain with the C2, helical, and kinase domains of p110alpha and (2) p85 iSH2 domain with C2 domain of p110alpha. There are 3 inhibitory interactions between p110beta and p85 of P13K: (1) p85 nSH2 domain with the C2, helical, and kinase domains of p110beta, (2) p85 iSH2 domain with C2 domain of p110alpha, and (3) p85 cSH2 domain with the kinase domain of p110alpha. It is interesting to note that p110beta is oncogenic as a wild type protein while p110alpha lacks this ability. One explanation is the idea that the regulation of p110beta by p85 is unique because of the addition of inhibitory contacts from the cSH2 domain and the loss of contacts in the iSH2 domain. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198195  Cd Length: 110  Bit Score: 83.14  E-value: 4.16e-19
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 612 EERTWYVGKINRTQAEEMLSGKRDGTFLIRE-SSQRGCYACSVVVDGDTKHCVIYRTATGFGFAEPYNlYASLKELVLHY 690
Cdd:cd09942     5 QEAEWYWGDISREEVNEKMRDTPDGTFLVRDaSTMKGDYTLTLRKGGNNKLIKIFHRDGKYGFSDPLT-FNSVVELINYY 83
                          90       100
                  ....*....|....*....|...
gi 1868045105 691 QHASLVQHNDALTVTLAHPVRAP 713
Cdd:cd09942    84 RNNSLAEYNRKLDVKLLYPVSRF 106
SH2 cd00173
Src homology 2 (SH2) domain; In general, SH2 domains are involved in signal transduction; they ...
323-399 3.53e-18

Src homology 2 (SH2) domain; In general, SH2 domains are involved in signal transduction; they bind pTyr-containing polypeptide ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites. They are present in a wide array of proteins including: adaptor proteins (Nck1, Crk, Grb2), scaffolds (Slp76, Shc, Dapp1), kinases (Src, Syk, Fps, Tec), phosphatases (Shp-1, Shp-2), transcription factors (STAT1), Ras signaling molecules (Ras-Gap), ubiquitination factors (c-Cbl), cytoskeleton regulators (Tensin), signal regulators (SAP), and phospholipid second messengers (PLCgamma), amongst others.


Pssm-ID: 198173 [Multi-domain]  Cd Length: 79  Bit Score: 79.42  E-value: 3.53e-18
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 323 EWYWGDISREEVNERLRDTPDGTFLVRDaSSKIQGEYTLTLRKGGN---NKLIKVFHRDGHYGFSEPLTFCSVVELISHY 399
Cdd:cd00173     1 PWFHGSISREEAERLLRGKPDGTFLVRE-SSSEPGDYVLSVRSGDGkvkHYLIERNEGGYYLLGGSGRTFPSLPELVEHY 79
SH2_Vav_family cd09940
Src homology 2 (SH2) domain found in the Vav family; Vav proteins are involved in several ...
616-710 5.42e-18

Src homology 2 (SH2) domain found in the Vav family; Vav proteins are involved in several processes that require cytoskeletal reorganization, such as the formation of the immunological synapse (IS), phagocytosis, platelet aggregation, spreading, and transformation. Vavs function as guanine nucleotide exchange factors (GEFs) for the Rho/Rac family of GTPases. Vav family members have several conserved motifs/domains including: a leucine-rich region, a leucine-zipper, a calponin homology (CH) domain, an acidic domain, a Dbl-homology (DH) domain, a pleckstrin homology (PH) domain, a cysteine-rich domain, 2 SH3 domains, a proline-rich region, and a SH2 domain. Vavs are the only known Rho GEFs that have both the DH/PH motifs and SH2/SH3 domains in the same protein. The leucine-rich helix-loop-helix (HLH) domain is thought to be involved in protein heterodimerization with other HLH proteins and it may function as a negative regulator by forming inactive heterodimers. The CH domain is usually involved in the association with filamentous actin, but in Vav it controls NFAT stimulation, Ca2+ mobilization, and its transforming activity. Acidic domains are involved in protein-protein interactions and contain regulatory tyrosines. The DH domain is a GDP-GTP exchange factor on Rho/Rac GTPases. The PH domain in involved in interactions with GTP-binding proteins, lipids and/or phosphorylated serine/threonine residues. The SH3 domain is involved in localization of proteins to specific sites within the cell interacting with protein with proline-rich sequences. The SH2 domain mediates a high affinity interaction with tyrosine phosphorylated proteins. There are three Vav mammalian family members: Vav1 which is expressed in the hematopoietic system, Vav2 and Vav3 are more ubiquitously expressed. The members here include insect and amphibian Vavs. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198193  Cd Length: 102  Bit Score: 79.64  E-value: 5.42e-18
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 616 WYVGKINRTQAEEMLSGKRDGTFLIRESSQR-GCYACSVVVDGDTKHCVIYRTATGFGFAEPYNLYASLKELVLHYQHAS 694
Cdd:cd09940     7 WFVGEMERDTAENRLENRPDGTYLVRVRPQGeTQYALSIKYNGDVKHMKIEQRSDGLYYLSESRHFKSLVELVNYYERNS 86
                          90
                  ....*....|....*.
gi 1868045105 695 LVQHNDALTVTLAHPV 710
Cdd:cd09940    87 LGENFAGLDTTLKWPY 102
SH2_SOCS_family cd09923
Src homology 2 (SH2) domain found in suppressor of cytokine signaling (SOCS) family; SH2 ...
323-399 1.50e-16

Src homology 2 (SH2) domain found in suppressor of cytokine signaling (SOCS) family; SH2 domain found in SOCS proteins. SOCS was first recognized as a group of cytokine-inducible SH2 (CIS) domain proteins comprising eight family members in human (CIS and SOCS1-SOCS7). In addition to the SH2 domain, SOCS proteins have a variable N-terminal domain and a conserved SOCS box in the C-terminal domain. SOCS proteins bind to a substrate via their SH2 domain. The prototypical members, CIS and SOCS1-SOCS3, have been shown to regulate growth hormone signaling in vitro and in a classic negative feedback response compete for binding at phosphotyrosine sites in JAK kinase and receptor pathways to displace effector proteins and target bound receptors for proteasomal degradation. Loss of SOCS activity results in excessive cytokine signaling associated with a variety of hematopoietic, autoimmune, and inflammatory diseases and certain cancers. Members (SOCS4-SOCS7) were identified by their conserved SOCS box, an adapter motif of 3 helices that associates substrate binding domains, such as the SOCS SH2 domain, ankryin, and WD40 with ubiquitin ligase components. These show limited cytokine induction. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198178  Cd Length: 81  Bit Score: 74.93  E-value: 1.50e-16
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 323 EWYWGDISREEVNERLRDTPDGTFLVRDASskiQGEYTLTL--RKGGNNKLIKVFHRDGHYGFSE----PLTFCSVVELI 396
Cdd:cd09923     1 GWYWGGITRYEAEELLAGKPEGTFLVRDSS---DSRYLFSVsfRTYGRTLHARIEYSNGRFSFDSsdpsVPRFPCVVELI 77

                  ...
gi 1868045105 397 SHY 399
Cdd:cd09923    78 EHY 80
SH2_Vav3 cd10407
Src homology 2 (SH2) domain found in the Vav3 proteins; Proto-oncogene vav is a member of the ...
324-418 4.78e-14

Src homology 2 (SH2) domain found in the Vav3 proteins; Proto-oncogene vav is a member of the Dbl family of guanine nucleotide exchange factors (GEF) for the Rho family of GTP binding proteins. All vavs are activated by tyrosine phosphorylation leading to their activation. There are three Vav mammalian family members: Vav1 which is expressed in the hematopoietic system, and Vav2 and Vav3 are more ubiquitously expressed. Vav3 preferentially activates RhoA, RhoG and, to a lesser extent, Rac1. Alternatively spliced transcript variants encoding different isoforms have been described for this gene. VAV3 has been shown to interact with Grb2. Vav proteins are involved in several processes that require cytoskeletal reorganization, such as the formation of the immunological synapse (IS), phagocytosis, platelet aggregation, spreading, and transformation. Vavs function as guanine nucleotide exchange factors (GEFs) for the Rho/Rac family of GTPases. Vav family members have several conserved motifs/domains including: a leucine-rich region, a leucine-zipper, a calponin homology (CH) domain, an acidic domain, a Dbl-homology (DH) domain, a pleckstrin homology (PH) domain, a cysteine-rich domain, 2 SH3 domains, a proline-rich region, and a SH2 domain. Vavs are the only known Rho GEFs that have both the DH/PH motifs and SH2/SH3 domains in the same protein. The leucine-rich helix-loop-helix (HLH) domain is thought to be involved in protein heterodimerization with other HLH proteins and it may function as a negative regulator by forming inactive heterodimers. The CH domain is usually involved in the association with filamentous actin, but in Vav it controls NFAT stimulation, Ca2+ mobilization, and its transforming activity. Acidic domains are involved in protein-protein interactions and contain regulatory tyrosines. The DH domain is a GDP-GTP exchange factor on Rho/Rac GTPases. The PH domain in involved in interactions with GTP-binding proteins, lipids and/or phosphorylated serine/threonine residues. The SH3 domain is involved in localization of proteins to specific sites within the cell interacting with protein with proline-rich sequences. The SH2 domain mediates a high affinity interaction with tyrosine phosphorylated proteins. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198270  Cd Length: 103  Bit Score: 68.49  E-value: 4.78e-14
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 324 WYWGDISREEVNERLRDTPDGTFLVRDaSSKIQGEYTLTLRKGGNNKLIKVFHRDGHYGFSEPLTFCSVVELISHYRHES 403
Cdd:cd10407     7 WYAGAMERLQAETELINRVNSTYLVRH-RTKESGEYAISIKYNNEVKHIKILTRDGFFHIAENRKFKSLMELVEYYKHHS 85
                          90
                  ....*....|....*
gi 1868045105 404 LAQYNAKLDTRLLYP 418
Cdd:cd10407    86 LKEGFRSLDTTLQFP 100
SH2_csk_like cd09937
Src homology 2 (SH2) domain found in Carboxyl-Terminal Src Kinase (Csk); Both the C-terminal ...
324-421 1.91e-13

Src homology 2 (SH2) domain found in Carboxyl-Terminal Src Kinase (Csk); Both the C-terminal Src kinase (CSK) and CSK-homologous kinase (CHK) are members of the CSK-family of protein tyrosine kinases. These proteins suppress activity of Src-family kinases (SFK) by selectively phosphorylating the conserved C-terminal tail regulatory tyrosine by a similar mechanism. CHK is also capable of inhibiting SFKs by a non-catalytic mechanism that involves binding of CHK to SFKs to form stable protein complexes. The unphosphorylated form of SFKs is inhibited by CSK and CHK by a two-step mechanism. The first step involves the formation of a complex of SFKs with CSK/CHK with the SFKs in the complex are inactive. The second step, involves the phosphorylation of the C-terminal tail tyrosine of SFKs, which then dissociates and adopt an inactive conformation. The structural basis of how the phosphorylated SFKs dissociate from CSK/CHK to adopt the inactive conformation is not known. The inactive conformation of SFKs is stabilized by two intramolecular inhibitory interactions: (a) the pYT:SH2 interaction in which the phosphorylated C-terminal tail tyrosine (YT) binds to the SH2 domain, and (b) the linker:SH3 interaction of which the SH2-kinase domain linker binds to the SH3 domain. SFKs are activated by multiple mechanisms including binding of the ligands to the SH2 and SH3 domains to displace the two inhibitory intramolecular interactions, autophosphorylation, and dephosphorylation of YT. By selective phosphorylation and the non-catalytic inhibitory mechanism CSK and CHK are able to inhibit the active forms of SFKs. CSK and CHK are regulated by phosphorylation and inter-domain interactions. They both contain SH3, SH2, and kinase domains separated by the SH3-SH2 connector and SH2 kinase linker, intervening segments separating the three domains. They lack a conserved tyrosine phosphorylation site in the kinase domain and the C-terminal tail regulatory tyrosine phosphorylation site. The CSK SH2 domain is crucial for stabilizing the kinase domain in the active conformation. A disulfide bond here regulates CSK kinase activity. The subcellular localization and activity of CSK are regulated by its SH2 domain. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198190  Cd Length: 98  Bit Score: 66.54  E-value: 1.91e-13
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 324 WYWGDISREEVNERLRDTPDGTFLVRDaSSKIQGEYTLTLRKGGNNKLIKVFHRDGHYGFSEPLTFCSVVELISHYRHES 403
Cdd:cd09937     5 WFHGKISREEAERLLQPPEDGLFLVRE-STNYPGDYTLCVSFEGKVEHYRVIYRNGKLTIDEEEYFENLIQLVEHYTKDA 83
                          90
                  ....*....|....*...
gi 1868045105 404 LAqynakLDTRLLYPVSK 421
Cdd:cd09937    84 DG-----LCTRLVKPKVK 96
SH2_SOCS6 cd10387
Src homology 2 (SH2) domain found in suppressor of cytokine signaling (SOCS) proteins; SH2 ...
324-398 2.64e-13

Src homology 2 (SH2) domain found in suppressor of cytokine signaling (SOCS) proteins; SH2 domain found in SOCS proteins. SOCS was first recognized as a group of cytokine-inducible SH2 (CIS) domain proteins comprising eight family members in human (CIS and SOCS1-SOCS7). In addition to the SH2 domain, SOCS proteins have a variable N-terminal domain and a conserved SOCS box in the C-terminal domain. SOCS proteins bind to a substrate via their SH2 domain. The prototypical members, CIS and SOCS1-SOCS3, have been shown to regulate growth hormone signaling in vitro and in a classic negative feedback response compete for binding at phosphotyrosine sites in JAK kinase and receptor pathways to displace effector proteins and target bound receptors for proteasomal degradation. Loss of SOCS activity results in excessive cytokine signaling associated with a variety of hematopoietic, autoimmune, and inflammatory diseases and certain cancers. Members (SOCS4-SOCS7) were identified by their conserved SOCS box, an adapter motif of 3 helices that associates substrate binding domains, such as the SOCS SH2 domain, ankryin, and WD40 with ubiquitin ligase components. These show limited cytokine induction. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198250  Cd Length: 100  Bit Score: 66.40  E-value: 2.64e-13
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 324 WYWGDISREEVNERLRDTPDGTFLVRDASSKiqgEYTLTL--RKGGNNKLIKVFHRDGHYGF---SEPLTFCSVVELISH 398
Cdd:cd10387    12 WYWGPITRWEAEGKLANVPDGSFLVRDSSDD---RYLLSLsfRSHGKTLHTRIEHSNGRFSFyeqPDVEGHTSIVDLIEH 88
SH2_Tec_family cd09934
Src homology 2 (SH2) domain found in Tec-like proteins; The Tec protein tyrosine kinase is the ...
318-420 2.67e-13

Src homology 2 (SH2) domain found in Tec-like proteins; The Tec protein tyrosine kinase is the founding member of a family that includes Btk, Itk, Bmx, and Txk. The members have a PH domain, a zinc-binding motif, a SH3 domain, a SH2 domain, and a protein kinase catalytic domain. Btk is involved in B-cell receptor signaling with mutations in Btk responsible for X-linked agammaglobulinemia (XLA) in humans and X-linked immunodeficiency (xid) in mice. Itk is involved in T-cell receptor signaling. Tec is expressed in both T and B cells, and is thought to function in activated and effector T lymphocytes to induce the expression of genes regulated by NFAT transcription factors. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198188  Cd Length: 104  Bit Score: 66.27  E-value: 2.67e-13
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 318 SLQDAEWYWGDISREEVNERLRDT-PDGTFLVRDASSKiqGEYTLTL-RKGGNNKLIKVFH----RDGHYGFSEPLTFCS 391
Cdd:cd09934     2 NLEKYEWYVGDMSRQRAESLLKQEdKEGCFVVRNSSTK--GLYTVSLfTKVPGSPHVKHYHikqnARSEFYLAEKHCFET 79
                          90       100
                  ....*....|....*....|....*....
gi 1868045105 392 VVELISHYRHESlaqynAKLDTRLLYPVS 420
Cdd:cd09934    80 IPELINYHQHNS-----GGLATRLKYPVC 103
SH2_Tec_family cd09934
Src homology 2 (SH2) domain found in Tec-like proteins; The Tec protein tyrosine kinase is the ...
616-710 4.94e-13

Src homology 2 (SH2) domain found in Tec-like proteins; The Tec protein tyrosine kinase is the founding member of a family that includes Btk, Itk, Bmx, and Txk. The members have a PH domain, a zinc-binding motif, a SH3 domain, a SH2 domain, and a protein kinase catalytic domain. Btk is involved in B-cell receptor signaling with mutations in Btk responsible for X-linked agammaglobulinemia (XLA) in humans and X-linked immunodeficiency (xid) in mice. Itk is involved in T-cell receptor signaling. Tec is expressed in both T and B cells, and is thought to function in activated and effector T lymphocytes to induce the expression of genes regulated by NFAT transcription factors. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198188  Cd Length: 104  Bit Score: 65.50  E-value: 4.94e-13
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 616 WYVGKINRTQAEEMLSGK-RDGTFLIRESSQRGCYACSV----VVDGDTKHCVIYRTATG-FGFAEPYnLYASLKELVlH 689
Cdd:cd09934     8 WYVGDMSRQRAESLLKQEdKEGCFVVRNSSTKGLYTVSLftkvPGSPHVKHYHIKQNARSeFYLAEKH-CFETIPELI-N 85
                          90       100
                  ....*....|....*....|..
gi 1868045105 690 YQhaslvQHNDALTVT-LAHPV 710
Cdd:cd09934    86 YH-----QHNSGGLATrLKYPV 102
SH2_ABL cd09935
Src homology 2 (SH2) domain found in Abelson murine lymphosarcoma virus (ABL) proteins; ...
612-709 1.66e-12

Src homology 2 (SH2) domain found in Abelson murine lymphosarcoma virus (ABL) proteins; ABL-family proteins are highly conserved tyrosine kinases. Each ABL protein contains an SH3-SH2-TK (Src homology 3-Src homology 2-tyrosine kinase) domain cassette, which confers autoregulated kinase activity and is common among nonreceptor tyrosine kinases. Several types of posttranslational modifications control ABL catalytic activity, subcellular localization, and stability, with consequences for both cytoplasmic and nuclear ABL functions. Binding partners provide additional regulation of ABL catalytic activity, substrate specificity, and downstream signaling. By combining this cassette with actin-binding and -bundling domain, ABL proteins are capable of connecting phosphoregulation with actin-filament reorganization. Vertebrate paralogs, ABL1 and ABL2, have evolved to perform specialized functions. ABL1 includes nuclear localization signals and a DNA binding domain which is used to mediate DNA damage-repair functions, while ABL2 has additional binding capacity for actin and for microtubules to enhance its cytoskeletal remodeling functions. SH2 is involved in several autoinhibitory mechanism that constrain the enzymatic activity of the ABL-family kinases. In one mechanism SH2 and SH3 cradle the kinase domain while a cap sequence stabilizes the inactive conformation resulting in a locked inactive state. Another involves phosphatidylinositol 4,5-bisphosphate (PIP2) which binds the SH2 domain through residues normally required for phosphotyrosine binding in the linker segment between the SH2 and kinase domains. The SH2 domain contributes to ABL catalytic activity and target site specificity. It is thought that the ABL catalytic site and SH2 pocket have coevolved to recognize the same sequences. Recent work now supports a hierarchical processivity model in which the substrate target site most compatible with ABL kinase domain preferences is phosphorylated with greatest efficiency. If this site is compatible with the ABL SH2 domain specificity, it will then reposition and dock in the SH2 pocket. This mechanism also explains how ABL kinases phosphorylates poor targets on the same substrate if they are properly positioned and how relatively poor substrate proteins might be recruited to ABL through a complex with strong substrates that can also dock with the SH2 pocket. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198189  Cd Length: 94  Bit Score: 63.95  E-value: 1.66e-12
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 612 EERTWYVGKINRTQAEEMLSGKRDGTFLIRES-SQRGCYACSVVVDGDTKHCVIYRTATGFGFAEPYNLYASLKELVLHY 690
Cdd:cd09935     1 EKHSWYHGPISRNAAEYLLSSGINGSFLVRESeSSPGQYSISLRYDGRVYHYRISEDSDGKVYVTQEHRFNTLAELVHHH 80
                          90
                  ....*....|....*....
gi 1868045105 691 QhaslvQHNDALTVTLAHP 709
Cdd:cd09935    81 S-----KNADGLITTLRYP 94
SH2_SOCS2 cd10383
Src homology 2 (SH2) domain found in suppressor of cytokine signaling (SOCS) proteins; SH2 ...
318-399 7.09e-12

Src homology 2 (SH2) domain found in suppressor of cytokine signaling (SOCS) proteins; SH2 domain found in SOCS proteins. SOCS was first recognized as a group of cytokine-inducible SH2 (CIS) domain proteins comprising eight family members in human (CIS and SOCS1-SOCS7). In addition to the SH2 domain, SOCS proteins have a variable N-terminal domain and a conserved SOCS box in the C-terminal domain. SOCS proteins bind to a substrate via their SH2 domain. The prototypical members, CIS and SOCS1-SOCS3, have been shown to regulate growth hormone signaling in vitro and in a classic negative feedback response compete for binding at phosphotyrosine sites in JAK kinase and receptor pathways to displace effector proteins and target bound receptors for proteasomal degradation. Loss of SOCS activity results in excessive cytokine signaling associated with a variety of hematopoietic, autoimmune, and inflammatory diseases and certain cancers. Members (SOCS4-SOCS7) were identified by their conserved SOCS box, an adapter motif of 3 helices that associates substrate binding domains, such as the SOCS SH2 domain, ankryin, and WD40 with ubiquitin ligase components. These show limited cytokine induction. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198246  Cd Length: 103  Bit Score: 62.21  E-value: 7.09e-12
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 318 SLQDAEWYWGDISREEVNERLRDTPDGTFLVRDASskiQGEYTLTL----RKGGNNklIKVFHRDGHYGF-------SEP 386
Cdd:cd10383     3 ELSQTGWYWGSMTVNEAKEKLQDAPEGTFLVRDSS---HSDYLLTIsvktSAGPTN--LRIEYQDGKFRLdsiicvkSKL 77
                          90
                  ....*....|...
gi 1868045105 387 LTFCSVVELISHY 399
Cdd:cd10383    78 KQFDSVVHLIEYY 90
SH2_BLNK_SLP-76 cd09929
Src homology 2 (SH2) domain found in B-cell linker (BLNK) protein and SH2 domain-containing ...
318-419 9.62e-12

Src homology 2 (SH2) domain found in B-cell linker (BLNK) protein and SH2 domain-containing leukocyte protein of 76 kDa (SLP-76); BLNK (also known as SLP-65 or BASH) is an important adaptor protein expressed in B-lineage cells. BLNK consists of a N-terminal sterile alpha motif (SAM) domain and a C-terminal SH2 domain. BLNK is a cytoplasmic protein, but a part of it is bound to the plasma membrane through an N-terminal leucine zipper motif and transiently bound to a cytoplasmic domain of Iga through its C-terminal SH2 domain upon B cell antigen receptor (BCR)-stimulation. A non-ITAM phosphotyrosine in Iga is necessary for the binding with the BLNK SH2 domain and/or for normal BLNK function in signaling and B cell activation. Upon phosphorylation BLNK binds Btk and PLCgamma2 through their SH2 domains and mediates PLCgamma2 activation by Btk. BLNK also binds other signaling molecules such as Vav, Grb2, Syk, and HPK1. BLNK has been shown to be necessary for BCR-mediated Ca2+ mobilization, for the activation of mitogen-activated protein kinases such as ERK, JNK, and p38 in a chicken B cell line DT40, and for activation of transcription factors such as NF-AT and NF-kappaB in human or mouse B cells. BLNK is involved in B cell development, B cell survival, activation, proliferation, and T-independent immune responses. BLNK is structurally homologous to SLP-76. SLP-76 and (linker for activation of T cells) LAT are adaptor/linker proteins in T cell antigen receptor activation and T cell development. BLNK interacts with many downstream signaling proteins that interact directly with both SLP-76 and LAT. New data suggest functional complementation of SLP-76 and LAT in T cell antigen receptor function with BLNK in BCR function. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198183  Cd Length: 121  Bit Score: 62.33  E-value: 9.62e-12
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 318 SLQDAEWYWGDISREEVNERLRDT-PDGTFLVRDaSSKIQGEYTLTLRKGGNNKL----IKVFHRDGHYGFSEPL----T 388
Cdd:cd09929     7 DLLPKEWYAGNIDRKEAEEALRRSnKDGTFLVRD-SSGKDSSQPYTLMVLYNDKVyniqIRFLENTRQYALGTGLrgeeT 85
                          90       100       110
                  ....*....|....*....|....*....|....*
gi 1868045105 389 FCSVVELISHYRHESL----AQYNAKLDTRLLYPV 419
Cdd:cd09929    86 FSSVAEIIEHHQKTPLllidGKDNTKDSTCLLYAA 120
SH2_Src_family cd09933
Src homology 2 (SH2) domain found in the Src family of non-receptor tyrosine kinases; The Src ...
616-709 1.25e-11

Src homology 2 (SH2) domain found in the Src family of non-receptor tyrosine kinases; The Src family kinases are nonreceptor tyrosine kinases that have been implicated in pathways regulating proliferation, angiogenesis, invasion and metastasis, and bone metabolism. It is thought that transforming ability of Src is linked to its ability to activate key signaling molecules in these pathways, rather than through direct activity. As such blocking Src activation has been a target for drug companies. Src family members can be divided into 3 groups based on their expression pattern: 1) Src, Fyn, and Yes; 2) Blk, Fgr, Hck, Lck, and Lyn; and 3) Frk-related kinases Frk/Rak and Iyk/Bsk Of these, cellular c-Src is the best studied and most frequently implicated in oncogenesis. The c-Src contains five distinct regions: a unique N-terminal domain, an SH3 domain, an SH2 domain, a kinase domain and a regulatory tail, as do the other members of the family. Src exists in both active and inactive conformations. Negative regulation occurs through phosphorylation of Tyr, resulting in an intramolecular association between phosphorylated Tyr and the SH2 domain of SRC, which locks the protein in a closed conformation. Further stabilization of the inactive state occurs through interactions between the SH3 domain and a proline-rich stretch of residues within the kinase domain. Conversely, dephosphorylation of Tyr allows SRC to assume an open conformation. Full activity requires additional autophosphorylation of a Tyr residue within the catalytic domain. Loss of the negative-regulatory C-terminal segment has been shown to result in increased activity and transforming potential. Phosphorylation of the C-terminal Tyr residue by C-terminal Src kinase (Csk) and Csk homology kinase results in increased intramolecular interactions and consequent Src inactivation. Specific phosphatases, protein tyrosine phosphatase a (PTPa) and the SH-containing phosphatases SHP1/SHP2, have also been shown to take a part in Src activation. Src is also activated by direct binding of focal adhesion kinase (Fak) and Crk-associated substrate (Cas) to the SH2 domain. SRC activity can also be regulated by numerous receptor tyrosine kinases (RTKs), such as Her2, epidermal growth factor receptor (EGFR), fibroblast growth factor receptor, platelet-derived growth factor receptor (PDGFR), and vascular endothelial growth factor receptor (VEGFR). In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 199827  Cd Length: 101  Bit Score: 61.44  E-value: 1.25e-11
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 616 WYVGKINRTQAEEML--SGKRDGTFLIRES-SQRGCYACSvVVDGDT------KHCVIYRTATGFGFAEPYNLYASLKEL 686
Cdd:cd09933     5 WFFGKIKRKDAEKLLlaPGNPRGTFLIRESeTTPGAYSLS-VRDGDDargdtvKHYRIRKLDNGGYYITTRATFPTLQEL 83
                          90       100
                  ....*....|....*....|...
gi 1868045105 687 VLHYQhaslvQHNDALTVTLAHP 709
Cdd:cd09933    84 VQHYS-----KDADGLCCRLTVP 101
SH2_C-SH2_PLC_gamma_like cd09932
C-terminal Src homology 2 (C-SH2) domain in Phospholipase C gamma; Phospholipase C gamma is a ...
611-710 1.37e-11

C-terminal Src homology 2 (C-SH2) domain in Phospholipase C gamma; Phospholipase C gamma is a signaling molecule that is recruited to the C-terminal tail of the receptor upon autophosphorylation of a highly conserved tyrosine. PLCgamma is composed of a Pleckstrin homology (PH) domain followed by an elongation factor (EF) domain, 2 catalytic regions of PLC domains that flank 2 tandem SH2 domains (N-SH2, C-SH2), and ending with a SH3 domain and C2 domain. N-SH2 SH2 domain-mediated interactions represent a crucial step in transmembrane signaling by receptor tyrosine kinases. SH2 domains recognize phosphotyrosine (pY) in the context of particular sequence motifs in receptor phosphorylation sites. Both N-SH2 and C-SH2 have a very similar binding affinity to pY. But in growth factor stimulated cells these domains bind to different target proteins. N-SH2 binds to pY containing sites in the C-terminal tails of tyrosine kinases and other receptors. Recently it has been shown that this interaction is mediated by phosphorylation-independent interactions between a secondary binding site found exclusively on the N-SH2 domain and a region of the FGFR1 tyrosine kinase domain. This secondary site on the SH2 cooperates with the canonical pY site to regulate selectivity in mediating a specific cellular process. C-SH2 binds to an intramolecular site on PLCgamma itself which allows it to hydrolyze phosphatidylinositol-4,5-bisphosphate into diacylglycerol and inositol triphosphate. These then activate protein kinase C and release calcium. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198186  Cd Length: 104  Bit Score: 61.51  E-value: 1.37e-11
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 611 HEERTWYVGKINRTQAEEMLSG-KRDGTFLIRESSQ-RGCYACSVVVDGDTKHCVIYRTATGF--GFAEpynlYASLKEL 686
Cdd:cd09932     1 HESKEWFHANLTREQAEEMLMRvPRDGAFLVRPSETdPNSFAISFRAEGKIKHCRIKQEGRLFviGTSQ----FESLVEL 76
                          90       100
                  ....*....|....*....|....
gi 1868045105 687 VLHYQHASLVQHndaltVTLAHPV 710
Cdd:cd09932    77 VSYYEKHPLYRK-----IKLRYPV 95
SH2_Tec_Bmx cd10399
Src homology 2 (SH2) domain found in Tec protein, Bmx; A member of the Tec protein tyrosine ...
612-710 2.44e-11

Src homology 2 (SH2) domain found in Tec protein, Bmx; A member of the Tec protein tyrosine kinase Bmx is expressed in the endothelium of large arteries, fetal endocardium, adult endocardium of the left ventricle, bone marrow, lung, testis, granulocytes, myeloid cell lines, and prostate cell lines. Bmx is involved in the regulation of Rho and serum response factor (SRF). Bmx has been shown to interact with PAK1, PTK2, PTPN21, and RUFY1. Most of the Tec family members have a PH domain (Txk and the short (type 1) splice variant of Drosophila Btk29A are exceptions), a Tec homology (TH) domain, a SH3 domain, a SH2 domain, and a protein kinase catalytic domain. The TH domain consists of a Zn2+-binding Btk motif and a proline-rich region. The Btk motif is found in Tec kinases, Ras GAP, and IGBP. It is crucial for the function of Tec PH domains. It is not present in Txk and the type 1 splice form of the Drosophila homolog. The proline-rich regions are highly conserved for the most part with the exception of Bmx whose residues surrounding the PXXP motif are not conserved (TH-like) and Btk29A which is entirely unique with large numbers of glycine residues (TH-extended). Tec family members all lack a C-terminal tyrosine having an autoinhibitory function in its phosphorylated state. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198262  Cd Length: 106  Bit Score: 61.12  E-value: 2.44e-11
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 612 EERTWYVGKINRTQAEEMLSGK-RDGTFLIRESSQRGCYACSVVV------DGDTKHCVIYRTATG-FGFAEPYnLYASL 683
Cdd:cd10399     4 DAYDWFAGNISRSQSEQLLRQKgKEGAFMVRNSSQVGMYTVSLFSkavndkKGTVKHYHVHTNAENkLYLAENY-CFDSI 82
                          90       100
                  ....*....|....*....|....*...
gi 1868045105 684 KELVLHYqhaslvQHNDALTVT-LAHPV 710
Cdd:cd10399    83 PKLIHYH------QHNSAGMITrLRHPV 104
SH2_Src_Frk cd10369
Src homology 2 (SH2) domain found in the Fyn-related kinase (Frk); Frk is a member of the Src ...
612-709 3.38e-11

Src homology 2 (SH2) domain found in the Fyn-related kinase (Frk); Frk is a member of the Src non-receptor type tyrosine kinase family of proteins. The Frk subfamily is composed of Frk/Rak and Iyk/Bsk/Gst. It is expressed primarily epithelial cells. Frk is a nuclear protein and may function during G1 and S phase of the cell cycle and suppress growth. Unlike the other Src members it lacks a glycine at position 2 of SH4 which is important for addition of a myristic acid moiety that is involved in targeting Src PTKs to cellular membranes. FRK and SHB exert similar effects when overexpressed in rat phaeochromocytoma (PC12) and beta-cells, where both induce PC12 cell differentiation and beta-cell proliferation. Under conditions that cause beta-cell degeneration these proteins augment beta-cell apoptosis. The FRK-SHB responses involve FAK and insulin receptor substrates (IRS) -1 and -2. Frk has been demonstrated to interact with retinoblastoma protein. Frk regulates PTEN protein stability by phosphorylating PTEN, which in turn prevents PTEN degradation. Frk also plays a role in regulation of embryonal pancreatic beta cell formation. Frk has a unique N-terminal domain, an SH3 domain, an SH2 domain, a kinase domain and a regulatory tail, as do the other members of the family. Like the other members of the Src family the SH2 domain in addition to binding the target, also plays an autoinhibitory role by binding to its activation loop. The tryosine involved is at the same site as the tyrosine involved in the autophosphorylation of Src. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 199831  Cd Length: 96  Bit Score: 60.28  E-value: 3.38e-11
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 612 EERTWYVGKINRTQAEEML--SGKRDGTFLIRES-SQRGCYACSVVVDGDTKHCVIYRTATGFGFAEPYNLYASLKELVL 688
Cdd:cd10369     1 QAEPWFFGAIKRADAEKQLlySENQTGAFLIRESeSQKGEFSLSVLDGGVVKHYRIRRLDEGGFFLTRRKTFSTLNEFVN 80
                          90       100
                  ....*....|....*....|.
gi 1868045105 689 HYQHASlvqhnDALTVTLAHP 709
Cdd:cd10369    81 YYTTTS-----DGLCVKLGKP 96
SH2_Src_Src42 cd10370
Src homology 2 (SH2) domain found in the Src oncogene at 42A (Src42); Src42 is a member of the ...
612-709 3.60e-11

Src homology 2 (SH2) domain found in the Src oncogene at 42A (Src42); Src42 is a member of the Src non-receptor type tyrosine kinase family of proteins. The integration of receptor tyrosine kinase-induced RAS and Src42 signals by Connector eNhancer of KSR (CNK) as a two-component input is essential for RAF activation in Drosophila. Src42 is present in a wide variety of organisms including: California sea hare, pea aphid, yellow fever mosquito, honey bee, Panamanian leafcutter ant, and sea urchin. Src42 has a unique N-terminal domain, an SH3 domain, an SH2 domain, a kinase domain and a regulatory tail, as do the other members of the family. Like the other members of the Src family the SH2 domain in addition to binding the target, also plays an autoinhibitory role by binding to its C-terminal tail. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198233  Cd Length: 96  Bit Score: 60.21  E-value: 3.60e-11
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 612 EERTWYVGKINRTQAEE--MLSGKRDGTFLIRES-SQRGCYACSvVVDGDT-KHCVIYRTATGFGFAEPYNLYASLKELV 687
Cdd:cd10370     1 EAEPWYFGKIKRIEAEKklLLPENEHGAFLIRDSeSRHNDYSLS-VRDGDTvKHYRIRQLDEGGFFIARRTTFRTLQELV 79
                          90       100
                  ....*....|....*....|..
gi 1868045105 688 LHYQHASlvqhnDALTVTLAHP 709
Cdd:cd10370    80 EHYSKDS-----DGLCVNLRKP 96
SH2_SOCS_family cd09923
Src homology 2 (SH2) domain found in suppressor of cytokine signaling (SOCS) family; SH2 ...
616-690 1.37e-10

Src homology 2 (SH2) domain found in suppressor of cytokine signaling (SOCS) family; SH2 domain found in SOCS proteins. SOCS was first recognized as a group of cytokine-inducible SH2 (CIS) domain proteins comprising eight family members in human (CIS and SOCS1-SOCS7). In addition to the SH2 domain, SOCS proteins have a variable N-terminal domain and a conserved SOCS box in the C-terminal domain. SOCS proteins bind to a substrate via their SH2 domain. The prototypical members, CIS and SOCS1-SOCS3, have been shown to regulate growth hormone signaling in vitro and in a classic negative feedback response compete for binding at phosphotyrosine sites in JAK kinase and receptor pathways to displace effector proteins and target bound receptors for proteasomal degradation. Loss of SOCS activity results in excessive cytokine signaling associated with a variety of hematopoietic, autoimmune, and inflammatory diseases and certain cancers. Members (SOCS4-SOCS7) were identified by their conserved SOCS box, an adapter motif of 3 helices that associates substrate binding domains, such as the SOCS SH2 domain, ankryin, and WD40 with ubiquitin ligase components. These show limited cytokine induction. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198178  Cd Length: 81  Bit Score: 57.98  E-value: 1.37e-10
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 1868045105 616 WYVGKINRTQAEEMLSGKRDGTFLIRESSQRGCY-ACSVVVDGDTKHCVIYRTATGFGFAE---PYNLYASLKELVLHY 690
Cdd:cd09923     2 WYWGGITRYEAEELLAGKPEGTFLVRDSSDSRYLfSVSFRTYGRTLHARIEYSNGRFSFDSsdpSVPRFPCVVELIEHY 80
SH2_SOCS7 cd10388
Src homology 2 (SH2) domain found in suppressor of cytokine signaling (SOCS) proteins; SH2 ...
318-396 1.37e-10

Src homology 2 (SH2) domain found in suppressor of cytokine signaling (SOCS) proteins; SH2 domain found in SOCS proteins. SOCS was first recognized as a group of cytokine-inducible SH2 (CIS) domain proteins comprising eight family members in human (CIS and SOCS1-SOCS7). In addition to the SH2 domain, SOCS proteins have a variable N-terminal domain and a conserved SOCS box in the C-terminal domain. SOCS proteins bind to a substrate via their SH2 domain. The prototypical members, CIS and SOCS1-SOCS3, have been shown to regulate growth hormone signaling in vitro and in a classic negative feedback response compete for binding at phosphotyrosine sites in JAK kinase and receptor pathways to displace effector proteins and target bound receptors for proteasomal degradation. Loss of SOCS activity results in excessive cytokine signaling associated with a variety of hematopoietic, autoimmune, and inflammatory diseases and certain cancers. Members (SOCS4-SOCS7) were identified by their conserved SOCS box, an adapter motif of 3 helices that associates substrate binding domains, such as the SOCS SH2 domain, ankryin, and WD40 with ubiquitin ligase components. These show limited cytokine induction. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198251  Cd Length: 101  Bit Score: 58.52  E-value: 1.37e-10
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 318 SLQDAEWYWGDISREEVNERLRDTPDGTFLVRDASSKiqgEYTLTLRKGGNNKL--IKVFHRDGHYGFSEPLTFC----S 391
Cdd:cd10388     6 ELKDCGWYWGPMSWEDAEKVLSNKPDGSFLVRDSSDD---RYIFSLSFRSQGSVhhTRIEQYQGTFSLGSRNKFVdrsqS 82

                  ....*
gi 1868045105 392 VVELI 396
Cdd:cd10388    83 LVEFI 87
SH2_Vav3 cd10407
Src homology 2 (SH2) domain found in the Vav3 proteins; Proto-oncogene vav is a member of the ...
616-711 1.65e-10

Src homology 2 (SH2) domain found in the Vav3 proteins; Proto-oncogene vav is a member of the Dbl family of guanine nucleotide exchange factors (GEF) for the Rho family of GTP binding proteins. All vavs are activated by tyrosine phosphorylation leading to their activation. There are three Vav mammalian family members: Vav1 which is expressed in the hematopoietic system, and Vav2 and Vav3 are more ubiquitously expressed. Vav3 preferentially activates RhoA, RhoG and, to a lesser extent, Rac1. Alternatively spliced transcript variants encoding different isoforms have been described for this gene. VAV3 has been shown to interact with Grb2. Vav proteins are involved in several processes that require cytoskeletal reorganization, such as the formation of the immunological synapse (IS), phagocytosis, platelet aggregation, spreading, and transformation. Vavs function as guanine nucleotide exchange factors (GEFs) for the Rho/Rac family of GTPases. Vav family members have several conserved motifs/domains including: a leucine-rich region, a leucine-zipper, a calponin homology (CH) domain, an acidic domain, a Dbl-homology (DH) domain, a pleckstrin homology (PH) domain, a cysteine-rich domain, 2 SH3 domains, a proline-rich region, and a SH2 domain. Vavs are the only known Rho GEFs that have both the DH/PH motifs and SH2/SH3 domains in the same protein. The leucine-rich helix-loop-helix (HLH) domain is thought to be involved in protein heterodimerization with other HLH proteins and it may function as a negative regulator by forming inactive heterodimers. The CH domain is usually involved in the association with filamentous actin, but in Vav it controls NFAT stimulation, Ca2+ mobilization, and its transforming activity. Acidic domains are involved in protein-protein interactions and contain regulatory tyrosines. The DH domain is a GDP-GTP exchange factor on Rho/Rac GTPases. The PH domain in involved in interactions with GTP-binding proteins, lipids and/or phosphorylated serine/threonine residues. The SH3 domain is involved in localization of proteins to specific sites within the cell interacting with protein with proline-rich sequences. The SH2 domain mediates a high affinity interaction with tyrosine phosphorylated proteins. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198270  Cd Length: 103  Bit Score: 58.48  E-value: 1.65e-10
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 616 WYVGKINRTQAEEMLSGKRDGTFLIR-ESSQRGCYACSVVVDGDTKHCVIYRTATGFGFAEPYNlYASLKELVLHYQHAS 694
Cdd:cd10407     7 WYAGAMERLQAETELINRVNSTYLVRhRTKESGEYAISIKYNNEVKHIKILTRDGFFHIAENRK-FKSLMELVEYYKHHS 85
                          90
                  ....*....|....*..
gi 1868045105 695 LVQHNDALTVTLAHPVR 711
Cdd:cd10407    86 LKEGFRSLDTTLQFPYK 102
SH2_N-SH2_PLC_gamma_like cd10341
N-terminal Src homology 2 (N-SH2) domain in Phospholipase C gamma; Phospholipase C gamma is a ...
323-404 1.82e-10

N-terminal Src homology 2 (N-SH2) domain in Phospholipase C gamma; Phospholipase C gamma is a signaling molecule that is recruited to the C-terminal tail of the receptor upon autophosphorylation of a highly conserved tyrosine. PLCgamma is composed of a Pleckstrin homology (PH) domain followed by an elongation factor (EF) domain, 2 catalytic regions of PLC domains that flank 2 tandem SH2 domains (N-SH2, C-SH2), and ending with a SH3 domain and C2 domain. N-SH2 SH2 domain-mediated interactions represent a crucial step in transmembrane signaling by receptor tyrosine kinases. SH2 domains recognize phosphotyrosine (pY) in the context of particular sequence motifs in receptor phosphorylation sites. Both N-SH2 and C-SH2 have a very similar binding affinity to pY. But in growth factor stimulated cells these domains bind to different target proteins. N-SH2 binds to pY containing sites in the C-terminal tails of tyrosine kinases and other receptors. Recently it has been shown that this interaction is mediated by phosphorylation-independent interactions between a secondary binding site found exclusively on the N-SH2 domain and a region of the FGFR1 tyrosine kinase domain. This secondary site on the SH2 cooperates with the canonical pY site to regulate selectivity in mediating a specific cellular process. C-SH2 binds to an intramolecular site on PLCgamma itself which allows it to hydrolyze phosphatidylinositol-4,5-bisphosphate into diacylglycerol and inositol triphosphate. These then activate protein kinase C and release calcium. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 199829  Cd Length: 99  Bit Score: 58.13  E-value: 1.82e-10
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 323 EWYWGDIS--REEVNERLRD---TPDGTFLVRDASSKIqGEYTLTLRKGG--NNKLIKVFHRDGH--YGFSEPLTFCSVV 393
Cdd:cd10341     5 PWFHGKLGdgRDEAEKLLLEyceGGDGTFLVRESETFV-GDYTLSFWRNGkvQHCRIRSRQENGEkkYYLTDNLVFDSLY 83
                          90
                  ....*....|.
gi 1868045105 394 ELISHYRHESL 404
Cdd:cd10341    84 ELIDYYRQNPL 94
SH2_Vav2 cd10406
Src homology 2 (SH2) domain found in the Vav2 proteins; Proto-oncogene vav is a member of the ...
324-420 2.31e-10

Src homology 2 (SH2) domain found in the Vav2 proteins; Proto-oncogene vav is a member of the Dbl family of guanine nucleotide exchange factors (GEF) for the Rho family of GTP binding proteins. All vavs are activated by tyrosine phosphorylation leading to their activation. There are three Vav mammalian family members: Vav1 which is expressed in the hematopoietic system, and Vav2 and Vav3 are more ubiquitously expressed. Vav2 is a GEF for RhoA, RhoB and RhoG and may activate Rac1 and Cdc42. Vav2 has been shown to interact with CD19 and Grb2. Alternatively spliced transcript variants encoding different isoforms have been found for Vav2. Vav proteins are involved in several processes that require cytoskeletal reorganization, such as the formation of the immunological synapse (IS), phagocytosis, platelet aggregation, spreading, and transformation. Vavs function as guanine nucleotide exchange factors (GEFs) for the Rho/Rac family of GTPases. Vav family members have several conserved motifs/domains including: a leucine-rich region, a leucine-zipper, a calponin homology (CH) domain, an acidic domain, a Dbl-homology (DH) domain, a pleckstrin homology (PH) domain, a cysteine-rich domain, 2 SH3 domains, a proline-rich region, and a SH2 domain. Vavs are the only known Rho GEFs that have both the DH/PH motifs and SH2/SH3 domains in the same protein. The leucine-rich helix-loop-helix (HLH) domain is thought to be involved in protein heterodimerization with other HLH proteins and it may function as a negative regulator by forming inactive heterodimers. The CH domain is usually involved in the association with filamentous actin, but in Vav it controls NFAT stimulation, Ca2+ mobilization, and its transforming activity. Acidic domains are involved in protein-protein interactions and contain regulatory tyrosines. The DH domain is a GDP-GTP exchange factor on Rho/Rac GTPases. The PH domain in involved in interactions with GTP-binding proteins, lipids and/or phosphorylated serine/threonine residues. The SH3 domain is involved in localization of proteins to specific sites within the cell interacting with protein with proline-rich sequences. The SH2 domain mediates a high affinity interaction with tyrosine phosphorylated proteins. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198269  Cd Length: 103  Bit Score: 58.15  E-value: 2.31e-10
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 324 WYWGDISREEVNERLRDTPDGTFLVRDASSKIQgEYTLTLRKGGNNKLIKVFHRDGHYGFSEPLTFCSVVELISHYRHES 403
Cdd:cd10406     7 WFAGNMERQQTDNLLKSHASGTYLIRERPAEAE-RFAISIKFNDEVKHIKVVEKDNWIHITEAKKFESLLELVEYYQCHS 85
                          90
                  ....*....|....*..
gi 1868045105 404 LAQYNAKLDTRLLYPVS 420
Cdd:cd10406    86 LKESFKQLDTTLKYPYK 102
SH2_Src_family cd09933
Src homology 2 (SH2) domain found in the Src family of non-receptor tyrosine kinases; The Src ...
323-403 3.82e-10

Src homology 2 (SH2) domain found in the Src family of non-receptor tyrosine kinases; The Src family kinases are nonreceptor tyrosine kinases that have been implicated in pathways regulating proliferation, angiogenesis, invasion and metastasis, and bone metabolism. It is thought that transforming ability of Src is linked to its ability to activate key signaling molecules in these pathways, rather than through direct activity. As such blocking Src activation has been a target for drug companies. Src family members can be divided into 3 groups based on their expression pattern: 1) Src, Fyn, and Yes; 2) Blk, Fgr, Hck, Lck, and Lyn; and 3) Frk-related kinases Frk/Rak and Iyk/Bsk Of these, cellular c-Src is the best studied and most frequently implicated in oncogenesis. The c-Src contains five distinct regions: a unique N-terminal domain, an SH3 domain, an SH2 domain, a kinase domain and a regulatory tail, as do the other members of the family. Src exists in both active and inactive conformations. Negative regulation occurs through phosphorylation of Tyr, resulting in an intramolecular association between phosphorylated Tyr and the SH2 domain of SRC, which locks the protein in a closed conformation. Further stabilization of the inactive state occurs through interactions between the SH3 domain and a proline-rich stretch of residues within the kinase domain. Conversely, dephosphorylation of Tyr allows SRC to assume an open conformation. Full activity requires additional autophosphorylation of a Tyr residue within the catalytic domain. Loss of the negative-regulatory C-terminal segment has been shown to result in increased activity and transforming potential. Phosphorylation of the C-terminal Tyr residue by C-terminal Src kinase (Csk) and Csk homology kinase results in increased intramolecular interactions and consequent Src inactivation. Specific phosphatases, protein tyrosine phosphatase a (PTPa) and the SH-containing phosphatases SHP1/SHP2, have also been shown to take a part in Src activation. Src is also activated by direct binding of focal adhesion kinase (Fak) and Crk-associated substrate (Cas) to the SH2 domain. SRC activity can also be regulated by numerous receptor tyrosine kinases (RTKs), such as Her2, epidermal growth factor receptor (EGFR), fibroblast growth factor receptor, platelet-derived growth factor receptor (PDGFR), and vascular endothelial growth factor receptor (VEGFR). In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 199827  Cd Length: 101  Bit Score: 57.21  E-value: 3.82e-10
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 323 EWYWGDISREEVnERL---RDTPDGTFLVRDASSKiQGEYTLTLRKGGNNKLIKVFH---R---DGHYGFSEPLTFCSVV 393
Cdd:cd09933     4 EWFFGKIKRKDA-EKLllaPGNPRGTFLIRESETT-PGAYSLSVRDGDDARGDTVKHyriRkldNGGYYITTRATFPTLQ 81
                          90
                  ....*....|
gi 1868045105 394 ELISHYRHES 403
Cdd:cd09933    82 ELVQHYSKDA 91
SH2_Fps_family cd10361
Src homology 2 (SH2) domain found in feline sarcoma, Fujinami poultry sarcoma, and fes-related ...
317-399 7.15e-10

Src homology 2 (SH2) domain found in feline sarcoma, Fujinami poultry sarcoma, and fes-related (Fes/Fps/Fer) proteins; The Fps family consists of members Fps/Fes and Fer/Flk/Tyk3. They are cytoplasmic protein-tyrosine kinases implicated in signaling downstream from cytokines, growth factors and immune receptors. Fes/Fps/Fer contains three coiled-coil regions, an SH2 (Src-homology-2) and a TK (tyrosine kinase catalytic) domain signature. Members here include: Fps/Fes, Fer, Kin-31, and In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198224  Cd Length: 90  Bit Score: 56.00  E-value: 7.15e-10
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 317 PSLQDAEWYWGDISREEVNERLRDtpDGTFLVR--DASSKIQGEYTLTLRKGGNNKLIkVFHRDGHYGFS-EPLTFCSVV 393
Cdd:cd10361     1 KDLENEPYYHGLLPREDAEELLKN--DGDFLVRktEPKGGGKRKLVLSVRWDGKIRHF-VINRDDGGKYYiEGKSFKSIS 77

                  ....*.
gi 1868045105 394 ELISHY 399
Cdd:cd10361    78 ELINYY 83
SH2_Nck_family cd09943
Src homology 2 (SH2) domain found in the Nck family; Nck proteins are adaptors that modulate ...
323-400 8.25e-10

Src homology 2 (SH2) domain found in the Nck family; Nck proteins are adaptors that modulate actin cytoskeleton dynamics by linking proline-rich effector molecules to tyrosine kinases or phosphorylated signaling intermediates. There are two members known in this family: Nck1 (Nckalpha) and Nck2 (Nckbeta and Growth factor receptor-bound protein 4 (Grb4)). They are characterized by having 3 SH3 domains and a C-terminal SH2 domain. Nck1 and Nck2 have overlapping functions as determined by gene knockouts. Both bind receptor tyrosine kinases and other tyrosine-phosphorylated proteins through their SH2 domains. In addition they also bind distinct targets. Neuronal signaling proteins: EphrinB1, EphrinB2, and Disabled-1 (Dab-1) all bind to Nck-2 exclusively. And in the case of PDGFR, Tyr(P)751 binds to Nck1 while Tyr(P)1009 binds to Nck2. Nck1 and Nck2 have a role in the infection process of enteropathogenic Escherichia coli (EPEC). Their SH3 domains are involved in recruiting and activating the N-WASP/Arp2/3 complex inducing actin polymerization resulting in the production of pedestals, dynamic bacteria-presenting protrusions of the plasma membrane. A similar thing occurs in the vaccinia virus where motile plasma membrane projections are formed beneath the virus. Recently it has been shown that the SH2 domains of both Nck1 and Nck2 bind the G-protein coupled receptor kinase-interacting protein 1 (GIT1) in a phosphorylation-dependent manner. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198196  Cd Length: 93  Bit Score: 55.98  E-value: 8.25e-10
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 323 EWYWGDISREE----VNERLRdtpDGTFLVRDASSKiQGEYTLTLRKGGNNKLIKVFHRDGHYGFSEPlTFCSVVELISH 398
Cdd:cd09943     2 PWYYGRITRHQaetlLNEHGH---EGDFLIRDSESN-PGDYSVSLKAPGRNKHFKVQVVDNVYCIGQR-KFHTMDELVEH 76

                  ..
gi 1868045105 399 YR 400
Cdd:cd09943    77 YK 78
RhoGAP_Bcr cd04387
RhoGAP_Bcr: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of Bcr ...
125-266 9.55e-10

RhoGAP_Bcr: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of Bcr (breakpoint cluster region protein)-like proteins. Bcr is a multidomain protein with a variety of enzymatic functions. It contains a RhoGAP and a Rho GEF domain, a Ser/Thr kinase domain, an N-terminal oligomerization domain, and a C-terminal PDZ binding domain, in addition to PH and C2 domains. Bcr is a negative regulator of: i) RacGTPase, via the Rho GAP domain, ii) the Ras-Raf-MEK-ERK pathway, via phosphorylation of the Ras binding protein AF-6, and iii) the Wnt signaling pathway through binding beta-catenin. Bcr can form a complex with beta-catenin and Tcf1. The Wnt signaling pathway is involved in cell proliferation, differentiation, and cell renewal. Bcr was discovered as a fusion partner of Abl. The Bcr-Abl fusion is characteristic for a large majority of chronic myelogenous leukemias (CML). Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239852 [Multi-domain]  Cd Length: 196  Bit Score: 58.79  E-value: 9.55e-10
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 125 PPILVKLVEAIEQAGLDSECYSR-----PELPAPRTDWS------LSDVEQWDRNALYDAVKGFLLALPTPVVTPEAAAE 193
Cdd:cd04387    17 PYIVRQCVEEVERRGMEEVGIYRisgvaTDIQALKAAFDtnnkdvSVMLSEMDVNAIAGTLKLYFRELPEPLFTDELYPN 96
                          90       100       110       120       130       140       150
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 1868045105 194 AHRALrEAAGPVgpVLEPPMLPLHHAL------TLRFLLQHLGRVARRAPVQATAVHSLASAFGPLLLRtpPPGGDTDG 266
Cdd:cd04387    97 FAEGI-ALSDPV--AKESCMLNLLLSLpdpnlvTFLFLLHHLKRVAEREEVNKMSLHNLATVFGPTLLR--PSEKESKI 170
SH2_Nterm_shark_like cd10347
N-terminal Src homology 2 (SH2) domain found in SH2 domains, ANK, and kinase domain (shark) ...
616-690 9.58e-10

N-terminal Src homology 2 (SH2) domain found in SH2 domains, ANK, and kinase domain (shark) proteins; These non-receptor protein-tyrosine kinases contain two SH2 domains, five ankyrin (ANK)-like repeats, and a potential tyrosine phosphorylation site in the carboxyl-terminal tail which resembles the phosphorylation site in members of the src family. Like, mammalian non-receptor protein-tyrosine kinases, ZAP-70 and syk proteins, they do not have SH3 domains. However, the presence of ANK makes these unique among protein-tyrosine kinases. Both tyrosine kinases and ANK repeats have been shown to transduce developmental signals, and SH2 domains are known to participate intimately in tyrosine kinase signaling. These tyrosine kinases are believed to be involved in epithelial cell polarity. The members of this family include the shark (SH2 domains, ANK, and kinase domain) gene in Drosophila and yellow fever mosquitos, as well as the hydra protein HTK16. Drosophila Shark is proposed to transduce intracellularly the Crumbs, a protein necessary for proper organization of ectodermal epithelia, intercellular signal. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198210  Cd Length: 81  Bit Score: 55.46  E-value: 9.58e-10
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 1868045105 616 WYVGKINRTQAEEMLS--GKRDGTFLIRES-SQRGCYACSVVVDGDTKHCVIYRTATG-FGFAEPYNLYASLKELVLHY 690
Cdd:cd10347     3 WYHGKISREVAEALLLreGGRDGLFLVREStSAPGDYVLSLLAQGEVLHYQIRRHGEDaFFSDDGPLIFHGLDTLIEHY 81
SH2_Tec_Txk cd10398
Src homology 2 (SH2) domain found in Tec protein, Txk; A member of the Tec protein tyrosine ...
612-711 9.60e-10

Src homology 2 (SH2) domain found in Tec protein, Txk; A member of the Tec protein tyrosine kinase Txk is expressed in thymus, spleen, lymph node, T lymphocytes, NK cells, mast cell lines, and myeloid cell line. Txk plays a role in TCR signal transduction, T cell development, and selection which is analogous to the function of Itk. Txk has been shown to interact with IFN-gamma. Unlike most of the Tec family members Txk lacks a PH domain. Instead Txk has a unique region containing a palmitoylated cysteine string which has a similar membrane tethering function as the PH domain. Txk also has a zinc-binding motif, a SH3 domain, a SH2 domain, and a protein kinase catalytic domain. The TH domain consists of a Zn2+-binding Btk motif and a proline-rich region. The Btk motif is found in Tec kinases, Ras GAP, and IGBP and crucial to the function of the PH domain. It is not present in Txk which is not surprising since it lacks a PH domain. The type 1 splice form of the Drosophila homolog also lacks both the PH domain and the Btk motif. The proline-rich regions are highly conserved for the most part with the exception of Bmx whose residues surrounding the PXXP motif are not conserved (TH-like) and Btk29A which is entirely unique with large numbers of glycine residues (TH-extended). Tec family members all lack a C-terminal tyrosine having an autoinhibitory function in its phosphorylated state. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198261  Cd Length: 106  Bit Score: 56.49  E-value: 9.60e-10
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 612 EERTWYVGKINRTQAEEMLSGK-RDGTFLIRESSQRGCYACSVVV------DGDTKHCVIYRTATGFGFAEPYNLYASLK 684
Cdd:cd10398     4 EIYEWYHKNITRNQAERLLRQEsKEGAFIVRDSRHLGSYTISVFTrarrstEASIKHYQIKKNDSGQWYVAERHLFQSIP 83
                          90       100
                  ....*....|....*....|....*..
gi 1868045105 685 ELVLHYQHASLvqhndALTVTLAHPVR 711
Cdd:cd10398    84 ELIQYHQHNAA-----GLMSRLRYPVG 105
SH2_SLAP cd10344
Src homology 2 domain found in Src-like adaptor proteins; SLAP belongs to the subfamily of ...
616-690 1.19e-09

Src homology 2 domain found in Src-like adaptor proteins; SLAP belongs to the subfamily of adapter proteins that negatively regulate cellular signaling initiated by tyrosine kinases. It has a myristylated N-terminus, SH3 and SH2 domains with high homology to Src family tyrosine kinases, and a unique C-terminal tail, which is important for c-Cbl binding. SLAP negatively regulates platelet-derived growth factor (PDGF)-induced mitogenesis in fibroblasts and regulates F-actin assembly for dorsal ruffles formation. c-Cbl mediated SLAP inhibition towards actin remodeling. Moreover, SLAP enhanced PDGF-induced c-Cbl phosphorylation by SFK. In contrast, SLAP mitogenic inhibition was not mediated by c-Cbl, but it rather involved a competitive mechanism with SFK for PDGF-receptor (PDGFR) association and mitogenic signaling. Accordingly, phosphorylation of the Src mitogenic substrates Stat3 and Shc were reduced by SLAP. Thus, we concluded that SLAP regulates PDGFR signaling by two independent mechanisms: a competitive mechanism for PDGF-induced Src mitogenic signaling and a non-competitive mechanism for dorsal ruffles formation mediated by c-Cbl. SLAP is a hematopoietic adaptor containing Src homology (SH)3 and SH2 motifs and a unique carboxy terminus. Unlike c-Src, SLAP lacks a tyrosine kinase domain. Unlike c-Src, SLAP does not impact resorptive function of mature osteoclasts but induces their early apoptosis. SLAP negatively regulates differentiation of osteoclasts and proliferation of their precursors. Conversely, SLAP decreases osteoclast death by inhibiting activation of caspase 3. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198207  Cd Length: 104  Bit Score: 55.96  E-value: 1.19e-09
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 616 WYVGKINRTQAEE--MLSGKRDGTFLIRES-SQRGCYACSVVVDGDT-----KHCVIYRTATGFGFAEPYNLYASLKELV 687
Cdd:cd10344    12 WLFEGLSREKAEEllMLPGNQVGSFLIRESeTRRGCYSLSVRHRGSQsrdsvKHYRIFRLDNGWFYISPRLTFQCLEDMV 91

                  ...
gi 1868045105 688 LHY 690
Cdd:cd10344    92 NHY 94
SH2_Tec_Btk cd10397
Src homology 2 (SH2) domain found in Tec protein, Bruton's tyrosine kinase (Btk); A member of ...
606-710 1.20e-09

Src homology 2 (SH2) domain found in Tec protein, Bruton's tyrosine kinase (Btk); A member of the Tec protein tyrosine kinase Btk is expressed in bone marrow, spleen, all hematopoietic cells except T lymphocytes and plasma cells where it plays a crucial role in B cell maturation and mast cell activation. Btk has been shown to interact with GNAQ, PLCG2, protein kinase D1, B-cell linker, SH3BP5, caveolin 1, ARID3A, and GTF2I. Most of the Tec family members have a PH domain (Txk and the short (type 1) splice variant of Drosophila Btk29A are exceptions), a Tec homology (TH) domain, a SH3 domain, a SH2 domain, and a protein kinase catalytic domain. Btk is implicated in the primary immunodeficiency disease X-linked agammaglobulinemia (Bruton's agammaglobulinemia). The TH domain consists of a Zn2+-binding Btk motif and a proline-rich region. The Btk motif is found in Tec kinases, Ras GAP, and IGBP. It is crucial for the function of Tec PH domains and it's lack of presence in Txk is not surprising since it lacks a PH domain. The type 1 splice form of the Drosophila homolog also lacks both the PH domain and the Btk motif. The proline-rich regions are highly conserved for the most part with the exception of Bmx whose residues surrounding the PXXP motif are not conserved (TH-like) and Btk29A which is entirely unique with large numbers of glycine residues (TH-extended). Tec family members all lack a C-terminal tyrosine having an autoinhibitory function in its phosphorylated state. Two tyrosine phosphorylation (pY) sites have been identified in Btk: one located in the activation loop of the catalytic domain which regulates the transition between open (active) and closed (inactive) states and the other in its SH3 domain. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198260 [Multi-domain]  Cd Length: 106  Bit Score: 56.00  E-value: 1.20e-09
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 606 DALPHHEertWYVGKINRTQAEEMLSGK-RDGTFLIRESSQRGCYACSVVV------DGDTKHCVIYRTATG-FGFAEPY 677
Cdd:cd10397     1 DSLEMYE---WYSKNMTRSQAEQLLKQEgKEGGFIVRDSSKAGKYTVSVFAksagdpQGVIRHYVVCSTPQSqYYLAEKH 77
                          90       100       110
                  ....*....|....*....|....*....|....
gi 1868045105 678 nLYASLKELVLHYqhaslvQHNDALTVT-LAHPV 710
Cdd:cd10397    78 -LFSTIPELINYH------QHNAAGLISrLKYPV 104
SH2_Grb2_like cd09941
Src homology 2 domain found in Growth factor receptor-bound protein 2 (Grb2) and similar ...
609-694 1.64e-09

Src homology 2 domain found in Growth factor receptor-bound protein 2 (Grb2) and similar proteins; The adaptor proteins here include homologs Grb2 in humans, Sex muscle abnormal protein 5 (Sem-5) in Caenorhabditis elegans, and Downstream of receptor kinase (drk) in Drosophila melanogaster. They are composed of one SH2 and two SH3 domains. Grb2/Sem-5/drk regulates the Ras pathway by linking the tyrosine kinases to the Ras guanine nucleotide releasing protein Sos, which converts Ras to the active GTP-bound state. The SH2 domain of Grb2/Sem-5/drk binds class II phosphotyrosyl peptides while its SH3 domain binds to Sos and Sos-derived, proline-rich peptides. Besides it function in Ras signaling, Grb2 is also thought to play a role in apoptosis. Unlike most SH2 structures in which the peptide binds in an extended conformation (such that the +3 peptide residue occupies a hydrophobic pocket in the protein, conferring a modest degree of selectivity), Grb2 forms several hydrogen bonds via main chain atoms with the side chain of +2 Asn. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 199828  Cd Length: 95  Bit Score: 55.35  E-value: 1.64e-09
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 609 PHHeertWYVGKINRTQAEEMLSG-KRDGTFLIRES-SQRGCYACSVVVDGDTKHCVIYRTATGfgfaePYNLY----AS 682
Cdd:cd09941     2 PHP----WFHGKISRAEAEEILMNqRPDGAFLIRESeSSPGDFSLSVKFGNDVQHFKVLRDGAG-----KYFLWvvkfNS 72
                          90
                  ....*....|..
gi 1868045105 683 LKELVLHYQHAS 694
Cdd:cd09941    73 LNELVDYHRTTS 84
SH3_Sorbs_3 cd11780
Third (or C-terminal) Src Homology 3 domain of Sorbin and SH3 domain containing (Sorbs) ...
9-76 1.84e-09

Third (or C-terminal) Src Homology 3 domain of Sorbin and SH3 domain containing (Sorbs) proteins and similar domains; This family, also called the vinexin family, is composed predominantly of adaptor proteins containing one sorbin homology (SoHo) and three SH3 domains. Members include the third SH3 domains of Sorbs1 (or ponsin), Sorbs2 (or ArgBP2), Vinexin (or Sorbs3), and similar domains. They are involved in the regulation of cytoskeletal organization, cell adhesion, and growth factor signaling. Members of this family bind multiple partners including signaling molecules like c-Abl, c-Arg, Sos, and c-Cbl, as well as cytoskeletal molecules such as vinculin and afadin. They may have overlapping functions. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies.


Pssm-ID: 212714 [Multi-domain]  Cd Length: 55  Bit Score: 53.84  E-value: 1.84e-09
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 1868045105   9 YRAVYPFRRERPEDLELLPGDLLVVSrvalqalgvadggERCphNVGWMPGFNERTRQRGDFPGTYVE 76
Cdd:cd11780     2 YRALYSYTPQNEDELELREGDIVYVM-------------EKC--DDGWFVGTSERTGLFGTFPGNYVA 54
SH2_CIS cd10718
Src homology 2 (SH2) domain found in cytokine-inducible SH2-containing protein (CIS); CIS ...
319-399 1.87e-09

Src homology 2 (SH2) domain found in cytokine-inducible SH2-containing protein (CIS); CIS family members are known to be cytokine-inducible negative regulators of cytokine signaling. The expression of the CIS gene can be induced by IL2, IL3, GM-CSF and EPO in hematopoietic cells. Proteasome-mediated degradation of this protein has been shown to be involved in the inactivation of the erythropoietin receptor. Suppressor of cytokine signalling (SOCS) was first recognized as a group of cytokine-inducible SH2 (CIS) domain proteins comprising eight family members in human (CIS and SOCS1-SOCS7). In addition to the SH2 domain, SOCS proteins have a variable N-terminal domain and a conserved SOCS box in the C-terminal domain. SOCS proteins bind to a substrate via their SH2 domain. The prototypical members, CIS and SOCS1-SOCS3, have been shown to regulate growth hormone signaling in vitro and in a classic negative feedback response compete for binding at phosphotyrosine sites in JAK kinase and receptor pathways to displace effector proteins and target bound receptors for proteasomal degradation. Loss of SOCS activity results in excessive cytokine signaling associated with a variety of hematopoietic, autoimmune, and inflammatory diseases and certain cancers. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198285  Cd Length: 88  Bit Score: 55.15  E-value: 1.87e-09
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 319 LQDAEWYWGDISREEVNERLRDTPDGTFLVRDASskiQGEYTLTL----RKGGNNklIKVFHRDGHY-------GFSEPL 387
Cdd:cd10718     1 LRESGWYWGSITASEAHQALQKAPEGTFLVRDSS---HPSYMLTLsvktTRGPTN--VRIEYSDGSFrldssslARPRLL 75
                          90
                  ....*....|..
gi 1868045105 388 TFCSVVELISHY 399
Cdd:cd10718    76 SFPDVVSLVQHY 87
SH2_Tec_Btk cd10397
Src homology 2 (SH2) domain found in Tec protein, Bruton's tyrosine kinase (Btk); A member of ...
318-420 1.91e-09

Src homology 2 (SH2) domain found in Tec protein, Bruton's tyrosine kinase (Btk); A member of the Tec protein tyrosine kinase Btk is expressed in bone marrow, spleen, all hematopoietic cells except T lymphocytes and plasma cells where it plays a crucial role in B cell maturation and mast cell activation. Btk has been shown to interact with GNAQ, PLCG2, protein kinase D1, B-cell linker, SH3BP5, caveolin 1, ARID3A, and GTF2I. Most of the Tec family members have a PH domain (Txk and the short (type 1) splice variant of Drosophila Btk29A are exceptions), a Tec homology (TH) domain, a SH3 domain, a SH2 domain, and a protein kinase catalytic domain. Btk is implicated in the primary immunodeficiency disease X-linked agammaglobulinemia (Bruton's agammaglobulinemia). The TH domain consists of a Zn2+-binding Btk motif and a proline-rich region. The Btk motif is found in Tec kinases, Ras GAP, and IGBP. It is crucial for the function of Tec PH domains and it's lack of presence in Txk is not surprising since it lacks a PH domain. The type 1 splice form of the Drosophila homolog also lacks both the PH domain and the Btk motif. The proline-rich regions are highly conserved for the most part with the exception of Bmx whose residues surrounding the PXXP motif are not conserved (TH-like) and Btk29A which is entirely unique with large numbers of glycine residues (TH-extended). Tec family members all lack a C-terminal tyrosine having an autoinhibitory function in its phosphorylated state. Two tyrosine phosphorylation (pY) sites have been identified in Btk: one located in the activation loop of the catalytic domain which regulates the transition between open (active) and closed (inactive) states and the other in its SH3 domain. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198260 [Multi-domain]  Cd Length: 106  Bit Score: 55.61  E-value: 1.91e-09
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 318 SLQDAEWYWGDISREEVNERLR-DTPDGTFLVRDASSKiqGEYTLT-LRKGGNNKLIKVFH------RDGHYGFSEPLTF 389
Cdd:cd10397     2 SLEMYEWYSKNMTRSQAEQLLKqEGKEGGFIVRDSSKA--GKYTVSvFAKSAGDPQGVIRHyvvcstPQSQYYLAEKHLF 79
                          90       100       110
                  ....*....|....*....|....*....|.
gi 1868045105 390 CSVVELISHYRHESlaqynAKLDTRLLYPVS 420
Cdd:cd10397    80 STIPELINYHQHNA-----AGLISRLKYPVS 105
SH2_a2chimerin_b2chimerin cd10352
Src homology 2 (SH2) domain found in alpha2-chimerin and beta2-chimerin proteins; Chimerins ...
617-665 2.28e-09

Src homology 2 (SH2) domain found in alpha2-chimerin and beta2-chimerin proteins; Chimerins are a family of phorbol ester- and diacylglycerol-responsive GTPase-activating proteins. Alpha1-chimerin (formerly known as n-chimerin) and alpha2-chimerin are alternatively spliced products of a single gene, as are beta1- and beta2-chimerin. alpha1- and beta1-chimerin have a relatively short N-terminal region that does not encode any recognizable domains, whereas alpha2- and beta2-chimerin both include a functional SH2 domain that can bind to phosphotyrosine motifs within receptors. All of the isoforms contain a GAP domain with specificity in vitro for Rac1 and a diacylglycerol (DAG)-binding C1 domain which allows them to translocate to membranes in response to DAG signaling and anchors them in close proximity to activated Rac. Other C1 domain-containing diacylglycerol receptors including: PKC, Munc-13 proteins, phorbol ester binding scaffolding proteins involved in Ca2+-stimulated exocytosis, and RasGRPs, diacylglycerol-activated guanine-nucleotide exchange factors (GEFs) for Ras and Rap1. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198215  Cd Length: 91  Bit Score: 54.68  E-value: 2.28e-09
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|
gi 1868045105 617 YVGKINRTQAEEMLSGKRDGTFLIRES-SQRGCYACSVVVDGDTKHCVIY 665
Cdd:cd10352     9 YHGLISREEAEQLLSGASDGSYLIRESsRDDGYYTLSLRFNGKVKNYKLY 58
SH2_Grb2_like cd09941
Src homology 2 domain found in Growth factor receptor-bound protein 2 (Grb2) and similar ...
324-403 2.31e-09

Src homology 2 domain found in Growth factor receptor-bound protein 2 (Grb2) and similar proteins; The adaptor proteins here include homologs Grb2 in humans, Sex muscle abnormal protein 5 (Sem-5) in Caenorhabditis elegans, and Downstream of receptor kinase (drk) in Drosophila melanogaster. They are composed of one SH2 and two SH3 domains. Grb2/Sem-5/drk regulates the Ras pathway by linking the tyrosine kinases to the Ras guanine nucleotide releasing protein Sos, which converts Ras to the active GTP-bound state. The SH2 domain of Grb2/Sem-5/drk binds class II phosphotyrosyl peptides while its SH3 domain binds to Sos and Sos-derived, proline-rich peptides. Besides it function in Ras signaling, Grb2 is also thought to play a role in apoptosis. Unlike most SH2 structures in which the peptide binds in an extended conformation (such that the +3 peptide residue occupies a hydrophobic pocket in the protein, conferring a modest degree of selectivity), Grb2 forms several hydrogen bonds via main chain atoms with the side chain of +2 Asn. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 199828  Cd Length: 95  Bit Score: 54.97  E-value: 2.31e-09
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 324 WYWGDISREEVNERLRDT-PDGTFLVRDASSKiQGEYTLTLRKGGNNKLIKVFhRD--GHYgFSEPLTFCSVVELISHYR 400
Cdd:cd09941     5 WFHGKISRAEAEEILMNQrPDGAFLIRESESS-PGDFSLSVKFGNDVQHFKVL-RDgaGKY-FLWVVKFNSLNELVDYHR 81

                  ...
gi 1868045105 401 HES 403
Cdd:cd09941    82 TTS 84
SH2_Src_Src cd10365
Src homology 2 (SH2) domain found in tyrosine kinase sarcoma (Src); Src is a member of the Src ...
616-702 3.16e-09

Src homology 2 (SH2) domain found in tyrosine kinase sarcoma (Src); Src is a member of the Src non-receptor type tyrosine kinase family of proteins. Src is thought to play a role in the regulation of embryonic development and cell growth. Members here include v-Src and c-Src. v-Src lacks the C-terminal inhibitory phosphorylation site and is therefore constitutively active as opposed to normal cellular src (c-Src) which is only activated under certain circumstances where it is required (e.g. growth factor signaling). v-Src is an oncogene whereas c-Src is a proto-oncogene. c-Src consists of three domains, an N-terminal SH3 domain, a central SH2 domain and a tyrosine kinase domain. The SH2 and SH3 domains work together in the auto-inhibition of the kinase domain. The phosphorylation of an inhibitory tyrosine near the c-terminus of the protein produces a binding site for the SH2 domain which then facilitates binding of the SH3 domain to a polyproline site within the linker between the SH2 domain and the kinase domain. Binding of the SH3 domain inactivates the enzyme. This allows for multiple mechanisms for c-Src activation: dephosphorylation of the C-terminal tyrosine by a protein tyrosine phosphatase, binding of the SH2 domain by a competitive phospho-tyrosine residue, or competitive binding of a polyproline binding site to the SH3 domain. Unlike most other Src members Src lacks cysteine residues in the SH4 domain that undergo palmitylation. Serine and threonine phosphorylation sites have also been identified in the unique domains of Src and are believed to modulate protein-protein interactions or regulate catalytic activity. Alternatively spliced forms of Src, which contain 6- or 11-amino acid insertions in the SH3 domain, are expressed in CNS neurons. c-Src has a unique N-terminal domain, an SH3 domain, an SH2 domain, a kinase domain and a regulatory tail, as do the other members of the family. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198228  Cd Length: 101  Bit Score: 54.67  E-value: 3.16e-09
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 616 WYVGKINRTQAEEMLSG--KRDGTFLIRES-SQRGCYaCSVVVDGD------TKHCVIYRTATGFGFAEPYNLYASLKEL 686
Cdd:cd10365     5 WYFGKITRRESERLLLNaeNPRGTFLVRESeTTKGAY-CLSVSDFDnakglnVKHYKIRKLDSGGFYITSRTQFNSLQQL 83
                          90
                  ....*....|....*.
gi 1868045105 687 VLHYQhaslvQHNDAL 702
Cdd:cd10365    84 VAYYS-----KHADGL 94
SH2_Vav1 cd10405
Src homology 2 (SH2) domain found in the Vav1 proteins; Proto-oncogene vav is a member of the ...
324-418 3.35e-09

Src homology 2 (SH2) domain found in the Vav1 proteins; Proto-oncogene vav is a member of the Dbl family of guanine nucleotide exchange factors (GEF) for the Rho family of GTP binding proteins. All vavs are activated by tyrosine phosphorylation leading to their activation. There are three Vav mammalian family members: Vav1 which is expressed in the hematopoietic system, and Vav2 and Vav3 are more ubiquitously expressed. Vav1 plays a role in T-cell and B-cell development and activation. It has been identified as the specific binding partner of Nef proteins from HIV-1, resulting in morphological changes, cytoskeletal rearrangements, and the JNK/SAPK signaling cascade, leading to increased levels of viral transcription and replication. Vav1 has been shown to interact with Ku70, PLCG1, Lymphocyte cytosolic protein 2, Janus kinase 2, SIAH2, S100B, Abl gene, ARHGDIB, SHB, PIK3R1, PRKCQ, Grb2, MAPK1, Syk, Linker of activated T cells, Cbl gene and EZH2. Vav proteins are involved in several processes that require cytoskeletal reorganization, such as the formation of the immunological synapse (IS), phagocytosis, platelet aggregation, spreading, and transformation. Vavs function as guanine nucleotide exchange factors (GEFs) for the Rho/Rac family of GTPases. Vav family members have several conserved motifs/domains including: a leucine-rich region, a leucine-zipper, a calponin homology (CH) domain, an acidic domain, a Dbl-homology (DH) domain, a pleckstrin homology (PH) domain, a cysteine-rich domain, 2 SH3 domains, a proline-rich region, and a SH2 domain. Vavs are the only known Rho GEFs that have both the DH/PH motifs and SH2/SH3 domains in the same protein. The leucine-rich helix-loop-helix (HLH) domain is thought to be involved in protein heterodimerization with other HLH proteins and it may function as a negative regulator by forming inactive heterodimers. The CH domain is usually involved in the association with filamentous actin, but in Vav it controls NFAT stimulation, Ca2+ mobilization, and its transforming activity. Acidic domains are involved in protein-protein interactions and contain regulatory tyrosines. The DH domain is a GDP-GTP exchange factor on Rho/Rac GTPases. The PH domain in involved in interactions with GTP-binding proteins, lipids and/or phosphorylated serine/threonine residues. The SH3 domain is involved in localization of proteins to specific sites within the cell interacting with protein with proline-rich sequences. The SH2 domain mediates a high affinity interaction with tyrosine phosphorylated proteins. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198268  Cd Length: 103  Bit Score: 54.63  E-value: 3.35e-09
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 324 WYWGDISREEVNERLRDTPDGTFLVRDaSSKIQGEYTLTLRKGGNNKLIKVFHRDGHYGFSEPLTFCSVVELISHYRHES 403
Cdd:cd10405     7 WYAGPMERAGAESILANRSDGTYLVRQ-RVKDAAEFAISIKYNVEVKHIKIMTAEGLYRITEKKAFRGLTELVEFYQQNS 85
                          90
                  ....*....|....*
gi 1868045105 404 LAQYNAKLDTRLLYP 418
Cdd:cd10405    86 LKDCFKSLDTTLQFP 100
SH2_CRK_like cd09926
Src homology 2 domain found in cancer-related signaling adaptor protein CRK; SH2 domain in the ...
324-364 4.16e-09

Src homology 2 domain found in cancer-related signaling adaptor protein CRK; SH2 domain in the CRK proteins. CRKI (SH2-SH3) and CRKII (SH2-SH3-SH3) are splicing isoforms of the oncoprotein CRK. CRKs regulate transcription and cytoskeletal reorganization for cell growth and motility by linking tyrosine kinases to small G proteins. The SH2 domain of CRK associates with tyrosine-phosphorylated receptors or components of focal adhesions, such as p130Cas and paxillin. CRK transmits signals to small G proteins through effectors that bind its SH3 domain, such as C3G, the guanine-nucleotide exchange factor (GEF) for Rap1 and R-Ras, and DOCK180, the GEF for Rac6. The binding of p130Cas to the CRK-C3G complex activates Rap1, leading to regulation of cell adhesion, and activates R-Ras, leading to JNK-mediated activation of cell proliferation, whereas the binding of CRK DOCK180 induces Rac1-mediated activation of cellular migration. The activity of the different splicing isoforms varies greatly with CRKI displaying substantial transforming activity, CRKII less so, and phosphorylated CRKII with no biological activity whatsoever. CRKII has a linker region with a phosphorylated Tyr and an additional C-terminal SH3 domain. The phosphorylated Tyr creates a binding site for its SH2 domain which disrupts the association between CRK and its SH2 target proteins. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198180 [Multi-domain]  Cd Length: 106  Bit Score: 54.40  E-value: 4.16e-09
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|.
gi 1868045105 324 WYWGDISREEVNERLRDTPDGTFLVRDaSSKIQGEYTLTLR 364
Cdd:cd09926     9 WYFGPMSRQEAQELLQGQRHGVFLVRD-SSTIPGDYVLSVS 48
SH2_Src_HCK cd10363
Src homology 2 (SH2) domain found in HCK; HCK is a member of the Src non-receptor type ...
612-709 5.67e-09

Src homology 2 (SH2) domain found in HCK; HCK is a member of the Src non-receptor type tyrosine kinase family of proteins and is expressed in hemopoietic cells. HCK is proposed to couple the Fc receptor to the activation of the respiratory burst. It may also play a role in neutrophil migration and in the degranulation of neutrophils. It has two different translational starts that have different subcellular localization. HCK has been shown to interact with BCR gene, ELMO1 Cbl gene, RAS p21 protein activator 1, RASA3, Granulocyte colony-stimulating factor receptor, ADAM15 and RAPGEF1. Like the other members of the Src family the SH2 domain in addition to binding the target, also plays an autoinhibitory role by binding to its C-terminal tail. In general SH2 domains are involved in signal transduction. HCK has a unique N-terminal domain, an SH3 domain, an SH2 domain, a kinase domain and a regulatory tail, as do the other members of the family. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198226  Cd Length: 104  Bit Score: 54.20  E-value: 5.67e-09
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 612 EERTWYVGKINRTQAEEML--SGKRDGTFLIRES-SQRGCYACSV----VVDGDT-KHCVIyRTATGFGF-AEPYNLYAS 682
Cdd:cd10363     1 ETEEWFFKGISRKDAERQLlaPGNMLGSFMIRDSeTTKGSYSLSVrdydPQHGDTvKHYKI-RTLDNGGFyISPRSTFST 79
                          90       100
                  ....*....|....*....|....*..
gi 1868045105 683 LKELVLHYQHASlvqhnDALTVTLAHP 709
Cdd:cd10363    80 LQELVDHYKKGN-----DGLCQKLSVP 101
SH2_DAPP1_BAM32_like cd10355
Src homology 2 domain found in dual adaptor for phosphotyrosine and 3-phosphoinositides ( ...
616-690 8.40e-09

Src homology 2 domain found in dual adaptor for phosphotyrosine and 3-phosphoinositides ( DAPP1)/B lymphocyte adaptor molecule of 32 kDa (Bam32)-like proteins; DAPP1/Bam32 contains a putative myristoylation site at its N-terminus, followed by a SH2 domain, and a pleckstrin homology (PH) domain at its C-terminus. DAPP1 could potentially be recruited to the cell membrane by any of these domains. Its putative myristoylation site could facilitate the interaction of DAPP1 with the lipid bilayer. Its SH2 domain may also interact with phosphotyrosine residues on membrane-associated proteins such as activated tyrosine kinase receptors. And finally its PH domain exhibits a high-affinity interaction with the PtdIns(3,4,5)P(3) PtdIns(3,4)P(2) second messengers produced at the cell membrane following the activation of PI 3-kinases. DAPP1 is thought to interact with both tyrosine phosphorylated proteins and 3-phosphoinositides and therefore may play a role in regulating the location and/or activity of such proteins(s) in response to agonists that elevate PtdIns(3,4,5)P(3) and PtdIns(3,4)P(2). This protein is likely to play an important role in triggering signal transduction pathways that lie downstream from receptor tyrosine kinases and PI 3-kinase. It is likely that DAPP1 functions as an adaptor to recruit other proteins to the plasma membrane in response to extracellular signals. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198218  Cd Length: 92  Bit Score: 53.25  E-value: 8.40e-09
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 1868045105 616 WYVGKINRTQAEE-MLSGKRDGTFLIRESSQR-GCYACSVVVDGDTKHCVIYRTATGFGFAepYNLYASLKELVLHY 690
Cdd:cd10355     8 WYHGNLTRHAAEAlLLSNGVDGSYLLRNSNEGtGLFSLSVRAKDSVKHFHVEYTGYSFKFG--FNEFSSLQDFVKHF 82
SH2_Nck2 cd10409
Src homology 2 (SH2) domain found in Nck; Nck proteins are adaptors that modulate actin ...
323-400 9.25e-09

Src homology 2 (SH2) domain found in Nck; Nck proteins are adaptors that modulate actin cytoskeleton dynamics by linking proline-rich effector molecules to tyrosine kinases or phosphorylated signaling intermediates. There are two members known in this family: Nck1 (Nckalpha) and Nck2 (Nckbeta and Growth factor receptor-bound protein 4 (Grb4)). They are characterized by having 3 SH3 domains and a C-terminal SH2 domain. Nck1 and Nck2 have overlapping functions as determined by gene knockouts. Both bind receptor tyrosine kinases and other tyrosine-phosphorylated proteins through their SH2 domains. In addition they also bind distinct targets. Neuronal signaling proteins: EphrinB1, EphrinB2, and Disabled-1 (Dab-1) all bind to Nck-2 exclusively. And in the case of PDGFR, Tyr(P)751 binds to Nck1 while Tyr(P)1009 binds to Nck2. Nck1 and Nck2 have a role in the infection process of enteropathogenic Escherichia coli (EPEC). Their SH3 domains are involved in recruiting and activating the N-WASP/Arp2/3 complex inducing actin polymerization resulting in the production of pedestals, dynamic bacteria-presenting protrusions of the plasma membrane. A similar thing occurs in the vaccinia virus where motile plasma membrane projections are formed beneath the virus. Recently it has been shown that the SH2 domains of both Nck1 and Nck2 bind the G-protein coupled receptor kinase-interacting protein 1 (GIT1) in a phosphorylation-dependent manner. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198272  Cd Length: 98  Bit Score: 53.50  E-value: 9.25e-09
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 323 EWYWGDISREE----VNERlrdTPDGTFLVRDASSKiQGEYTLTLRKGGNNKLIKVFHRDGHYGFSEPlTFCSVVELISH 398
Cdd:cd10409     2 EWYYGNVTRHQaecaLNER---GVEGDFLIRDSESS-PSDFSVSLKAVGKNKHFKVQLVDNVYCIGQR-RFNSMDELVEH 76

                  ..
gi 1868045105 399 YR 400
Cdd:cd10409    77 YK 78
SH2_a2chimerin_b2chimerin cd10352
Src homology 2 (SH2) domain found in alpha2-chimerin and beta2-chimerin proteins; Chimerins ...
317-396 1.06e-08

Src homology 2 (SH2) domain found in alpha2-chimerin and beta2-chimerin proteins; Chimerins are a family of phorbol ester- and diacylglycerol-responsive GTPase-activating proteins. Alpha1-chimerin (formerly known as n-chimerin) and alpha2-chimerin are alternatively spliced products of a single gene, as are beta1- and beta2-chimerin. alpha1- and beta1-chimerin have a relatively short N-terminal region that does not encode any recognizable domains, whereas alpha2- and beta2-chimerin both include a functional SH2 domain that can bind to phosphotyrosine motifs within receptors. All of the isoforms contain a GAP domain with specificity in vitro for Rac1 and a diacylglycerol (DAG)-binding C1 domain which allows them to translocate to membranes in response to DAG signaling and anchors them in close proximity to activated Rac. Other C1 domain-containing diacylglycerol receptors including: PKC, Munc-13 proteins, phorbol ester binding scaffolding proteins involved in Ca2+-stimulated exocytosis, and RasGRPs, diacylglycerol-activated guanine-nucleotide exchange factors (GEFs) for Ras and Rap1. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198215  Cd Length: 91  Bit Score: 52.75  E-value: 1.06e-08
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 317 PSLQDAEwYWGDISREEVNERLRDTPDGTFLVRDaSSKIQGEYTLTLRKGGNNKLIKVFHR-DGHYGFSEPLTFCSVVEL 395
Cdd:cd10352     2 PRFYGRE-YHGLISREEAEQLLSGASDGSYLIRE-SSRDDGYYTLSLRFNGKVKNYKLYYDgKNHYHYVGEKRFDTIHDL 79

                  .
gi 1868045105 396 I 396
Cdd:cd10352    80 V 80
RhoGAP cd00159
RhoGAP: GTPase-activator protein (GAP) for Rho-like GTPases; GAPs towards Rho/Rac/Cdc42-like ...
125-260 1.07e-08

RhoGAP: GTPase-activator protein (GAP) for Rho-like GTPases; GAPs towards Rho/Rac/Cdc42-like small GTPases. Small GTPases (G proteins) cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when bound to GDP. The Rho family of small G proteins, which includes Cdc42Hs, activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. G proteins generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude. The RhoGAPs are one of the major classes of regulators of Rho G proteins.


Pssm-ID: 238090 [Multi-domain]  Cd Length: 169  Bit Score: 55.00  E-value: 1.07e-08
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 125 PPILVKLVEAIEQAGLDSE-----------------CYSRPElpaprtdwSLSDVEQWDRNALYDAVKGFLLALPTPVVT 187
Cdd:cd00159     1 PLIIEKCIEYLEKNGLNTEgifrvsgsaskieelkkKFDRGE--------DIDDLEDYDVHDVASLLKLYLRELPEPLIP 72
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 188 PEAaaeaHRALREAAGPVGPVLEPPM-------LPLHHALTLRFLLQHLGRVARRAPV-QATAvHSLASAFGPLLLRTPP 259
Cdd:cd00159    73 FEL----YDEFIELAKIEDEEERIEAlkellksLPPENRDLLKYLLKLLHKISQNSEVnKMTA-SNLAIVFAPTLLRPPD 147

                  .
gi 1868045105 260 P 260
Cdd:cd00159   148 S 148
SH2_Vav2 cd10406
Src homology 2 (SH2) domain found in the Vav2 proteins; Proto-oncogene vav is a member of the ...
616-712 1.32e-08

Src homology 2 (SH2) domain found in the Vav2 proteins; Proto-oncogene vav is a member of the Dbl family of guanine nucleotide exchange factors (GEF) for the Rho family of GTP binding proteins. All vavs are activated by tyrosine phosphorylation leading to their activation. There are three Vav mammalian family members: Vav1 which is expressed in the hematopoietic system, and Vav2 and Vav3 are more ubiquitously expressed. Vav2 is a GEF for RhoA, RhoB and RhoG and may activate Rac1 and Cdc42. Vav2 has been shown to interact with CD19 and Grb2. Alternatively spliced transcript variants encoding different isoforms have been found for Vav2. Vav proteins are involved in several processes that require cytoskeletal reorganization, such as the formation of the immunological synapse (IS), phagocytosis, platelet aggregation, spreading, and transformation. Vavs function as guanine nucleotide exchange factors (GEFs) for the Rho/Rac family of GTPases. Vav family members have several conserved motifs/domains including: a leucine-rich region, a leucine-zipper, a calponin homology (CH) domain, an acidic domain, a Dbl-homology (DH) domain, a pleckstrin homology (PH) domain, a cysteine-rich domain, 2 SH3 domains, a proline-rich region, and a SH2 domain. Vavs are the only known Rho GEFs that have both the DH/PH motifs and SH2/SH3 domains in the same protein. The leucine-rich helix-loop-helix (HLH) domain is thought to be involved in protein heterodimerization with other HLH proteins and it may function as a negative regulator by forming inactive heterodimers. The CH domain is usually involved in the association with filamentous actin, but in Vav it controls NFAT stimulation, Ca2+ mobilization, and its transforming activity. Acidic domains are involved in protein-protein interactions and contain regulatory tyrosines. The DH domain is a GDP-GTP exchange factor on Rho/Rac GTPases. The PH domain in involved in interactions with GTP-binding proteins, lipids and/or phosphorylated serine/threonine residues. The SH3 domain is involved in localization of proteins to specific sites within the cell interacting with protein with proline-rich sequences. The SH2 domain mediates a high affinity interaction with tyrosine phosphorylated proteins. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198269  Cd Length: 103  Bit Score: 53.15  E-value: 1.32e-08
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 616 WYVGKINRTQAEEMLSGKRDGTFLIRE-SSQRGCYACSVVVDGDTKHCVIYRTATGFGFAEPYNlYASLKELVLHYQHAS 694
Cdd:cd10406     7 WFAGNMERQQTDNLLKSHASGTYLIRErPAEAERFAISIKFNDEVKHIKVVEKDNWIHITEAKK-FESLLELVEYYQCHS 85
                          90
                  ....*....|....*...
gi 1868045105 695 LVQHNDALTVTLAHPVRA 712
Cdd:cd10406    86 LKESFKQLDTTLKYPYKS 103
SH2_N-SH2_Zap70_Syk_like cd09938
N-terminal Src homology 2 (SH2) domain found in Zeta-chain-associated protein kinase 70 ...
616-717 1.33e-08

N-terminal Src homology 2 (SH2) domain found in Zeta-chain-associated protein kinase 70 (ZAP-70) and Spleen tyrosine kinase (Syk) proteins; ZAP-70 and Syk comprise a family of hematopoietic cell specific protein tyrosine kinases (PTKs) that are required for antigen and antibody receptor function. ZAP-70 is expressed in T and natural killer (NK) cells and Syk is expressed in B cells, mast cells, polymorphonuclear leukocytes, platelets, macrophages, and immature T cells. They are required for the proper development of T and B cells, immune receptors, and activating NK cells. They consist of two N-terminal Src homology 2 (SH2) domains and a C-terminal kinase domain separated from the SH2 domains by a linker or hinge region. Phosphorylation of both tyrosine residues within the Immunoreceptor Tyrosine-based Activation Motifs (ITAM; consensus sequence Yxx[LI]x(7,8)Yxx[LI]) by the Src-family PTKs is required for efficient interaction of ZAP-70 and Syk with the receptor subunits and for receptor function. ZAP-70 forms two phosphotyrosine binding pockets, one of which is shared by both SH2 domains. In Syk the two SH2 domains do not form such a phosphotyrosine-binding site. The SH2 domains here are believed to function independently. In addition, the two SH2 domains of Syk display flexibility in their relative orientation, allowing Syk to accommodate a greater variety of spacing sequences between the ITAM phosphotyrosines and singly phosphorylated non-classical ITAM ligands. This model contains the N-terminus SH2 domains of both Syk and Zap70. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198191  Cd Length: 104  Bit Score: 53.17  E-value: 1.33e-08
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 616 WYVGKINRTQAEE--MLSGKRDGTFLIRES-SQRGCYACSVVVDGDTKHCVI-------YRTATGFGFAEPynlyaslKE 685
Cdd:cd09938     3 FFYGSITREEAEEylKLAGMSDGLFLLRQSlRSLGGYVLSVCHGRKFHHYTIerqlngtYAIAGGKAHCGP-------AE 75
                          90       100       110
                  ....*....|....*....|....*....|...
gi 1868045105 686 LVLHYQhaslvQHNDALTVTLAHPV-RAPGPGP 717
Cdd:cd09938    76 LCEYHS-----TDLDGLVCLLRKPCnRPPGVEP 103
SH2_SOCS3 cd10384
Src homology 2 (SH2) domain found in suppressor of cytokine signaling (SOCS) proteins; SH2 ...
319-399 1.69e-08

Src homology 2 (SH2) domain found in suppressor of cytokine signaling (SOCS) proteins; SH2 domain found in SOCS proteins. SOCS was first recognized as a group of cytokine-inducible SH2 (CIS) domain proteins comprising eight family members in human (CIS and SOCS1-SOCS7). In addition to the SH2 domain, SOCS proteins have a variable N-terminal domain and a conserved SOCS box in the C-terminal domain. SOCS proteins bind to a substrate via their SH2 domain. The prototypical members, CIS and SOCS1-SOCS3, have been shown to regulate growth hormone signaling in vitro and in a classic negative feedback response compete for binding at phosphotyrosine sites in JAK kinase and receptor pathways to displace effector proteins and target bound receptors for proteasomal degradation. Loss of SOCS activity results in excessive cytokine signaling associated with a variety of hematopoietic, autoimmune, and inflammatory diseases and certain cancers. Members (SOCS4-SOCS7) were identified by their conserved SOCS box, an adapter motif of 3 helices that associates substrate binding domains, such as the SOCS SH2 domain, ankryin, and WD40 with ubiquitin ligase components. These show limited cytokine induction. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198247  Cd Length: 101  Bit Score: 52.82  E-value: 1.69e-08
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 319 LQDAEWYWGDISREEVNERLRDTPDGTFLVRDaSSKIQGEYTLTLRKGGNNKLIKV------FHRDGHYGFSEPL-TFCS 391
Cdd:cd10384     7 LQESGFYWSTVSGKEANLLLSAEPAGTFLIRD-SSDQRHFFTLSVKTESGTKNLRIqceggsFSLQTDPRSTQPVpRFDC 85

                  ....*...
gi 1868045105 392 VVELISHY 399
Cdd:cd10384    86 VLKLVHHY 93
RhoGAP_GMIP cd04408
RhoGAP_GMIP: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of GMIP ...
121-263 1.83e-08

RhoGAP_GMIP: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of GMIP (Gem interacting protein). GMIP plays important roles in neurite growth and axonal guidance, and interacts with Gem, a member of the RGK subfamily of the Ras small GTPase superfamily, through the N-terminal half of the protein. GMIP contains a C-terminal RhoGAP domain. GMIP inhibits RhoA function, but is inactive towards Rac1 and Cdc41. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239873  Cd Length: 200  Bit Score: 55.21  E-value: 1.83e-08
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 121 PDPAPPILVKLVEAIEQAGLDSECYSRPELPAPRTD---------WSLSDVEQWDRNALYDAVKGFLLALPTPVVTPE-- 189
Cdd:cd04408    13 PEEVPFVVVRCTAEIENRALGVQGIYRISGSKARVEklcqafengRDLVDLSGHSPHDITSVLKHFLKELPEPVLPFQly 92
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 190 -----AAAEAHRALREAAGPVGPVLEP--------PMLPLHHALTLRFLLQHLGRVARRAPVQATAVHSLASAFGPLLLR 256
Cdd:cd04408    93 ddfiaLAKELQRDSEKAAESPSIVENIirslkellGRLPVSNYNTLRHLMAHLYRVAERFEDNKMSPNNLGIVFGPTLLR 172

                  ....*..
gi 1868045105 257 tPPPGGD 263
Cdd:cd04408   173 -PLVGGD 178
SH2_csk_like cd09937
Src homology 2 (SH2) domain found in Carboxyl-Terminal Src Kinase (Csk); Both the C-terminal ...
616-714 2.55e-08

Src homology 2 (SH2) domain found in Carboxyl-Terminal Src Kinase (Csk); Both the C-terminal Src kinase (CSK) and CSK-homologous kinase (CHK) are members of the CSK-family of protein tyrosine kinases. These proteins suppress activity of Src-family kinases (SFK) by selectively phosphorylating the conserved C-terminal tail regulatory tyrosine by a similar mechanism. CHK is also capable of inhibiting SFKs by a non-catalytic mechanism that involves binding of CHK to SFKs to form stable protein complexes. The unphosphorylated form of SFKs is inhibited by CSK and CHK by a two-step mechanism. The first step involves the formation of a complex of SFKs with CSK/CHK with the SFKs in the complex are inactive. The second step, involves the phosphorylation of the C-terminal tail tyrosine of SFKs, which then dissociates and adopt an inactive conformation. The structural basis of how the phosphorylated SFKs dissociate from CSK/CHK to adopt the inactive conformation is not known. The inactive conformation of SFKs is stabilized by two intramolecular inhibitory interactions: (a) the pYT:SH2 interaction in which the phosphorylated C-terminal tail tyrosine (YT) binds to the SH2 domain, and (b) the linker:SH3 interaction of which the SH2-kinase domain linker binds to the SH3 domain. SFKs are activated by multiple mechanisms including binding of the ligands to the SH2 and SH3 domains to displace the two inhibitory intramolecular interactions, autophosphorylation, and dephosphorylation of YT. By selective phosphorylation and the non-catalytic inhibitory mechanism CSK and CHK are able to inhibit the active forms of SFKs. CSK and CHK are regulated by phosphorylation and inter-domain interactions. They both contain SH3, SH2, and kinase domains separated by the SH3-SH2 connector and SH2 kinase linker, intervening segments separating the three domains. They lack a conserved tyrosine phosphorylation site in the kinase domain and the C-terminal tail regulatory tyrosine phosphorylation site. The CSK SH2 domain is crucial for stabilizing the kinase domain in the active conformation. A disulfide bond here regulates CSK kinase activity. The subcellular localization and activity of CSK are regulated by its SH2 domain. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198190  Cd Length: 98  Bit Score: 51.91  E-value: 2.55e-08
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 616 WYVGKINRTQAEEMLSGKRDGTFLIRESSQR-GCYACSVVVDGDTKHC-VIYRTATGFGFAEPYnlYASLKELVLHYQHA 693
Cdd:cd09937     5 WFHGKISREEAERLLQPPEDGLFLVRESTNYpGDYTLCVSFEGKVEHYrVIYRNGKLTIDEEEY--FENLIQLVEHYTKD 82
                          90       100
                  ....*....|....*....|.
gi 1868045105 694 SlvqhnDALTVTLAHPVRAPG 714
Cdd:cd09937    83 A-----DGLCTRLVKPKVKEG 98
SH2_ShkA_ShkC cd10356
Src homology 2 (SH2) domain found in SH2 domain-bearing protein kinases A and C (ShkA and ShkC) ...
613-687 2.97e-08

Src homology 2 (SH2) domain found in SH2 domain-bearing protein kinases A and C (ShkA and ShkC); SH2-bearing genes cloned from Dictyostelium include two transcription factors, STATa and STATc, and a signaling factor, SHK1 (shkA). A database search of the Dictyostelium discoideum genome revealed two additional putative STAT sequences, dd-STATb and dd-STATd, and four additional putative SHK genes, dd-SHK2 (shkB), dd-SHK3 (shkC), dd-SHK4 (shkD), and dd-SHK5 (shkE). This model contains members of shkA and shkC. All of the SHK members are most closely related to the protein kinases found in plants. However these kinases in plants are not conjugated to any SH2 or SH2-like sequences. Alignment data indicates that the SHK SH2 domains carry some features of the STAT SH2 domains in Dictyostelium. When STATc's linker domain was used for a BLAST search, the sequence between the protein kinase domain and the SH2 domain (the linker) of SHK was recovered, suggesting a close relationship among these molecules within this region. SHK's linker domain is predicted to contain an alpha-helix which is indeed homologous to that of STAT. Based on the phylogenetic alignment, SH2 domains can be grouped into two categories, STAT-type and Src-type. SHK family members are in between, but are closer to the STAT-type which indicates a close relationship between SHK and STAT families in their SH2 domains and further supports the notion that SHKs linker-SH2 domain evolved from STAT or STATL (STAT-like Linker-SH2) domain found in plants. In SHK, STAT, and SPT6, the linker-SH2 domains all reside exclusively in the C-terminal regions. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198219  Cd Length: 113  Bit Score: 52.22  E-value: 2.97e-08
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 1868045105 613 ERTWYVGKINRTQAEEMLSGKRDGTFLIR-ESSQRGCYACSVVVD-GDTKHCVIYRTATGFGFAEpyNLYASLKELV 687
Cdd:cd10356     9 ECAWFHGDISTSESENRLNGKPEGTFLVRfSTSEPGAYTISKVSKnGGISHQRIHRPGGKFQVNN--SKYLSVKELI 83
SH2_Src_Src cd10365
Src homology 2 (SH2) domain found in tyrosine kinase sarcoma (Src); Src is a member of the Src ...
320-403 3.03e-08

Src homology 2 (SH2) domain found in tyrosine kinase sarcoma (Src); Src is a member of the Src non-receptor type tyrosine kinase family of proteins. Src is thought to play a role in the regulation of embryonic development and cell growth. Members here include v-Src and c-Src. v-Src lacks the C-terminal inhibitory phosphorylation site and is therefore constitutively active as opposed to normal cellular src (c-Src) which is only activated under certain circumstances where it is required (e.g. growth factor signaling). v-Src is an oncogene whereas c-Src is a proto-oncogene. c-Src consists of three domains, an N-terminal SH3 domain, a central SH2 domain and a tyrosine kinase domain. The SH2 and SH3 domains work together in the auto-inhibition of the kinase domain. The phosphorylation of an inhibitory tyrosine near the c-terminus of the protein produces a binding site for the SH2 domain which then facilitates binding of the SH3 domain to a polyproline site within the linker between the SH2 domain and the kinase domain. Binding of the SH3 domain inactivates the enzyme. This allows for multiple mechanisms for c-Src activation: dephosphorylation of the C-terminal tyrosine by a protein tyrosine phosphatase, binding of the SH2 domain by a competitive phospho-tyrosine residue, or competitive binding of a polyproline binding site to the SH3 domain. Unlike most other Src members Src lacks cysteine residues in the SH4 domain that undergo palmitylation. Serine and threonine phosphorylation sites have also been identified in the unique domains of Src and are believed to modulate protein-protein interactions or regulate catalytic activity. Alternatively spliced forms of Src, which contain 6- or 11-amino acid insertions in the SH3 domain, are expressed in CNS neurons. c-Src has a unique N-terminal domain, an SH3 domain, an SH2 domain, a kinase domain and a regulatory tail, as do the other members of the family. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198228  Cd Length: 101  Bit Score: 51.97  E-value: 3.03e-08
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 320 QDAEWYWGDISREEvNERL---RDTPDGTFLVRDaSSKIQGEYTLTLRKGGNNKLIKVFH------RDGHYGFSEPLTFC 390
Cdd:cd10365     1 QAEEWYFGKITRRE-SERLllnAENPRGTFLVRE-SETTKGAYCLSVSDFDNAKGLNVKHykirklDSGGFYITSRTQFN 78
                          90
                  ....*....|...
gi 1868045105 391 SVVELISHYRHES 403
Cdd:cd10365    79 SLQQLVAYYSKHA 91
RhoGAP_fRGD1 cd04398
RhoGAP_fRGD1: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ...
125-260 3.21e-08

RhoGAP_fRGD1: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of fungal RGD1-like proteins. Yeast Rgd1 is a GAP protein for Rho3 and Rho4 and plays a role in low-pH response. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239863  Cd Length: 192  Bit Score: 54.33  E-value: 3.21e-08
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 125 PPILVKLVEAIEQAGLDSECYSRPELPAPR---------TDWSLSDV---EQW--DRNALYDAVKGFLLALPTPVVTpea 190
Cdd:cd04398    17 PNIVYQCIQAIENFGLNLEGIYRLSGNVSRvnklkelfdKDPLNVLLispEDYesDIHSVASLLKLFFRELPEPLLT--- 93
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 191 aAEAHRALREAAGPVGPVLEPPMLplhHAL----------TLRFLLQHLGRVARRAPVQATAVHSLASAFGPLLLRTPPP 260
Cdd:cd04398    94 -KALSREFIEAAKIEDESRRRDAL---HGLindlpdanyaTLRALMFHLARIKEHESVNRMSVNNLAIIWGPTLMNAAPD 169
SH2_ABL cd09935
Src homology 2 (SH2) domain found in Abelson murine lymphosarcoma virus (ABL) proteins; ...
324-418 3.38e-08

Src homology 2 (SH2) domain found in Abelson murine lymphosarcoma virus (ABL) proteins; ABL-family proteins are highly conserved tyrosine kinases. Each ABL protein contains an SH3-SH2-TK (Src homology 3-Src homology 2-tyrosine kinase) domain cassette, which confers autoregulated kinase activity and is common among nonreceptor tyrosine kinases. Several types of posttranslational modifications control ABL catalytic activity, subcellular localization, and stability, with consequences for both cytoplasmic and nuclear ABL functions. Binding partners provide additional regulation of ABL catalytic activity, substrate specificity, and downstream signaling. By combining this cassette with actin-binding and -bundling domain, ABL proteins are capable of connecting phosphoregulation with actin-filament reorganization. Vertebrate paralogs, ABL1 and ABL2, have evolved to perform specialized functions. ABL1 includes nuclear localization signals and a DNA binding domain which is used to mediate DNA damage-repair functions, while ABL2 has additional binding capacity for actin and for microtubules to enhance its cytoskeletal remodeling functions. SH2 is involved in several autoinhibitory mechanism that constrain the enzymatic activity of the ABL-family kinases. In one mechanism SH2 and SH3 cradle the kinase domain while a cap sequence stabilizes the inactive conformation resulting in a locked inactive state. Another involves phosphatidylinositol 4,5-bisphosphate (PIP2) which binds the SH2 domain through residues normally required for phosphotyrosine binding in the linker segment between the SH2 and kinase domains. The SH2 domain contributes to ABL catalytic activity and target site specificity. It is thought that the ABL catalytic site and SH2 pocket have coevolved to recognize the same sequences. Recent work now supports a hierarchical processivity model in which the substrate target site most compatible with ABL kinase domain preferences is phosphorylated with greatest efficiency. If this site is compatible with the ABL SH2 domain specificity, it will then reposition and dock in the SH2 pocket. This mechanism also explains how ABL kinases phosphorylates poor targets on the same substrate if they are properly positioned and how relatively poor substrate proteins might be recruited to ABL through a complex with strong substrates that can also dock with the SH2 pocket. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198189  Cd Length: 94  Bit Score: 51.62  E-value: 3.38e-08
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 324 WYWGDISREEVNERLRDTPDGTFLVRDASSKIqGEYTLTLRKGGnnkliKVFH------RDGHYGFSEPLTFCSVVELIS 397
Cdd:cd09935     5 WYHGPISRNAAEYLLSSGINGSFLVRESESSP-GQYSISLRYDG-----RVYHyrisedSDGKVYVTQEHRFNTLAELVH 78
                          90       100
                  ....*....|....*....|.
gi 1868045105 398 HYRHESlaqynAKLDTRLLYP 418
Cdd:cd09935    79 HHSKNA-----DGLITTLRYP 94
RhoGAP_chimaerin cd04372
RhoGAP_chimaerin: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ...
121-258 3.92e-08

RhoGAP_chimaerin: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of chimaerins. Chimaerins are a family of phorbolester- and diacylglycerol-responsive GAPs specific for the Rho-like GTPase Rac. Chimaerins exist in two alternative splice forms that each contain a C-terminal GAP domain, and a central C1 domain which binds phorbol esters, inducing a conformational change that activates the protein; one splice form is lacking the N-terminal Src homology-2 (SH2) domain. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239837 [Multi-domain]  Cd Length: 194  Bit Score: 54.06  E-value: 3.92e-08
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 121 PDPAPPILVKLVEAIEQAGLDSECYSR-----PELPA---------PRTDWSLSDVEqwDRNALYDAVKGFLLALPTPVV 186
Cdd:cd04372    13 NTQRPMVVDMCIREIEARGLQSEGLYRvsgfaEEIEDvkmafdrdgEKADISATVYP--DINVITGALKLYFRDLPIPVI 90
                          90       100       110       120       130       140       150
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 1868045105 187 TPEA-----AAEAHRALREAAGPVGPVLEppMLPLHHALTLRFLLQHLGRVARRAPVQATAVHSLASAFGPLLLRTP 258
Cdd:cd04372    91 TYDTypkfiDAAKISNPDERLEAVHEALM--LLPPAHYETLRYLMEHLKRVTLHEKDNKMNAENLGIVFGPTLMRPP 165
SH2_Vav1 cd10405
Src homology 2 (SH2) domain found in the Vav1 proteins; Proto-oncogene vav is a member of the ...
615-711 5.91e-08

Src homology 2 (SH2) domain found in the Vav1 proteins; Proto-oncogene vav is a member of the Dbl family of guanine nucleotide exchange factors (GEF) for the Rho family of GTP binding proteins. All vavs are activated by tyrosine phosphorylation leading to their activation. There are three Vav mammalian family members: Vav1 which is expressed in the hematopoietic system, and Vav2 and Vav3 are more ubiquitously expressed. Vav1 plays a role in T-cell and B-cell development and activation. It has been identified as the specific binding partner of Nef proteins from HIV-1, resulting in morphological changes, cytoskeletal rearrangements, and the JNK/SAPK signaling cascade, leading to increased levels of viral transcription and replication. Vav1 has been shown to interact with Ku70, PLCG1, Lymphocyte cytosolic protein 2, Janus kinase 2, SIAH2, S100B, Abl gene, ARHGDIB, SHB, PIK3R1, PRKCQ, Grb2, MAPK1, Syk, Linker of activated T cells, Cbl gene and EZH2. Vav proteins are involved in several processes that require cytoskeletal reorganization, such as the formation of the immunological synapse (IS), phagocytosis, platelet aggregation, spreading, and transformation. Vavs function as guanine nucleotide exchange factors (GEFs) for the Rho/Rac family of GTPases. Vav family members have several conserved motifs/domains including: a leucine-rich region, a leucine-zipper, a calponin homology (CH) domain, an acidic domain, a Dbl-homology (DH) domain, a pleckstrin homology (PH) domain, a cysteine-rich domain, 2 SH3 domains, a proline-rich region, and a SH2 domain. Vavs are the only known Rho GEFs that have both the DH/PH motifs and SH2/SH3 domains in the same protein. The leucine-rich helix-loop-helix (HLH) domain is thought to be involved in protein heterodimerization with other HLH proteins and it may function as a negative regulator by forming inactive heterodimers. The CH domain is usually involved in the association with filamentous actin, but in Vav it controls NFAT stimulation, Ca2+ mobilization, and its transforming activity. Acidic domains are involved in protein-protein interactions and contain regulatory tyrosines. The DH domain is a GDP-GTP exchange factor on Rho/Rac GTPases. The PH domain in involved in interactions with GTP-binding proteins, lipids and/or phosphorylated serine/threonine residues. The SH3 domain is involved in localization of proteins to specific sites within the cell interacting with protein with proline-rich sequences. The SH2 domain mediates a high affinity interaction with tyrosine phosphorylated proteins. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198268  Cd Length: 103  Bit Score: 51.17  E-value: 5.91e-08
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 615 TWYVGKINRTQAEEMLSGKRDGTFLIRESSQ-RGCYACSVVVDGDTKHCVIYrTATGFGFAEPYNLYASLKELVLHYQHA 693
Cdd:cd10405     6 LWYAGPMERAGAESILANRSDGTYLVRQRVKdAAEFAISIKYNVEVKHIKIM-TAEGLYRITEKKAFRGLTELVEFYQQN 84
                          90
                  ....*....|....*...
gi 1868045105 694 SLVQHNDALTVTLAHPVR 711
Cdd:cd10405    85 SLKDCFKSLDTTLQFPFK 102
SH2_Src_Fgr cd10367
Src homology 2 (SH2) domain found in Gardner-Rasheed feline sarcoma viral (v-fgr) oncogene ...
616-709 6.31e-08

Src homology 2 (SH2) domain found in Gardner-Rasheed feline sarcoma viral (v-fgr) oncogene homolog, Fgr; Fgr is a member of the Src non-receptor type tyrosine kinase family of proteins. The protein contains N-terminal sites for myristoylation and palmitoylation, a PTK domain, and SH2 and SH3 domains which are involved in mediating protein-protein interactions with phosphotyrosine-containing and proline-rich motifs, respectively. Fgr is expressed in B-cells and myeloid cells, localizes to plasma membrane ruffles, and functions as a negative regulator of cell migration and adhesion triggered by the beta-2 integrin signal transduction pathway. Multiple alternatively spliced variants, encoding the same protein, have been identified Fgr has been shown to interact with Wiskott-Aldrich syndrome protein. Fgr has a unique N-terminal domain, an SH3 domain, an SH2 domain, a kinase domain and a regulatory tail, as do the other members of the family. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198230  Cd Length: 101  Bit Score: 51.06  E-value: 6.31e-08
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 616 WYVGKINRTQAEEML--SGKRDGTFLIRES-SQRGCYACSV----VVDGD-TKHCVIYRTATGFGFAEPYNLYASLKELV 687
Cdd:cd10367     5 WYFGKIGRKDAERQLlsPGNPRGAFLIRESeTTKGAYSLSIrdwdQNRGDhVKHYKIRKLDTGGYYITTRAQFDTVQELV 84
                          90       100
                  ....*....|....*....|..
gi 1868045105 688 LHYqhaslVQHNDALTVTLAHP 709
Cdd:cd10367    85 QHY-----MEVNDGLCYLLTAP 101
RhoGAP_myosin_IX cd04377
RhoGAP_myosin_IX: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain ...
123-258 9.55e-08

RhoGAP_myosin_IX: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain present in class IX myosins. Class IX myosins contain a characteristic head domain, a neck domain, a tail domain which contains a C6H2-zinc binding motif and a RhoGAP domain. Class IX myosins are single-headed, processive myosins that are partly cytoplasmic, and partly associated with membranes and the actin cytoskeleton. Class IX myosins are implicated in the regulation of neuronal morphogenesis and function of sensory systems, like the inner ear. There are two major isoforms, myosin IXA and IXB with several splice variants, which are both expressed in developing neurons. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239842  Cd Length: 186  Bit Score: 52.83  E-value: 9.55e-08
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 123 PAPPILVKLVEAIEQAGLDSECYSRPELPAPR---------TDWSLSDVEQWDRNALYDAVKGFLLALPTPVVTPEAAAE 193
Cdd:cd04377    14 SVPLVLEKLLEHIEMHGLYTEGIYRKSGSANKikelrqgldTDPDSVNLEDYPIHVITSVLKQWLRELPEPLMTFELYEN 93
                          90       100       110       120       130       140       150
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 194 AHRAL-----REAAGPVGPVLEppMLPLHHALTLRFLLQHLGRVARRAPVQATAVHSLASAFGPLLLRTP 258
Cdd:cd04377    94 FLRAMeleekQERVRALYSVLE--QLPRANLNTLERLIFHLVRVALQEEVNRMSANALAIVFAPCILRCP 161
SH2_Src_Src42 cd10370
Src homology 2 (SH2) domain found in the Src oncogene at 42A (Src42); Src42 is a member of the ...
324-403 1.01e-07

Src homology 2 (SH2) domain found in the Src oncogene at 42A (Src42); Src42 is a member of the Src non-receptor type tyrosine kinase family of proteins. The integration of receptor tyrosine kinase-induced RAS and Src42 signals by Connector eNhancer of KSR (CNK) as a two-component input is essential for RAF activation in Drosophila. Src42 is present in a wide variety of organisms including: California sea hare, pea aphid, yellow fever mosquito, honey bee, Panamanian leafcutter ant, and sea urchin. Src42 has a unique N-terminal domain, an SH3 domain, an SH2 domain, a kinase domain and a regulatory tail, as do the other members of the family. Like the other members of the Src family the SH2 domain in addition to binding the target, also plays an autoinhibitory role by binding to its C-terminal tail. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198233  Cd Length: 96  Bit Score: 50.20  E-value: 1.01e-07
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 324 WYWGDISREEVNERLRDTPD--GTFLVRDASSKiQGEYTLTLRKGGNNKLIKVFHRD-GHYGFSEPLTFCSVVELISHYR 400
Cdd:cd10370     5 WYFGKIKRIEAEKKLLLPENehGAFLIRDSESR-HNDYSLSVRDGDTVKHYRIRQLDeGGFFIARRTTFRTLQELVEHYS 83

                  ...
gi 1868045105 401 HES 403
Cdd:cd10370    84 KDS 86
SH2_BLNK_SLP-76 cd09929
Src homology 2 (SH2) domain found in B-cell linker (BLNK) protein and SH2 domain-containing ...
602-696 1.01e-07

Src homology 2 (SH2) domain found in B-cell linker (BLNK) protein and SH2 domain-containing leukocyte protein of 76 kDa (SLP-76); BLNK (also known as SLP-65 or BASH) is an important adaptor protein expressed in B-lineage cells. BLNK consists of a N-terminal sterile alpha motif (SAM) domain and a C-terminal SH2 domain. BLNK is a cytoplasmic protein, but a part of it is bound to the plasma membrane through an N-terminal leucine zipper motif and transiently bound to a cytoplasmic domain of Iga through its C-terminal SH2 domain upon B cell antigen receptor (BCR)-stimulation. A non-ITAM phosphotyrosine in Iga is necessary for the binding with the BLNK SH2 domain and/or for normal BLNK function in signaling and B cell activation. Upon phosphorylation BLNK binds Btk and PLCgamma2 through their SH2 domains and mediates PLCgamma2 activation by Btk. BLNK also binds other signaling molecules such as Vav, Grb2, Syk, and HPK1. BLNK has been shown to be necessary for BCR-mediated Ca2+ mobilization, for the activation of mitogen-activated protein kinases such as ERK, JNK, and p38 in a chicken B cell line DT40, and for activation of transcription factors such as NF-AT and NF-kappaB in human or mouse B cells. BLNK is involved in B cell development, B cell survival, activation, proliferation, and T-independent immune responses. BLNK is structurally homologous to SLP-76. SLP-76 and (linker for activation of T cells) LAT are adaptor/linker proteins in T cell antigen receptor activation and T cell development. BLNK interacts with many downstream signaling proteins that interact directly with both SLP-76 and LAT. New data suggest functional complementation of SLP-76 and LAT in T cell antigen receptor function with BLNK in BCR function. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198183  Cd Length: 121  Bit Score: 51.16  E-value: 1.01e-07
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 602 MEDEDALPHHEertWYVGKINRTQAEEML-SGKRDGTFLIRESS--------------QRGCYACSVVVDGDTKHcviYR 666
Cdd:cd09929     2 AEEEADLLPKE---WYAGNIDRKEAEEALrRSNKDGTFLVRDSSgkdssqpytlmvlyNDKVYNIQIRFLENTRQ---YA 75
                          90       100       110
                  ....*....|....*....|....*....|
gi 1868045105 667 TATGFGFAEpynLYASLKELVLHYQHASLV 696
Cdd:cd09929    76 LGTGLRGEE---TFSSVAEIIEHHQKTPLL 102
SH2_C-SH2_SHP_like cd09931
C-terminal Src homology 2 (C-SH2) domain found in SH2 domain Phosphatases (SHP) proteins; The ...
616-712 1.18e-07

C-terminal Src homology 2 (C-SH2) domain found in SH2 domain Phosphatases (SHP) proteins; The SH2 domain phosphatases (SHP-1, SHP-2/Syp, Drosophila corkscrew (csw), and Caenorhabditis elegans Protein Tyrosine Phosphatase (Ptp-2)) are cytoplasmic signaling enzymes. They are both targeted and regulated by interactions of their SH2 domains with phosphotyrosine docking sites. These proteins contain two SH2 domains (N-SH2, C-SH2) followed by a tyrosine phosphatase (PTP) domain, and a C-terminal extension. Shp1 and Shp2 have two tyrosyl phosphorylation sites in their C-tails, which are phosphorylated differentially by receptor and nonreceptor PTKs. Csw retains the proximal tyrosine and Ptp-2 lacks both sites. Shp-binding proteins include receptors, scaffolding adapters, and inhibitory receptors. Some of these bind both Shp1 and Shp2 while others bind only one. Most proteins that bind a Shp SH2 domain contain one or more immuno-receptor tyrosine-based inhibitory motifs (ITIMs): [SIVL]xpYxx[IVL]. Shp1 N-SH2 domain blocks the catalytic domain and keeps the enzyme in the inactive conformation, and is thus believed to regulate the phosphatase activity of SHP-1. Its C-SH2 domain is thought to be involved in searching for phosphotyrosine activators. The SHP2 N-SH2 domain is a conformational switch; it either binds and inhibits the phosphatase, or it binds phosphoproteins and activates the enzyme. The C-SH2 domain contributes binding energy and specificity, but it does not have a direct role in activation. Csw SH2 domain function is essential, but either SH2 domain can fulfill this requirement. The role of the csw SH2 domains during Sevenless receptor tyrosine kinase (SEV) signaling is to bind Daughter of Sevenless rather than activated SEV. Ptp-2 acts in oocytes downstream of sheath/oocyte gap junctions to promote major sperm protein (MSP)-induced MAP Kinase (MPK-1) phosphorylation. Ptp-2 functions in the oocyte cytoplasm, not at the cell surface to inhibit multiple RasGAPs, resulting in sustained Ras activation. It is thought that MSP triggers PTP-2/Ras activation and ROS production to stimulate MPK-1 activity essential for oocyte maturation and that secreted MSP domains and Cu/Zn superoxide dismutases function antagonistically to control ROS and MAPK signaling. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198185  Cd Length: 99  Bit Score: 50.36  E-value: 1.18e-07
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 616 WYVGKINRTQAEEMLSGK-RDGTFLIRES-SQRGCYACSVVVDGD-TKHCVIYRTatgfgfAEPYNL-----YASLKELV 687
Cdd:cd09931     2 WFHGHLSGKEAEKLLLEKgKPGSFLVRESqSKPGDFVLSVRTDDDkVTHIMIRCQ------GGKYDVgggeeFDSLTDLV 75
                          90       100
                  ....*....|....*....|....*
gi 1868045105 688 LHYQHASLVQHNDALtVTLAHPVRA 712
Cdd:cd09931    76 EHYKKNPMVETSGTV-VHLKQPLNA 99
SH2_Tec_Itk cd10396
Src homology 2 (SH2) domain found in Tec protein, IL2-inducible T-cell kinase (Itk); A member ...
319-420 1.21e-07

Src homology 2 (SH2) domain found in Tec protein, IL2-inducible T-cell kinase (Itk); A member of the Tec protein tyrosine kinase Itk is expressed thymus, spleen, lymph node, T lymphocytes, NK and mast cells. It plays a role in T-cell proliferation and differentiation, analogous to Tec family kinases Txk. Itk has been shown to interact with Fyn, Wiskott-Aldrich syndrome protein, KHDRBS1, PLCG1, Lymphocyte cytosolic protein 2, Linker of activated T cells, Karyopherin alpha 2, Grb2, and Peptidylprolyl isomerase A. Most of the Tec family members have a PH domain (Txk and the short (type 1) splice variant of Drosophila Btk29A are exceptions), a Tec homology (TH) domain, a SH3 domain, a SH2 domain, and a protein kinase catalytic domain. The TH domain consists of a Zn2+-binding Btk motif and a proline-rich region. The Btk motif is found in Tec kinases, Ras GAP, and IGBP. It is crucial for the function of Tec PH domains and it's lack of presence in Txk is not surprising since it lacks a PH domain. The type 1 splice form of the Drosophila homolog also lacks both the PH domain and the Btk motif. The proline-rich regions are highly conserved for the most part with the exception of Bmx whose residues surrounding the PXXP motif are not conserved (TH-like) and Btk29A which is entirely unique with large numbers of glycine residues (TH-extended). Tec family members all lack a C-terminal tyrosine having an autoinhibitory function in its phosphorylated state. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198259  Cd Length: 108  Bit Score: 50.56  E-value: 1.21e-07
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 319 LQDAEWYWGDISREEVNERLRDT-PDGTFLVRDASSKiqGEYTLTLRK---GGNNKLIKVFH-RDGH-----YGFSEPLT 388
Cdd:cd10396     3 LDQYEWYNKNINRSKAEKLLRDEgKEGGFMVRDSSQP--GLYTVSLYTkagGEGNPCIRHYHiKETNdspkkYYLAEKHV 80
                          90       100       110
                  ....*....|....*....|....*....|..
gi 1868045105 389 FCSVVELISHYRHESlaqynAKLDTRLLYPVS 420
Cdd:cd10396    81 FNSIPELIEYHKHNA-----AGLVTRLRYPVS 107
SH2_Tec_Bmx cd10399
Src homology 2 (SH2) domain found in Tec protein, Bmx; A member of the Tec protein tyrosine ...
318-420 1.22e-07

Src homology 2 (SH2) domain found in Tec protein, Bmx; A member of the Tec protein tyrosine kinase Bmx is expressed in the endothelium of large arteries, fetal endocardium, adult endocardium of the left ventricle, bone marrow, lung, testis, granulocytes, myeloid cell lines, and prostate cell lines. Bmx is involved in the regulation of Rho and serum response factor (SRF). Bmx has been shown to interact with PAK1, PTK2, PTPN21, and RUFY1. Most of the Tec family members have a PH domain (Txk and the short (type 1) splice variant of Drosophila Btk29A are exceptions), a Tec homology (TH) domain, a SH3 domain, a SH2 domain, and a protein kinase catalytic domain. The TH domain consists of a Zn2+-binding Btk motif and a proline-rich region. The Btk motif is found in Tec kinases, Ras GAP, and IGBP. It is crucial for the function of Tec PH domains. It is not present in Txk and the type 1 splice form of the Drosophila homolog. The proline-rich regions are highly conserved for the most part with the exception of Bmx whose residues surrounding the PXXP motif are not conserved (TH-like) and Btk29A which is entirely unique with large numbers of glycine residues (TH-extended). Tec family members all lack a C-terminal tyrosine having an autoinhibitory function in its phosphorylated state. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198262  Cd Length: 106  Bit Score: 50.34  E-value: 1.22e-07
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 318 SLQDAEWYWGDISREEVNERLRDT-PDGTFLVRDASSkiQGEYTLT-LRKGGNNK--LIKVFH----RDGHYGFSEPLTF 389
Cdd:cd10399     2 NLDAYDWFAGNISRSQSEQLLRQKgKEGAFMVRNSSQ--VGMYTVSlFSKAVNDKkgTVKHYHvhtnAENKLYLAENYCF 79
                          90       100       110
                  ....*....|....*....|....*....|.
gi 1868045105 390 CSVVELISHYRHESlaqynAKLDTRLLYPVS 420
Cdd:cd10399    80 DSIPKLIHYHQHNS-----AGMITRLRHPVS 105
SH2_SOCS1 cd10382
Src homology 2 (SH2) domain found in suppressor of cytokine signaling (SOCS) proteins; SH2 ...
319-399 1.42e-07

Src homology 2 (SH2) domain found in suppressor of cytokine signaling (SOCS) proteins; SH2 domain found in SOCS proteins. SOCS was first recognized as a group of cytokine-inducible SH2 (CIS) domain proteins comprising eight family members in human (CIS and SOCS1-SOCS7). In addition to the SH2 domain, SOCS proteins have a variable N-terminal domain and a conserved SOCS box in the C-terminal domain. SOCS proteins bind to a substrate via their SH2 domain. The prototypical members, CIS and SOCS1-SOCS3, have been shown to regulate growth hormone signaling in vitro and in a classic negative feedback response compete for binding at phosphotyrosine sites in JAK kinase and receptor pathways to displace effector proteins and target bound receptors for proteasomal degradation. Loss of SOCS activity results in excessive cytokine signaling associated with a variety of hematopoietic, autoimmune, and inflammatory diseases and certain cancers. Members (SOCS4-SOCS7) were identified by their conserved SOCS box, an adapter motif of 3 helices that associates substrate binding domains, such as the SOCS SH2 domain, ankryin, and WD40 with ubiquitin ligase components. These show limited cytokine induction. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198245  Cd Length: 98  Bit Score: 50.05  E-value: 1.42e-07
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 319 LQDAEWYWGDISREEVNERLRDTPDGTFLVRDASskiQGE--YTLTLRKGGNNKLIKVFHRDGHYGFSE-PLTFCSVVEL 395
Cdd:cd10382     7 LDASGFYWGPLSVEEAHAKLKREPVGTFLIRDSR---QKNcfFALSVKMASGPVSIRILFKAGKFSLDGsKESFDCLFKL 83

                  ....
gi 1868045105 396 ISHY 399
Cdd:cd10382    84 LEHY 87
SH2_Tec_Txk cd10398
Src homology 2 (SH2) domain found in Tec protein, Txk; A member of the Tec protein tyrosine ...
318-419 1.68e-07

Src homology 2 (SH2) domain found in Tec protein, Txk; A member of the Tec protein tyrosine kinase Txk is expressed in thymus, spleen, lymph node, T lymphocytes, NK cells, mast cell lines, and myeloid cell line. Txk plays a role in TCR signal transduction, T cell development, and selection which is analogous to the function of Itk. Txk has been shown to interact with IFN-gamma. Unlike most of the Tec family members Txk lacks a PH domain. Instead Txk has a unique region containing a palmitoylated cysteine string which has a similar membrane tethering function as the PH domain. Txk also has a zinc-binding motif, a SH3 domain, a SH2 domain, and a protein kinase catalytic domain. The TH domain consists of a Zn2+-binding Btk motif and a proline-rich region. The Btk motif is found in Tec kinases, Ras GAP, and IGBP and crucial to the function of the PH domain. It is not present in Txk which is not surprising since it lacks a PH domain. The type 1 splice form of the Drosophila homolog also lacks both the PH domain and the Btk motif. The proline-rich regions are highly conserved for the most part with the exception of Bmx whose residues surrounding the PXXP motif are not conserved (TH-like) and Btk29A which is entirely unique with large numbers of glycine residues (TH-extended). Tec family members all lack a C-terminal tyrosine having an autoinhibitory function in its phosphorylated state. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198261  Cd Length: 106  Bit Score: 49.94  E-value: 1.68e-07
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 318 SLQDAEWYWGDISREEVNERLR-DTPDGTFLVRDasSKIQGEYTLTL---RKGGNNKLIKVF----HRDGHYGFSEPLTF 389
Cdd:cd10398     2 NLEIYEWYHKNITRNQAERLLRqESKEGAFIVRD--SRHLGSYTISVftrARRSTEASIKHYqikkNDSGQWYVAERHLF 79
                          90       100       110
                  ....*....|....*....|....*....|
gi 1868045105 390 CSVVELISHYRHESlaqynAKLDTRLLYPV 419
Cdd:cd10398    80 QSIPELIQYHQHNA-----AGLMSRLRYPV 104
SH2_Srm cd10360
Src homology 2 (SH2) domain found in Src-related kinase lacking C-terminal regulatory tyrosine ...
616-690 2.12e-07

Src homology 2 (SH2) domain found in Src-related kinase lacking C-terminal regulatory tyrosine and N-terminal myristoylation sites (srm); Srm is a nonreceptor protein kinase that has two SH2 domains, a SH3 domain, and a kinase domain with a tyrosine residue for autophosphorylation. However it lacks an N-terminal glycine for myristoylation and a C-terminal tyrosine which suppresses kinase activity when phosphorylated. Srm is most similar to members of the Tec family who other members include: Tec, Btk/Emb, and Itk/Tsk/Emt. However Srm differs in its N-terminal unique domain it being much smaller than in the Tec family and is closer to Src. Srm is thought to be a new family of nonreceptor tyrosine kinases that may be redundant in function. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198223  Cd Length: 79  Bit Score: 48.80  E-value: 2.12e-07
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 1868045105 616 WYVGKINRTQAEEML--SGKRDGTFLIRES-SQRGCYACSVVVDGDTKHCVIYRTATGFGFAEPYNLYASLKELVLHY 690
Cdd:cd10360     2 WYFSGISRTQAQQLLlsPPNEPGAFLIRPSeSSLGGYSLSVRAQAKVCHYRICMAPSGSLYLQKGRLFPGLEELLAYY 79
SH3_Sorbs1_3 cd11916
Third (or C-terminal) Src Homology 3 domain of Sorbin and SH3 domain containing 1 (Sorbs1), ...
7-78 2.42e-07

Third (or C-terminal) Src Homology 3 domain of Sorbin and SH3 domain containing 1 (Sorbs1), also called ponsin; Sorbs1 is also called ponsin, SH3P12, or CAP (c-Cbl associated protein). It is an adaptor protein containing one sorbin homology (SoHo) and three SH3 domains. It binds Cbl and plays a major role in regulating the insulin signaling pathway by enhancing insulin-induced phosphorylation of Cbl. Sorbs1, like vinexin, localizes at cell-ECM and cell-cell adhesion sites where it binds vinculin, paxillin, and afadin. It may function in the control of cell motility. Other interaction partners of Sorbs1 include c-Abl, Sos, flotillin, Grb4, ataxin-7, filamin C, among others. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies.


Pssm-ID: 212849 [Multi-domain]  Cd Length: 59  Bit Score: 48.06  E-value: 2.42e-07
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1868045105   7 FQYRAVYPFRRERPEDLELLPGDllvvsrvalqalgVADGGERCphNVGWMPGFNERTRQRGDFPGTYVEFL 78
Cdd:cd11916     2 YSYQALYSYAPQNDDELELRDGD-------------IVDVMEKC--DDGWFVGTSRRTKQFGTFPGNYVKLL 58
RhoGAP_myosin_IXB cd04407
RhoGAP_myosin_IXB: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain ...
123-269 2.45e-07

RhoGAP_myosin_IXB: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain present in myosins IXB. Class IX myosins contain a characteristic head domain, a neck domain and a tail domain which contains a C6H2-zinc binding motif and a Rho-GAP domain. Class IX myosins are single-headed, processive myosins that are partly cytoplasmic, and partly associated with membranes and the actin cytoskeleton. Class IX myosins are implicated in the regulation of neuronal morphogenesis and function of sensory systems, like the inner ear. There are two major isoforms, myosin IXA and IXB with several splice variants, which are both expressed in developing neurons Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239872 [Multi-domain]  Cd Length: 186  Bit Score: 51.53  E-value: 2.45e-07
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 123 PAPPILVKLVEAIEQAGLDSECYSRPELPAPR---------TDWSLSDVEQWDRNALYDAVKGFLLALPTPVVTPEAAAE 193
Cdd:cd04407    14 SVPIVLEKLLEHVEMHGLYTEGIYRKSGSANRmkelhqllqADPENVKLENYPIHAITGLLKQWLRELPEPLMTFAQYND 93
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 194 AHRAL-----REAAGPVGPVLEppMLPLHHALTLRFLLQHLGRVARRAPVQATAVHSLASAFGPLLLRTPppggdtDGSE 268
Cdd:cd04407    94 FLRAVelpekQEQLQAIYRVLE--QLPTANHNTLERLIFHLVKVALEEDVNRMSPNALAIVFAPCLLRCP------DSSD 165

                  .
gi 1868045105 269 P 269
Cdd:cd04407   166 P 166
SH2_ShkD_ShkE cd10357
Src homology 2 (SH2) domain found in SH2 domain-bearing protein kinases D and E (ShkD and ShkE) ...
324-387 2.98e-07

Src homology 2 (SH2) domain found in SH2 domain-bearing protein kinases D and E (ShkD and ShkE); SH2-bearing genes cloned from Dictyostelium include two transcription factors, STATa and STATc, and a signaling factor, SHK1 (shkA). A database search of the Dictyostelium discoideum genome revealed two additional putative STAT sequences, dd-STATb and dd-STATd, and four additional putative SHK genes, dd-SHK2 (shkB), dd-SHK3 (shkC), dd-SHK4 (shkD), and dd-SHK5 (shkE). This model contains members of shkD and shkE. All of the SHK members are most closely related to the protein kinases found in plants. However these kinases in plants are not conjugated to any SH2 or SH2-like sequences. Alignment data indicates that the SHK SH2 domains carry some features of the STAT SH2 domains in Dictyostelium. When STATc's linker domain was used for a BLAST search, the sequence between the protein kinase domain and the SH2 domain (the linker) of SHK was recovered, suggesting a close relationship among these molecules within this region. SHK's linker domain is predicted to contain an alpha-helix which is indeed homologous to that of STAT. Based on the phylogenetic alignment, SH2 domains can be grouped into two categories, STAT-type and Src-type. SHK family members are in between, but are closer to the STAT-type which indicates a close relationship between SHK and STAT families in their SH2 domains and further supports the notion that SHKs linker-SH2 domain evolved from STAT or STATL (STAT-like Linker-SH2) domain found in plants. In SHK, STAT, and SPT6, the linker-SH2 domains all reside exclusively in the C-terminal regions. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198220  Cd Length: 87  Bit Score: 48.66  E-value: 2.98e-07
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 1868045105 324 WYWGDISREEVNERLRDTPDGTFLVRDASSK-IQGEYTLTLRKGGNNKLIKVFHRD----------GHYGFSEPL 387
Cdd:cd10357    12 WFHGDISRDEAEKRLRGRPEGTFLIRLSSTDpKKTPFTISKKKKSKPVHKRISRIDvnnytsfkipGGYAVSVPL 86
SH2_Src_Fgr cd10367
Src homology 2 (SH2) domain found in Gardner-Rasheed feline sarcoma viral (v-fgr) oncogene ...
320-399 3.11e-07

Src homology 2 (SH2) domain found in Gardner-Rasheed feline sarcoma viral (v-fgr) oncogene homolog, Fgr; Fgr is a member of the Src non-receptor type tyrosine kinase family of proteins. The protein contains N-terminal sites for myristoylation and palmitoylation, a PTK domain, and SH2 and SH3 domains which are involved in mediating protein-protein interactions with phosphotyrosine-containing and proline-rich motifs, respectively. Fgr is expressed in B-cells and myeloid cells, localizes to plasma membrane ruffles, and functions as a negative regulator of cell migration and adhesion triggered by the beta-2 integrin signal transduction pathway. Multiple alternatively spliced variants, encoding the same protein, have been identified Fgr has been shown to interact with Wiskott-Aldrich syndrome protein. Fgr has a unique N-terminal domain, an SH3 domain, an SH2 domain, a kinase domain and a regulatory tail, as do the other members of the family. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198230  Cd Length: 101  Bit Score: 49.13  E-value: 3.11e-07
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 320 QDAEWYWGDISREEVNERL--RDTPDGTFLVRDaSSKIQGEYTLTLR-----KGGNNKLIKVFHRD-GHYGFSEPLTFCS 391
Cdd:cd10367     1 QAEEWYFGKIGRKDAERQLlsPGNPRGAFLIRE-SETTKGAYSLSIRdwdqnRGDHVKHYKIRKLDtGGYYITTRAQFDT 79

                  ....*...
gi 1868045105 392 VVELISHY 399
Cdd:cd10367    80 VQELVQHY 87
SH2_Nck_family cd09943
Src homology 2 (SH2) domain found in the Nck family; Nck proteins are adaptors that modulate ...
616-693 3.29e-07

Src homology 2 (SH2) domain found in the Nck family; Nck proteins are adaptors that modulate actin cytoskeleton dynamics by linking proline-rich effector molecules to tyrosine kinases or phosphorylated signaling intermediates. There are two members known in this family: Nck1 (Nckalpha) and Nck2 (Nckbeta and Growth factor receptor-bound protein 4 (Grb4)). They are characterized by having 3 SH3 domains and a C-terminal SH2 domain. Nck1 and Nck2 have overlapping functions as determined by gene knockouts. Both bind receptor tyrosine kinases and other tyrosine-phosphorylated proteins through their SH2 domains. In addition they also bind distinct targets. Neuronal signaling proteins: EphrinB1, EphrinB2, and Disabled-1 (Dab-1) all bind to Nck-2 exclusively. And in the case of PDGFR, Tyr(P)751 binds to Nck1 while Tyr(P)1009 binds to Nck2. Nck1 and Nck2 have a role in the infection process of enteropathogenic Escherichia coli (EPEC). Their SH3 domains are involved in recruiting and activating the N-WASP/Arp2/3 complex inducing actin polymerization resulting in the production of pedestals, dynamic bacteria-presenting protrusions of the plasma membrane. A similar thing occurs in the vaccinia virus where motile plasma membrane projections are formed beneath the virus. Recently it has been shown that the SH2 domains of both Nck1 and Nck2 bind the G-protein coupled receptor kinase-interacting protein 1 (GIT1) in a phosphorylation-dependent manner. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198196  Cd Length: 93  Bit Score: 48.67  E-value: 3.29e-07
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 616 WYVGKINRTQAEEMLSGK-RDGTFLIRES-SQRGCYACSVVVDGDTKHCVIYRTATGFGFAEpyNLYASLKELVLHYQHA 693
Cdd:cd09943     3 WYYGRITRHQAETLLNEHgHEGDFLIRDSeSNPGDYSVSLKAPGRNKHFKVQVVDNVYCIGQ--RKFHTMDELVEHYKKA 80
SH2_C-SH2_SHP_like cd09931
C-terminal Src homology 2 (C-SH2) domain found in SH2 domain Phosphatases (SHP) proteins; The ...
324-400 4.24e-07

C-terminal Src homology 2 (C-SH2) domain found in SH2 domain Phosphatases (SHP) proteins; The SH2 domain phosphatases (SHP-1, SHP-2/Syp, Drosophila corkscrew (csw), and Caenorhabditis elegans Protein Tyrosine Phosphatase (Ptp-2)) are cytoplasmic signaling enzymes. They are both targeted and regulated by interactions of their SH2 domains with phosphotyrosine docking sites. These proteins contain two SH2 domains (N-SH2, C-SH2) followed by a tyrosine phosphatase (PTP) domain, and a C-terminal extension. Shp1 and Shp2 have two tyrosyl phosphorylation sites in their C-tails, which are phosphorylated differentially by receptor and nonreceptor PTKs. Csw retains the proximal tyrosine and Ptp-2 lacks both sites. Shp-binding proteins include receptors, scaffolding adapters, and inhibitory receptors. Some of these bind both Shp1 and Shp2 while others bind only one. Most proteins that bind a Shp SH2 domain contain one or more immuno-receptor tyrosine-based inhibitory motifs (ITIMs): [SIVL]xpYxx[IVL]. Shp1 N-SH2 domain blocks the catalytic domain and keeps the enzyme in the inactive conformation, and is thus believed to regulate the phosphatase activity of SHP-1. Its C-SH2 domain is thought to be involved in searching for phosphotyrosine activators. The SHP2 N-SH2 domain is a conformational switch; it either binds and inhibits the phosphatase, or it binds phosphoproteins and activates the enzyme. The C-SH2 domain contributes binding energy and specificity, but it does not have a direct role in activation. Csw SH2 domain function is essential, but either SH2 domain can fulfill this requirement. The role of the csw SH2 domains during Sevenless receptor tyrosine kinase (SEV) signaling is to bind Daughter of Sevenless rather than activated SEV. Ptp-2 acts in oocytes downstream of sheath/oocyte gap junctions to promote major sperm protein (MSP)-induced MAP Kinase (MPK-1) phosphorylation. Ptp-2 functions in the oocyte cytoplasm, not at the cell surface to inhibit multiple RasGAPs, resulting in sustained Ras activation. It is thought that MSP triggers PTP-2/Ras activation and ROS production to stimulate MPK-1 activity essential for oocyte maturation and that secreted MSP domains and Cu/Zn superoxide dismutases function antagonistically to control ROS and MAPK signaling. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198185  Cd Length: 99  Bit Score: 48.43  E-value: 4.24e-07
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 324 WYWGDISREEVNERLRDTP-DGTFLVRDASSKiQGEYTLTLRKGgNNKL--IKVFHRDGHYGFSEPLTFCSVVELISHYR 400
Cdd:cd09931     2 WFHGHLSGKEAEKLLLEKGkPGSFLVRESQSK-PGDFVLSVRTD-DDKVthIMIRCQGGKYDVGGGEEFDSLTDLVEHYK 79
SH2_Fps_family cd10361
Src homology 2 (SH2) domain found in feline sarcoma, Fujinami poultry sarcoma, and fes-related ...
611-691 4.62e-07

Src homology 2 (SH2) domain found in feline sarcoma, Fujinami poultry sarcoma, and fes-related (Fes/Fps/Fer) proteins; The Fps family consists of members Fps/Fes and Fer/Flk/Tyk3. They are cytoplasmic protein-tyrosine kinases implicated in signaling downstream from cytokines, growth factors and immune receptors. Fes/Fps/Fer contains three coiled-coil regions, an SH2 (Src-homology-2) and a TK (tyrosine kinase catalytic) domain signature. Members here include: Fps/Fes, Fer, Kin-31, and In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198224  Cd Length: 90  Bit Score: 48.29  E-value: 4.62e-07
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 611 HEERTWYVGKINRTQAEEMLsgKRDGTFLIRESSQRGC----YACSVVVDGDTKHCVIYRTATG-FGFAEpyNLYASLKE 685
Cdd:cd10361     3 LENEPYYHGLLPREDAEELL--KNDGDFLVRKTEPKGGgkrkLVLSVRWDGKIRHFVINRDDGGkYYIEG--KSFKSISE 78

                  ....*.
gi 1868045105 686 LVLHYQ 691
Cdd:cd10361    79 LINYYQ 84
SH3_SH3RF_3 cd11783
Third Src Homology 3 domain of SH3 domain containing ring finger 1 (SH3RF1), SH3RF3, and ...
9-75 5.59e-07

Third Src Homology 3 domain of SH3 domain containing ring finger 1 (SH3RF1), SH3RF3, and similar domains; SH3RF1 (or POSH) and SH3RF3 (or POSH2) are scaffold proteins that function as E3 ubiquitin-protein ligases. They contain an N-terminal RING finger domain and four SH3 domains. This model represents the third SH3 domain, located in the middle of SH3RF1 and SH3RF3, and similar domains. SH3RF1 plays a role in calcium homeostasis through the control of the ubiquitin domain protein Herp. It may also have a role in regulating death receptor mediated and JNK mediated apoptosis. SH3RF3 interacts with p21-activated kinase 2 (PAK2) and GTP-loaded Rac1. It may play a role in regulating JNK mediated apoptosis in certain conditions. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies.


Pssm-ID: 212717 [Multi-domain]  Cd Length: 55  Bit Score: 47.00  E-value: 5.59e-07
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 1868045105   9 YRAVYPFRRERPEDLELLPGDLLVVSrvalqalgvadggERCphNVGWMPGFNERTRQRGDFPGTYV 75
Cdd:cd11783     2 YVALYPYKPQKPDELELRKGEMYTVT-------------EKC--QDGWFKGTSLRTGQSGVFPGNYV 53
SH2_N-SH2_Zap70_Syk_like cd09938
N-terminal Src homology 2 (SH2) domain found in Zeta-chain-associated protein kinase 70 ...
324-403 6.04e-07

N-terminal Src homology 2 (SH2) domain found in Zeta-chain-associated protein kinase 70 (ZAP-70) and Spleen tyrosine kinase (Syk) proteins; ZAP-70 and Syk comprise a family of hematopoietic cell specific protein tyrosine kinases (PTKs) that are required for antigen and antibody receptor function. ZAP-70 is expressed in T and natural killer (NK) cells and Syk is expressed in B cells, mast cells, polymorphonuclear leukocytes, platelets, macrophages, and immature T cells. They are required for the proper development of T and B cells, immune receptors, and activating NK cells. They consist of two N-terminal Src homology 2 (SH2) domains and a C-terminal kinase domain separated from the SH2 domains by a linker or hinge region. Phosphorylation of both tyrosine residues within the Immunoreceptor Tyrosine-based Activation Motifs (ITAM; consensus sequence Yxx[LI]x(7,8)Yxx[LI]) by the Src-family PTKs is required for efficient interaction of ZAP-70 and Syk with the receptor subunits and for receptor function. ZAP-70 forms two phosphotyrosine binding pockets, one of which is shared by both SH2 domains. In Syk the two SH2 domains do not form such a phosphotyrosine-binding site. The SH2 domains here are believed to function independently. In addition, the two SH2 domains of Syk display flexibility in their relative orientation, allowing Syk to accommodate a greater variety of spacing sequences between the ITAM phosphotyrosines and singly phosphorylated non-classical ITAM ligands. This model contains the N-terminus SH2 domains of both Syk and Zap70. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198191  Cd Length: 104  Bit Score: 48.16  E-value: 6.04e-07
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 324 WYWGDISREEVNERLRDT--PDGTFLVRDASSKIqGEYTLTLRKGGnnkliKVFHR------DGHYGFSEPLTFCSVVEL 395
Cdd:cd09938     3 FFYGSITREEAEEYLKLAgmSDGLFLLRQSLRSL-GGYVLSVCHGR-----KFHHYtierqlNGTYAIAGGKAHCGPAEL 76

                  ....*...
gi 1868045105 396 ISHYRHES 403
Cdd:cd09938    77 CEYHSTDL 84
RhoGAP_SYD1 cd04379
RhoGAP_SYD1: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain present ...
108-272 6.21e-07

RhoGAP_SYD1: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain present in SYD-1_like proteins. Syd-1, first identified and best studied in C.elegans, has been shown to play an important role in neuronal development by specifying axonal properties. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239844  Cd Length: 207  Bit Score: 50.54  E-value: 6.21e-07
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 108 GLTLADLAEQFSPPDPAPPILVKLVEAIEQAGLDSE-----CYS-------RPELPAPRTDWSLSDVEQWDRNALYDAVK 175
Cdd:cd04379     2 GVPLSRLVEREGESRDVPIVLQKCVQEIERRGLDVIglyrlCGSaakkkelRDAFERNSAAVELSEELYPDINVITGVLK 81
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 176 GFLLALPTPVVTPEAaaeaHRALREAAGPVGPVLEPP----------MLPLHHALTLRFLLQHLGRVARRAPVQATAVHS 245
Cdd:cd04379    82 DYLRELPEPLITPQL----YEMVLEALAVALPNDVQTnthltlsiidCLPLSAKATLLLLLDHLSLVLSNSERNKMTPQN 157
                         170       180       190
                  ....*....|....*....|....*....|
gi 1868045105 246 LASAFGPLLL---RTPPPGGDTDGSEPGPG 272
Cdd:cd04379   158 LAVCFGPVLMfcsQEFSRYGISPTSKMAAV 187
SH2_CRK_like cd09926
Src homology 2 domain found in cancer-related signaling adaptor protein CRK; SH2 domain in the ...
615-664 7.07e-07

Src homology 2 domain found in cancer-related signaling adaptor protein CRK; SH2 domain in the CRK proteins. CRKI (SH2-SH3) and CRKII (SH2-SH3-SH3) are splicing isoforms of the oncoprotein CRK. CRKs regulate transcription and cytoskeletal reorganization for cell growth and motility by linking tyrosine kinases to small G proteins. The SH2 domain of CRK associates with tyrosine-phosphorylated receptors or components of focal adhesions, such as p130Cas and paxillin. CRK transmits signals to small G proteins through effectors that bind its SH3 domain, such as C3G, the guanine-nucleotide exchange factor (GEF) for Rap1 and R-Ras, and DOCK180, the GEF for Rac6. The binding of p130Cas to the CRK-C3G complex activates Rap1, leading to regulation of cell adhesion, and activates R-Ras, leading to JNK-mediated activation of cell proliferation, whereas the binding of CRK DOCK180 induces Rac1-mediated activation of cellular migration. The activity of the different splicing isoforms varies greatly with CRKI displaying substantial transforming activity, CRKII less so, and phosphorylated CRKII with no biological activity whatsoever. CRKII has a linker region with a phosphorylated Tyr and an additional C-terminal SH3 domain. The phosphorylated Tyr creates a binding site for its SH2 domain which disrupts the association between CRK and its SH2 target proteins. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198180 [Multi-domain]  Cd Length: 106  Bit Score: 48.24  E-value: 7.07e-07
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|.
gi 1868045105 615 TWYVGKINRTQAEEMLSGKRDGTFLIRESSQR-GCYACSVVVDGDTKHCVI 664
Cdd:cd09926     8 SWYFGPMSRQEAQELLQGQRHGVFLVRDSSTIpGDYVLSVSENSRVSHYII 58
SH2_Src_Fyn_isoform_a_like cd10418
Src homology 2 (SH2) domain found in Fyn isoform a like proteins; Fyn is a member of the Src ...
616-690 7.42e-07

Src homology 2 (SH2) domain found in Fyn isoform a like proteins; Fyn is a member of the Src non-receptor type tyrosine kinase family of proteins. This cd contains the SH2 domain found in Fyn isoform a type proteins. Fyn is involved in the control of cell growth and is required in the following pathways: T and B cell receptor signaling, integrin-mediated signaling, growth factor and cytokine receptor signaling, platelet activation, ion channel function, cell adhesion, axon guidance, fertilization, entry into mitosis, and differentiation of natural killer cells, oligodendrocytes and keratinocytes. The protein associates with the p85 subunit of phosphatidylinositol 3-kinase and interacts with the Fyn-binding protein. Alternatively spliced transcript variants encoding distinct isoforms exist. Fyn is primarily localized to the cytoplasmic leaflet of the plasma membrane. Tyrosine phosphorylation of target proteins by Fyn serves to either regulate target protein activity, and/or to generate a binding site on the target protein that recruits other signaling molecules. FYN has been shown to interact with a number of proteins including: BCAR1, Cbl, Janus kinase, nephrin, Sky, tyrosine kinase, Wiskott-Aldrich syndrome protein, and Zap-70. Fyn has a unique N-terminal domain, an SH3 domain, an SH2 domain, a kinase domain and a regulatory tail, as do the other members of the family. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198281  Cd Length: 101  Bit Score: 48.07  E-value: 7.42e-07
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 616 WYVGKINRTQAEEML--SGKRDGTFLIRES-SQRGCYACSVV----VDGD-TKHCVIYRTATGFGFAEPYNLYASLKELV 687
Cdd:cd10418     5 WYFGKLGRKDAERQLlsFGNPRGTFLIRESeTTKGAYSLSIRdwddMKGDhVKHYKIRKLDNGGYYITTRAQFETLQQLV 84

                  ...
gi 1868045105 688 LHY 690
Cdd:cd10418    85 QHY 87
SH2_Src_Fyn cd10368
Src homology 2 (SH2) domain found in Fyn; Fyn is a member of the Src non-receptor type ...
616-690 7.57e-07

Src homology 2 (SH2) domain found in Fyn; Fyn is a member of the Src non-receptor type tyrosine kinase family of proteins. Fyn is involved in the control of cell growth and is required in the following pathways: T and B cell receptor signaling, integrin-mediated signaling, growth factor and cytokine receptor signaling, platelet activation, ion channel function, cell adhesion, axon guidance, fertilization, entry into mitosis, and differentiation of natural killer cells, oligodendrocytes and keratinocytes. The protein associates with the p85 subunit of phosphatidylinositol 3-kinase and interacts with the Fyn-binding protein. Alternatively spliced transcript variants encoding distinct isoforms exist. Fyn is primarily localized to the cytoplasmic leaflet of the plasma membrane. Tyrosine phosphorylation of target proteins by Fyn serves to either regulate target protein activity, and/or to generate a binding site on the target protein that recruits other signaling molecules. FYN has been shown to interact with a number of proteins including: BCAR1, Cbl, Janus kinase, nephrin, Sky, tyrosine kinase, Wiskott-Aldrich syndrome protein, and Zap-70. Fyn has a unique N-terminal domain, an SH3 domain, an SH2 domain, a kinase domain and a regulatory tail, as do the other members of the family. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198231 [Multi-domain]  Cd Length: 101  Bit Score: 48.10  E-value: 7.57e-07
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 616 WYVGKINRTQAE-EMLS-GKRDGTFLIRES-SQRGCYACSVV----VDGD-TKHCVIYRTATGFGFAEPYNLYASLKELV 687
Cdd:cd10368     5 WYFGKLGRKDAErQLLSfGNPRGTFLIRESeTTKGAYSLSIRdwddMKGDhVKHYKIRKLDNGGYYITTRAQFETLQQLV 84

                  ...
gi 1868045105 688 LHY 690
Cdd:cd10368    85 QHY 87
SH2_HSH2_like cd09946
Src homology 2 domain found in hematopoietic SH2 (HSH2) protein; HSH2 is thought to function ...
616-704 7.67e-07

Src homology 2 domain found in hematopoietic SH2 (HSH2) protein; HSH2 is thought to function as an adapter protein involved in tyrosine kinase signaling. It may also be involved in regulating cytokine signaling and cytoskeletal reorganization in hematopoietic cells. HSH2 contains several putative protein-binding motifs, SH3-binding proline-rich regions, and phosphotyrosine sites, but lacks enzymatic motifs. HSH2 was found to interact with cytokine-regulated tyrosine kinase c-FES and an activated Cdc42-associated tyrosine kinase ACK1. HSH2 binds c-FES through both its C-terminal region and its N-terminal region including the SH2 domain and binds ACK1 via its N-terminal proline-rich region. Both kinases bound and tyrosine-phosphorylated HSH2 in mammalian cells. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198199  Cd Length: 102  Bit Score: 47.96  E-value: 7.67e-07
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 616 WYVGKINRTQAEEMLSGKRDGTFLIRESSQRGCYACSVVVDGDTKHCVIYRTATG-FGFAEPYNLYASLKELVLHYQHAS 694
Cdd:cd09946     9 WFHGAISREAAENMLESQPLGSFLIRVSHSHVGYTLSYKAQSSCRHFMVKLLDDGtFMIPGEKVAHTSLHALVTFHQQKP 88
                          90
                  ....*....|
gi 1868045105 695 LVQHNDALTV 704
Cdd:cd09946    89 IEPRRELLTQ 98
SH2_Src_Lck cd10362
Src homology 2 (SH2) domain in lymphocyte cell kinase (Lck); Lck is a member of the Src ...
612-709 8.21e-07

Src homology 2 (SH2) domain in lymphocyte cell kinase (Lck); Lck is a member of the Src non-receptor type tyrosine kinase family of proteins. It is expressed in the brain, T-cells, and NK cells. The unique domain of Lck mediates its interaction with two T-cell surface molecules, CD4 and CD8. It associates with their cytoplasmic tails on CD4 T helper cells and CD8 cytotoxic T cells to assist signaling from the T cell receptor (TCR) complex. When the T cell receptor is engaged by the specific antigen presented by MHC, Lck phosphorylase the intracellular chains of the CD3 and zeta-chains of the TCR complex, allowing ZAP-70 to bind them. Lck then phosphorylates and activates ZAP-70, which in turn phosphorylates Linker of Activated T cells (LAT), a transmembrane protein that serves as a docking site for proteins including: Shc-Grb2-SOS, PI3K, and phospholipase C (PLC). The tyrosine phosphorylation cascade culminates in the intracellular mobilization of a calcium ions and activation of important signaling cascades within the lymphocyte, including the Ras-MEK-ERK pathway, which goes on to activate certain transcription factors such as NFAT, NF-kappaB, and AP-1. These transcription factors regulate the production cytokines such as Interleukin-2 that promote long-term proliferation and differentiation of the activated lymphocytes. The N-terminal tail of Lck is myristoylated and palmitoylated and it tethers the protein to the plasma membrane of the cell. Lck also contains a SH3 domain, a SH2 domain, and a C-terminal tyrosine kinase domain. Lck has 2 phosphorylation sites, the first an autophosphorylation site that is linked to activation of the protein and the second which is phosphorylated by Csk, which inhibits it. Lck is also inhibited by SHP-1 dephosphorylation and by Cbl ubiquitin ligase, which is part of the ubiquitin-mediated pathway. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198225  Cd Length: 101  Bit Score: 47.94  E-value: 8.21e-07
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 612 EERTWYVGKINRTQAEEMLS--GKRDGTFLIRES-SQRGCYACSV----VVDGDT-KHCVIYRTATGFGFAEPYNLYASL 683
Cdd:cd10362     1 EPEPWFFKNLSRNDAERQLLapGNTHGSFLIRESeTTAGSFSLSVrdfdQNQGEVvKHYKIRNLDNGGFYISPRITFPGL 80
                          90       100
                  ....*....|....*....|....*.
gi 1868045105 684 KELVLHYQHASlvqhnDALTVTLAHP 709
Cdd:cd10362    81 HELVRHYTNAS-----DGLCTRLSRP 101
SH2_Src_Fyn_isoform_a_like cd10418
Src homology 2 (SH2) domain found in Fyn isoform a like proteins; Fyn is a member of the Src ...
320-418 9.75e-07

Src homology 2 (SH2) domain found in Fyn isoform a like proteins; Fyn is a member of the Src non-receptor type tyrosine kinase family of proteins. This cd contains the SH2 domain found in Fyn isoform a type proteins. Fyn is involved in the control of cell growth and is required in the following pathways: T and B cell receptor signaling, integrin-mediated signaling, growth factor and cytokine receptor signaling, platelet activation, ion channel function, cell adhesion, axon guidance, fertilization, entry into mitosis, and differentiation of natural killer cells, oligodendrocytes and keratinocytes. The protein associates with the p85 subunit of phosphatidylinositol 3-kinase and interacts with the Fyn-binding protein. Alternatively spliced transcript variants encoding distinct isoforms exist. Fyn is primarily localized to the cytoplasmic leaflet of the plasma membrane. Tyrosine phosphorylation of target proteins by Fyn serves to either regulate target protein activity, and/or to generate a binding site on the target protein that recruits other signaling molecules. FYN has been shown to interact with a number of proteins including: BCAR1, Cbl, Janus kinase, nephrin, Sky, tyrosine kinase, Wiskott-Aldrich syndrome protein, and Zap-70. Fyn has a unique N-terminal domain, an SH3 domain, an SH2 domain, a kinase domain and a regulatory tail, as do the other members of the family. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198281  Cd Length: 101  Bit Score: 47.69  E-value: 9.75e-07
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 320 QDAEWYWGDISREEVNERLRDT--PDGTFLVRDaSSKIQGEYTLTLR-----KGGNNKLIKVFHRD-GHYGFSEPLTFCS 391
Cdd:cd10418     1 QAEEWYFGKLGRKDAERQLLSFgnPRGTFLIRE-SETTKGAYSLSIRdwddmKGDHVKHYKIRKLDnGGYYITTRAQFET 79
                          90       100
                  ....*....|....*....|....*..
gi 1868045105 392 VVELISHYRHESlaqynAKLDTRLLYP 418
Cdd:cd10418    80 LQQLVQHYSERA-----AGLCCRLVVP 101
SH2_C-SH2_Zap70 cd10402
C-terminal Src homology 2 (SH2) domain found in Zeta-chain-associated protein kinase 70 ...
611-670 9.90e-07

C-terminal Src homology 2 (SH2) domain found in Zeta-chain-associated protein kinase 70 (ZAP-70); ZAP-70 and Syk comprise a family of hematopoietic cell specific protein tyrosine kinases (PTKs) that are required for antigen and antibody receptor function. ZAP-70 is expressed in T and natural killer (NK) cells and Syk is expressed in B cells, mast cells, polymorphonuclear leukocytes, platelets, macrophages, and immature T cells. They are required for the proper development of T and B cells, immune receptors, and activating NK cells. They consist of two N-terminal Src homology 2 (SH2) domains and a C-terminal kinase domain separated from the SH2 domains by a linker or hinge region. Phosphorylation of both tyrosine residues within the Immunoreceptor Tyrosine-based Activation Motifs (ITAM; consensus sequence Yxx[LI]x(7,8)Yxx[LI]) by the Src-family PTKs is required for efficient interaction of ZAP-70 and Syk with the receptor subunits and for receptor function. ZAP-70 forms two phosphotyrosine binding pockets, one of which is shared by both SH2 domains. In Syk the two SH2 domains do not form such a phosphotyrosine-binding site. The SH2 domains here are believed to function independently. In addition, the two SH2 domains of Syk display flexibility in their relative orientation, allowing Syk to accommodate a greater variety of spacing sequences between the ITAM phosphotyrosines and singly phosphorylated non-classical ITAM ligands. This model contains the C-terminus SH2 domains of Zap70. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198265  Cd Length: 105  Bit Score: 47.61  E-value: 9.90e-07
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1868045105 611 HEERTWYVGKINRTQAEEML-SGKR-DGTFLIRESSQRGCYACSVVVDGDTKHCVIYRTATG 670
Cdd:cd10402     7 HERMPWYHGSIARDEAERRLySGAQpDGKFLLRERKESGTYALSLVYGKTVYHYRIDQDKSG 68
SH2_Tec_Itk cd10396
Src homology 2 (SH2) domain found in Tec protein, IL2-inducible T-cell kinase (Itk); A member ...
616-710 1.32e-06

Src homology 2 (SH2) domain found in Tec protein, IL2-inducible T-cell kinase (Itk); A member of the Tec protein tyrosine kinase Itk is expressed thymus, spleen, lymph node, T lymphocytes, NK and mast cells. It plays a role in T-cell proliferation and differentiation, analogous to Tec family kinases Txk. Itk has been shown to interact with Fyn, Wiskott-Aldrich syndrome protein, KHDRBS1, PLCG1, Lymphocyte cytosolic protein 2, Linker of activated T cells, Karyopherin alpha 2, Grb2, and Peptidylprolyl isomerase A. Most of the Tec family members have a PH domain (Txk and the short (type 1) splice variant of Drosophila Btk29A are exceptions), a Tec homology (TH) domain, a SH3 domain, a SH2 domain, and a protein kinase catalytic domain. The TH domain consists of a Zn2+-binding Btk motif and a proline-rich region. The Btk motif is found in Tec kinases, Ras GAP, and IGBP. It is crucial for the function of Tec PH domains and it's lack of presence in Txk is not surprising since it lacks a PH domain. The type 1 splice form of the Drosophila homolog also lacks both the PH domain and the Btk motif. The proline-rich regions are highly conserved for the most part with the exception of Bmx whose residues surrounding the PXXP motif are not conserved (TH-like) and Btk29A which is entirely unique with large numbers of glycine residues (TH-extended). Tec family members all lack a C-terminal tyrosine having an autoinhibitory function in its phosphorylated state. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198259  Cd Length: 108  Bit Score: 47.48  E-value: 1.32e-06
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 616 WYVGKINRTQAEEML-SGKRDGTFLIRESSQRGCYACSV----VVDGDT--KHCVIYRTATG---FGFAEPYnLYASLKE 685
Cdd:cd10396     8 WYNKNINRSKAEKLLrDEGKEGGFMVRDSSQPGLYTVSLytkaGGEGNPciRHYHIKETNDSpkkYYLAEKH-VFNSIPE 86
                          90       100
                  ....*....|....*....|....*.
gi 1868045105 686 LVLHYqhaslvQHNDALTVT-LAHPV 710
Cdd:cd10396    87 LIEYH------KHNAAGLVTrLRYPV 106
SH2_Nterm_shark_like cd10347
N-terminal Src homology 2 (SH2) domain found in SH2 domains, ANK, and kinase domain (shark) ...
324-399 1.41e-06

N-terminal Src homology 2 (SH2) domain found in SH2 domains, ANK, and kinase domain (shark) proteins; These non-receptor protein-tyrosine kinases contain two SH2 domains, five ankyrin (ANK)-like repeats, and a potential tyrosine phosphorylation site in the carboxyl-terminal tail which resembles the phosphorylation site in members of the src family. Like, mammalian non-receptor protein-tyrosine kinases, ZAP-70 and syk proteins, they do not have SH3 domains. However, the presence of ANK makes these unique among protein-tyrosine kinases. Both tyrosine kinases and ANK repeats have been shown to transduce developmental signals, and SH2 domains are known to participate intimately in tyrosine kinase signaling. These tyrosine kinases are believed to be involved in epithelial cell polarity. The members of this family include the shark (SH2 domains, ANK, and kinase domain) gene in Drosophila and yellow fever mosquitos, as well as the hydra protein HTK16. Drosophila Shark is proposed to transduce intracellularly the Crumbs, a protein necessary for proper organization of ectodermal epithelia, intercellular signal. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198210  Cd Length: 81  Bit Score: 46.60  E-value: 1.41e-06
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 324 WYWGDISREEVNERL--RDTPDGTFLVRDaSSKIQGEYTLTLRKGGNnklikVFH----RDGHYGFS---EPLTFCSVVE 394
Cdd:cd10347     3 WYHGKISREVAEALLlrEGGRDGLFLVRE-STSAPGDYVLSLLAQGE-----VLHyqirRHGEDAFFsddGPLIFHGLDT 76

                  ....*
gi 1868045105 395 LISHY 399
Cdd:cd10347    77 LIEHY 81
SH2_Src_Fyn cd10368
Src homology 2 (SH2) domain found in Fyn; Fyn is a member of the Src non-receptor type ...
320-399 1.86e-06

Src homology 2 (SH2) domain found in Fyn; Fyn is a member of the Src non-receptor type tyrosine kinase family of proteins. Fyn is involved in the control of cell growth and is required in the following pathways: T and B cell receptor signaling, integrin-mediated signaling, growth factor and cytokine receptor signaling, platelet activation, ion channel function, cell adhesion, axon guidance, fertilization, entry into mitosis, and differentiation of natural killer cells, oligodendrocytes and keratinocytes. The protein associates with the p85 subunit of phosphatidylinositol 3-kinase and interacts with the Fyn-binding protein. Alternatively spliced transcript variants encoding distinct isoforms exist. Fyn is primarily localized to the cytoplasmic leaflet of the plasma membrane. Tyrosine phosphorylation of target proteins by Fyn serves to either regulate target protein activity, and/or to generate a binding site on the target protein that recruits other signaling molecules. FYN has been shown to interact with a number of proteins including: BCAR1, Cbl, Janus kinase, nephrin, Sky, tyrosine kinase, Wiskott-Aldrich syndrome protein, and Zap-70. Fyn has a unique N-terminal domain, an SH3 domain, an SH2 domain, a kinase domain and a regulatory tail, as do the other members of the family. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198231 [Multi-domain]  Cd Length: 101  Bit Score: 46.95  E-value: 1.86e-06
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 320 QDAEWYWGDISREEVNERLRD--TPDGTFLVRDaSSKIQGEYTLTLR-----KGGNNKLIKVFHRD-GHYGFSEPLTFCS 391
Cdd:cd10368     1 QAEEWYFGKLGRKDAERQLLSfgNPRGTFLIRE-SETTKGAYSLSIRdwddmKGDHVKHYKIRKLDnGGYYITTRAQFET 79

                  ....*...
gi 1868045105 392 VVELISHY 399
Cdd:cd10368    80 LQQLVQHY 87
SH2_SHIP cd10343
Src homology 2 (SH2) domain found in SH2-containing inositol-5'-phosphatase (SHIP) and ...
616-710 2.10e-06

Src homology 2 (SH2) domain found in SH2-containing inositol-5'-phosphatase (SHIP) and SLAM-associated protein (SAP); The SH2-containing inositol-5'-phosphatase, SHIP (also called SHIP1/SHIP1a), is a hematopoietic-restricted phosphatidylinositide phosphatase that translocates to the plasma membrane after extracellular stimulation and hydrolyzes the phosphatidylinositol-3-kinase (PI3K)-generated second messenger PI-3,4,5-P3 (PIP3) to PI-3,4-P2. As a result, SHIP dampens down PIP3 mediated signaling and represses the proliferation, differentiation, survival, activation, and migration of hematopoietic cells. PIP3 recruits lipid-binding pleckstrin homology(PH) domain-containing proteins to the inner wall of the plasma membrane and activates them. PH domain-containing downstream effectors include the survival/proliferation enhancing serine/threonine kinase, Akt (protein kinase B), the tyrosine kinase, Btk, the regulator of protein translation, S6K, and the Rac and cdc42 guanine nucleotide exchange factor, Vav. SHIP is believed to act as a tumor suppressor during leukemogenesis and lymphomagenesis, and may play a role in activating the immune system to combat cancer. SHIP contains an N-terminal SH2 domain, a centrally located phosphatase domain that specifically hydrolyzes the 5'-phosphate from PIP3, PI-4,5-P2 and inositol-1,3,4,5- tetrakisphosphate (IP4), a C2 domain, that is an allosteric activating site when bound by SHIP's enzymatic product, PI-3,4-P2; 2 NPXY motifs that bind proteins with a phosphotyrosine binding (Shc, Dok 1, Dok 2) or an SH2 (p85a, SHIP2) domain; and a proline-rich domain consisting of four PxxP motifs that bind a subset of SH3-containing proteins including Grb2, Src, Lyn, Hck, Abl, PLCg1, and PIAS1. The SH2 domain of SHIP binds to the tyrosine phosphorylated forms of Shc, SHP-2, Doks, Gabs, CD150, platelet-endothelial cell adhesion molecule, Cas, c-Cbl, immunoreceptor tyrosine-based inhibitory motifs (ITIMs), and immunoreceptor tyrosine-based activation motifs (ITAMs). The X-linked lymphoproliferative syndrome (XLP) gene encodes SAP (also called SH2D1A/DSHP) a protein that consists of a 5 residue N-terminus, a single SH2 domain, and a short 25 residue C-terminal tail. XLP is characterized by an extreme sensitivity to Epstein-Barr virus. Both T and natural killer (NK) cell dysfunctions have been seen in XLP patients. SAP binds the cytoplasmic tail of Signaling lymphocytic activation molecule (SLAM), 2B4, Ly-9, and CD84. SAP is believed to function as a signaling inhibitor, by blocking or regulating binding of other signaling proteins. SAP and the SAP-like protein EAT-2 recognize the sequence motif TIpYXX(V/I), which is found in the cytoplasmic domains of a restricted number of T, B, and NK cell surface receptors and are proposed to be natural inhibitors or regulators of the physiological role of a small family of receptors on the surface of these cells. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198206  Cd Length: 103  Bit Score: 46.67  E-value: 2.10e-06
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 616 WYVGKINRTQAEEMLS-GKRDGTFLIRES-SQRGCYACSVVVDgdtKHCVIYR------------TATGFgfaePYNLYA 681
Cdd:cd10343     5 WYHGNITRSKAEELLSkAGKDGSFLVRDSeSVSGAYALCVLYQ---NCVHTYRilpnaedklsvqASEGV----PVRFFT 77
                          90       100
                  ....*....|....*....|....*....
gi 1868045105 682 SLKELVLHYQhaslvQHNDALTVTLAHPV 710
Cdd:cd10343    78 TLPELIEFYQ-----KENMGLVTHLLYPV 101
SH2_SHE cd10391
Src homology 2 domain found in SH2 domain-containing adapter protein E (SHE); SHE is expressed ...
324-419 2.25e-06

Src homology 2 domain found in SH2 domain-containing adapter protein E (SHE); SHE is expressed in heart, lung, brain, and skeletal muscle. SHE contains two pTry protein binding domains, protein interaction domain (PID) and a SH2 domain, followed by a glycine-proline rich region, all of which are N-terminal to the phosphotyrosine binding (PTB) domain. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198254  Cd Length: 98  Bit Score: 46.49  E-value: 2.25e-06
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 324 WYWGDISREEVNERLRDTPDGTFLVRDASSKiQGEYTLTLRKG-GNNKLIKVFHRDGHYGFSE-PLTFCSVVELISHYRH 401
Cdd:cd10391     3 WYHGSISRAEAESRLQPCKEASYLVRNSESG-NSKYSIALKTSqGCVHIIVAQTKDNKYTLNQtSAVFDSIPEVVHYYSN 81
                          90
                  ....*....|....*...
gi 1868045105 402 ESLAQYNAKLDTrLLYPV 419
Cdd:cd10391    82 EKLPFKGAEHMT-LLHPV 98
SH2_Src_Lyn cd10364
Src homology 2 (SH2) domain found in Lyn; Lyn is a member of the Src non-receptor type ...
323-403 2.49e-06

Src homology 2 (SH2) domain found in Lyn; Lyn is a member of the Src non-receptor type tyrosine kinase family of proteins and is expressed in the hematopoietic cells, in neural tissues, liver, and adipose tissue. There are two alternatively spliced forms of Lyn. Lyn plays an inhibitory role in myeloid lineage proliferation. Following engagement of the B cell receptors, Lyn undergoes rapid phosphorylation and activation, triggering a cascade of signaling events mediated by Lyn phosphorylation of tyrosine residues within the immunoreceptor tyrosine-based activation motifs (ITAM) of the receptor proteins, and subsequent recruitment and activation of other kinases including Syk, phospholipase C2 (PLC2) and phosphatidyl inositol-3 kinase. These kinases play critical roles in proliferation, Ca2+ mobilization and cell differentiation. Lyn plays an essential role in the transmission of inhibitory signals through phosphorylation of tyrosine residues within the immunoreceptor tyrosine-based inhibitory motifs (ITIM) in regulatory proteins such as CD22, PIR-B and FC RIIb1. Their ITIM phosphorylation subsequently leads to recruitment and activation of phosphatases such as SHIP-1 and SHP-1 which further down modulate signaling pathways, attenuate cell activation and can mediate tolerance. Lyn also plays a role in the insulin signaling pathway. Activated Lyn phosphorylates insulin receptor substrate 1 (IRS1) leading to an increase in translocation of Glut-4 to the cell membrane and increased glucose utilization. It is the primary Src family member involved in signaling downstream of the B cell receptor. Lyn plays an unusual, 2-fold role in B cell receptor signaling; it is essential for initiation of signaling but is also later involved in negative regulation of the signal. Lyn has a unique N-terminal domain, an SH3 domain, an SH2 domain, a kinase domain and a regulatory tail, as do the other members of the family. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198227  Cd Length: 101  Bit Score: 46.52  E-value: 2.49e-06
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 323 EWYWGDISREEVNERLRDTPD--GTFLVRDaSSKIQGEYTLTLR----KGGNN-KLIKVFHRD-GHYGFSEPLTFCSVVE 394
Cdd:cd10364     4 EWFFKDITRKDAERQLLAPGNsaGAFLIRE-SETLKGSYSLSVRdydpQHGDViKHYKIRSLDnGGYYISPRITFPCISD 82

                  ....*....
gi 1868045105 395 LISHYRHES 403
Cdd:cd10364    83 MIKHYQKQS 91
SH2_ShkA_ShkC cd10356
Src homology 2 (SH2) domain found in SH2 domain-bearing protein kinases A and C (ShkA and ShkC) ...
319-424 2.53e-06

Src homology 2 (SH2) domain found in SH2 domain-bearing protein kinases A and C (ShkA and ShkC); SH2-bearing genes cloned from Dictyostelium include two transcription factors, STATa and STATc, and a signaling factor, SHK1 (shkA). A database search of the Dictyostelium discoideum genome revealed two additional putative STAT sequences, dd-STATb and dd-STATd, and four additional putative SHK genes, dd-SHK2 (shkB), dd-SHK3 (shkC), dd-SHK4 (shkD), and dd-SHK5 (shkE). This model contains members of shkA and shkC. All of the SHK members are most closely related to the protein kinases found in plants. However these kinases in plants are not conjugated to any SH2 or SH2-like sequences. Alignment data indicates that the SHK SH2 domains carry some features of the STAT SH2 domains in Dictyostelium. When STATc's linker domain was used for a BLAST search, the sequence between the protein kinase domain and the SH2 domain (the linker) of SHK was recovered, suggesting a close relationship among these molecules within this region. SHK's linker domain is predicted to contain an alpha-helix which is indeed homologous to that of STAT. Based on the phylogenetic alignment, SH2 domains can be grouped into two categories, STAT-type and Src-type. SHK family members are in between, but are closer to the STAT-type which indicates a close relationship between SHK and STAT families in their SH2 domains and further supports the notion that SHKs linker-SH2 domain evolved from STAT or STATL (STAT-like Linker-SH2) domain found in plants. In SHK, STAT, and SPT6, the linker-SH2 domains all reside exclusively in the C-terminal regions. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198219  Cd Length: 113  Bit Score: 46.83  E-value: 2.53e-06
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 319 LQDAEWYWGDISREEVNERLRDTPDGTFLVRDASSKiQGEYTLT-LRKGGNNKLIKVFHRDGHYGFSEPLtFCSVVELIS 397
Cdd:cd10356     7 LMECAWFHGDISTSESENRLNGKPEGTFLVRFSTSE-PGAYTISkVSKNGGISHQRIHRPGGKFQVNNSK-YLSVKELIA 84
                          90       100
                  ....*....|....*....|....*..
gi 1868045105 398 hyRHESLAQYNAKLDTRLLYPVSKYQQ 424
Cdd:cd10356    85 --GEAQALGIDTPCLGSRFLPLIYKMQ 109
RhoGAP_GMIP_PARG1 cd04378
RhoGAP_GMIP_PARG1: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain ...
108-261 2.91e-06

RhoGAP_GMIP_PARG1: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of GMIP (Gem interacting protein) and PARG1 (PTPL1-associated RhoGAP1). GMIP plays important roles in neurite growth and axonal guidance, and interacts with Gem, a member of the RGK subfamily of the Ras small GTPase superfamily, through the N-terminal half of the protein. GMIP contains a C-terminal RhoGAP domain. GMIP inhibits RhoA function, but is inactive towards Rac1 and Cdc41. PARG1 interacts with Rap2, also a member of the Ras small GTPase superfamily whose exact function is unknown, and shows strong preference for Rho. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239843  Cd Length: 203  Bit Score: 48.57  E-value: 2.91e-06
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 108 GLTLADLAEQFspPDPAPPILVKLVEAIEQAGLDSECYSRPELPAPRTD---------WSLSDVEQWDRNALYDAVKGFL 178
Cdd:cd04378     2 GVDFSQVPRDF--PDEVPFIIKKCTSEIENRALGVQGIYRVSGSKARVEklcqafengKDLVELSELSPHDISSVLKLFL 79
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 179 LALPTPVVTPE-------AAAEAHRALREAAGP--VGPVLEPPM--------LPLHHALTLRFLLQHLGRVARRAPVQAT 241
Cdd:cd04378    80 RQLPEPLILFRlyndfiaLAKEIQRDTEEDKAPntPIEVNRIIRklkdllrqLPASNYNTLQHLIAHLYRVAEQFEENKM 159
                         170       180
                  ....*....|....*....|
gi 1868045105 242 AVHSLASAFGPLLLRtPPPG 261
Cdd:cd04378   160 SPNNLGIVFGPTLIR-PRPG 178
SH3_UBASH3 cd11791
Src homology 3 domain of Ubiquitin-associated and SH3 domain-containing proteins, also called ...
9-77 2.96e-06

Src homology 3 domain of Ubiquitin-associated and SH3 domain-containing proteins, also called TULA (T cell Ubiquitin LigAnd) family of proteins; UBASH3 or TULA proteins are also referred to as Suppressor of T cell receptor Signaling (STS) proteins. They contain an N-terminal UBA domain, a central SH3 domain, and a C-terminal histidine phosphatase domain. They bind c-Cbl through the SH3 domain and to ubiquitin via UBA. In some vertebrates, there are two TULA family proteins, called UBASH3A (also called TULA or STS-2) and UBASH3B (also called TULA-2 or STS-1), which show partly overlapping as well as distinct functions. UBASH3B is widely expressed while UBASH3A is only found in lymphoid cells. UBASH3A facilitates apoptosis induced in T cells through its interaction with the apoptosis-inducing factor AIF. UBASH3B is an active phosphatase while UBASH3A is not. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies.


Pssm-ID: 212725 [Multi-domain]  Cd Length: 59  Bit Score: 44.98  E-value: 2.96e-06
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 1868045105   9 YRAVYPFRRERPEDLELLPGDLLVVSRvalQALGVADGGercphnvgWMPGFNERTRQRGDFPGTYVEF 77
Cdd:cd11791     2 LRVLYPYTPQEEDELELVPGDYIYVSP---EELDSSSDG--------WVEGTSWLTGCSGLLPENYTEK 59
SH2_C-SH2_PLC_gamma_like cd09932
C-terminal Src homology 2 (C-SH2) domain in Phospholipase C gamma; Phospholipase C gamma is a ...
323-421 3.01e-06

C-terminal Src homology 2 (C-SH2) domain in Phospholipase C gamma; Phospholipase C gamma is a signaling molecule that is recruited to the C-terminal tail of the receptor upon autophosphorylation of a highly conserved tyrosine. PLCgamma is composed of a Pleckstrin homology (PH) domain followed by an elongation factor (EF) domain, 2 catalytic regions of PLC domains that flank 2 tandem SH2 domains (N-SH2, C-SH2), and ending with a SH3 domain and C2 domain. N-SH2 SH2 domain-mediated interactions represent a crucial step in transmembrane signaling by receptor tyrosine kinases. SH2 domains recognize phosphotyrosine (pY) in the context of particular sequence motifs in receptor phosphorylation sites. Both N-SH2 and C-SH2 have a very similar binding affinity to pY. But in growth factor stimulated cells these domains bind to different target proteins. N-SH2 binds to pY containing sites in the C-terminal tails of tyrosine kinases and other receptors. Recently it has been shown that this interaction is mediated by phosphorylation-independent interactions between a secondary binding site found exclusively on the N-SH2 domain and a region of the FGFR1 tyrosine kinase domain. This secondary site on the SH2 cooperates with the canonical pY site to regulate selectivity in mediating a specific cellular process. C-SH2 binds to an intramolecular site on PLCgamma itself which allows it to hydrolyze phosphatidylinositol-4,5-bisphosphate into diacylglycerol and inositol triphosphate. These then activate protein kinase C and release calcium. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198186  Cd Length: 104  Bit Score: 46.49  E-value: 3.01e-06
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 323 EWYWGDISREEVNERLRDTP-DGTFLVRdASSKIQGEYTLTLRKGGNNKLIKVfHRDG-HYGFSEpLTFCSVVELISHYR 400
Cdd:cd09932     5 EWFHANLTREQAEEMLMRVPrDGAFLVR-PSETDPNSFAISFRAEGKIKHCRI-KQEGrLFVIGT-SQFESLVELVSYYE 81
                          90       100
                  ....*....|....*....|.
gi 1868045105 401 HESLAQynaklDTRLLYPVSK 421
Cdd:cd09932    82 KHPLYR-----KIKLRYPVNE 97
RhoGAP_ARHGAP21 cd04395
RhoGAP_ARHGAP21: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ...
155-258 3.17e-06

RhoGAP_ARHGAP21: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ArhGAP21-like proteins. ArhGAP21 is a multi-domain protein, containing RhoGAP, PH and PDZ domains, and is believed to play a role in the organization of the cell-cell junction complex. It has been shown to function as a GAP of Cdc42 and RhoA, and to interact with alpha-catenin and Arf6. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239860  Cd Length: 196  Bit Score: 48.55  E-value: 3.17e-06
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 155 TDWSLSDvEQW-DRNALYDAVKGFLLALPTPVVTP------------EAAAEAHRALREaagpvgpVLEPpmLPLHHALT 221
Cdd:cd04395    61 FDIDLQD-PRWrDVNVVSSLLKSFFRKLPEPLFTNelypdfieanriEDPVERLKELRR-------LIHS--LPDHHYET 130
                          90       100       110
                  ....*....|....*....|....*....|....*..
gi 1868045105 222 LRFLLQHLGRVARRAPVQATAVHSLASAFGPLLLRTP 258
Cdd:cd04395   131 LKHLIRHLKTVADNSEVNKMEPRNLAIVFGPTLVRTS 167
SH2_Cterm_shark_like cd10348
C-terminal Src homology 2 (SH2) domain found in SH2 domains, ANK, and kinase domain (shark) ...
616-694 3.45e-06

C-terminal Src homology 2 (SH2) domain found in SH2 domains, ANK, and kinase domain (shark) proteins; These non-receptor protein-tyrosine kinases contain two SH2 domains, five ankyrin (ANK)-like repeats, and a potential tyrosine phosphorylation site in its carboxyl-terminal tail which resembles the phosphorylation site in members of the src family. Like, mammalian non-receptor protein-tyrosine kinases, ZAP-70 and syk proteins, they do not have SH3 domains. However, the presence of ANK makes these unique among protein-tyrosine kinases. Both tyrosine kinases and ANK repeats have been shown to transduce developmental signals, and SH2 domains are known to participate intimately in tyrosine kinase signaling. These tyrosine kinases are believed to be involved in epithelial cell polarity. The members of this family include the shark (SH2 domains, ANK, and kinase domain) gene in Drosophila and yellow fever mosquitos, as well as the hydra protein HTK16. Drosophila Shark is proposed to transduce intracellularly the Crumbs, a protein necessary for proper organization of ectodermal epithelia, intercellular signal. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198211  Cd Length: 86  Bit Score: 45.49  E-value: 3.45e-06
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 616 WYVGKINRTQAEEMLSGKR--DGTFLIRESSQR-GCYACSVVVDGDTKHCVIYRTATGFGFAEPYNLYASLKELVLHYQH 692
Cdd:cd10348     2 WLHGALDRNEAVEILKQKAdaDGSFLVRYSRRRpGGYVLTLVYENHVYHFEIQNRDDKWFYIDDGPYFESLEHLIEHYTQ 81

                  ..
gi 1868045105 693 AS 694
Cdd:cd10348    82 FA 83
SH2_Nck1 cd10408
Src homology 2 (SH2) domain found in Nck; Nck proteins are adaptors that modulate actin ...
616-695 5.32e-06

Src homology 2 (SH2) domain found in Nck; Nck proteins are adaptors that modulate actin cytoskeleton dynamics by linking proline-rich effector molecules to tyrosine kinases or phosphorylated signaling intermediates. There are two members known in this family: Nck1 (Nckalpha) and Nck2 (Nckbeta and Growth factor receptor-bound protein 4 (Grb4)). They are characterized by having 3 SH3 domains and a C-terminal SH2 domain. Nck1 and Nck2 have overlapping functions as determined by gene knockouts. Both bind receptor tyrosine kinases and other tyrosine-phosphorylated proteins through their SH2 domains. In addition they also bind distinct targets. Neuronal signaling proteins: EphrinB1, EphrinB2, and Disabled-1 (Dab-1) all bind to Nck-2 exclusively. And in the case of PDGFR, Tyr(P)751 binds to Nck1 while Tyr(P)1009 binds to Nck2. Nck1 and Nck2 have a role in the infection process of enteropathogenic Escherichia coli (EPEC). Their SH3 domains are involved in recruiting and activating the N-WASP/Arp2/3 complex inducing actin polymerization resulting in the production of pedestals, dynamic bacteria-presenting protrusions of the plasma membrane. A similar thing occurs in the vaccinia virus where motile plasma membrane projections are formed beneath the virus. Recently it has been shown that the SH2 domains of both Nck1 and Nck2 bind the G-protein coupled receptor kinase-interacting protein 1 (GIT1) in a phosphorylation-dependent manner. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198271  Cd Length: 97  Bit Score: 45.41  E-value: 5.32e-06
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 616 WYVGKINRTQAEEMLSGK-RDGTFLIRES-SQRGCYACSVVVDGDTKHCVIYRTATGFGFAEpyNLYASLKELVLHYQHA 693
Cdd:cd10408     3 WYYGKVTRHQAEMALNERgNEGDFLIRDSeSSPNDFSVSLKAQGKNKHFKVQLKECVYCIGQ--RKFSSMEELVEHYKKA 80

                  ..
gi 1868045105 694 SL 695
Cdd:cd10408    81 PI 82
SH2_N-SH2_PLC_gamma_like cd10341
N-terminal Src homology 2 (N-SH2) domain in Phospholipase C gamma; Phospholipase C gamma is a ...
611-695 5.39e-06

N-terminal Src homology 2 (N-SH2) domain in Phospholipase C gamma; Phospholipase C gamma is a signaling molecule that is recruited to the C-terminal tail of the receptor upon autophosphorylation of a highly conserved tyrosine. PLCgamma is composed of a Pleckstrin homology (PH) domain followed by an elongation factor (EF) domain, 2 catalytic regions of PLC domains that flank 2 tandem SH2 domains (N-SH2, C-SH2), and ending with a SH3 domain and C2 domain. N-SH2 SH2 domain-mediated interactions represent a crucial step in transmembrane signaling by receptor tyrosine kinases. SH2 domains recognize phosphotyrosine (pY) in the context of particular sequence motifs in receptor phosphorylation sites. Both N-SH2 and C-SH2 have a very similar binding affinity to pY. But in growth factor stimulated cells these domains bind to different target proteins. N-SH2 binds to pY containing sites in the C-terminal tails of tyrosine kinases and other receptors. Recently it has been shown that this interaction is mediated by phosphorylation-independent interactions between a secondary binding site found exclusively on the N-SH2 domain and a region of the FGFR1 tyrosine kinase domain. This secondary site on the SH2 cooperates with the canonical pY site to regulate selectivity in mediating a specific cellular process. C-SH2 binds to an intramolecular site on PLCgamma itself which allows it to hydrolyze phosphatidylinositol-4,5-bisphosphate into diacylglycerol and inositol triphosphate. These then activate protein kinase C and release calcium. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 199829  Cd Length: 99  Bit Score: 45.42  E-value: 5.39e-06
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 611 HEERTWYVGKIN--RTQAEEMLS---GKRDGTFLIRESSQ-RGCYACSVVVDGDTKHCVIyRTATGFGFAEPY----NLY 680
Cdd:cd10341     1 HFTEPWFHGKLGdgRDEAEKLLLeycEGGDGTFLVRESETfVGDYTLSFWRNGKVQHCRI-RSRQENGEKKYYltdnLVF 79
                          90
                  ....*....|....*
gi 1868045105 681 ASLKELVLHYQHASL 695
Cdd:cd10341    80 DSLYELIDYYRQNPL 94
RhoGAP_ARHGAP27_15_12_9 cd04403
RhoGAP_ARHGAP27_15_12_9: GTPase-activator protein (GAP) domain for Rho-like GTPases found in ...
159-256 5.81e-06

RhoGAP_ARHGAP27_15_12_9: GTPase-activator protein (GAP) domain for Rho-like GTPases found in ARHGAP27 (also called CAMGAP1), ARHGAP15, 12 and 9-like proteins; This subgroup of ARHGAPs are multidomain proteins that contain RhoGAP, PH, SH3 and WW domains. Most members that are studied show GAP activity towards Rac1, some additionally show activity towards Cdc42. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239868 [Multi-domain]  Cd Length: 187  Bit Score: 47.39  E-value: 5.81e-06
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 159 LSDVEQWDRNALYDAVKGFLLALPTPVVTP------------EAAAEAHRALREAAGPVgpvlePPmlPLHHalTLRFLL 226
Cdd:cd04403    62 LDDSKWEDIHVITGALKLFFRELPEPLFPYslfndfvaaiklSDYEQRVSAVKDLIKSL-----PK--PNHD--TLKMLF 132
                          90       100       110
                  ....*....|....*....|....*....|
gi 1868045105 227 QHLGRVARRAPVQATAVHSLASAFGPLLLR 256
Cdd:cd04403   133 RHLCRVIEHGEKNRMTTQNLAIVFGPTLLR 162
SH3_Vinexin_3 cd11918
Third (or C-terminal) Src Homology 3 domain of Vinexin, also called Sorbin and SH3 domain ...
9-75 6.04e-06

Third (or C-terminal) Src Homology 3 domain of Vinexin, also called Sorbin and SH3 domain containing 3 (Sorbs3); Vinexin is also called Sorbs3, SH3P3, and SH3-containing adapter molecule 1 (SCAM-1). It is an adaptor protein containing one sorbin homology (SoHo) and three SH3 domains. Vinexin was first identified as a vinculin binding protein; it is co-localized with vinculin at cell-ECM and cell-cell adhesion sites. There are several splice variants of vinexin: alpha, which contains the SoHo and three SH3 domains and displays tissue-specific expression; and beta, which contains only the three SH3 domains and is widely expressed. Vinexin alpha stimulates the accumulation of F-actin at focal contact sites. Vinexin also promotes keratinocyte migration and wound healing. The SH3 domains of vinexin have been reported to bind a number of ligands including vinculin, WAVE2, DLG5, Abl, and Cbl. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies.


Pssm-ID: 212851 [Multi-domain]  Cd Length: 58  Bit Score: 44.18  E-value: 6.04e-06
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 1868045105   9 YRAVYPFRRERPEDLELLPGDLLVVSrvalqalgvadggERCphNVGWMPGFNERTRQRGDFPGTYV 75
Cdd:cd11918     4 YKAVYQYRPQNEDELELREGDRVDVM-------------QQC--DDGWFVGVSRRTQKFGTFPGNYV 55
SH2_SOCS6 cd10387
Src homology 2 (SH2) domain found in suppressor of cytokine signaling (SOCS) proteins; SH2 ...
616-689 6.10e-06

Src homology 2 (SH2) domain found in suppressor of cytokine signaling (SOCS) proteins; SH2 domain found in SOCS proteins. SOCS was first recognized as a group of cytokine-inducible SH2 (CIS) domain proteins comprising eight family members in human (CIS and SOCS1-SOCS7). In addition to the SH2 domain, SOCS proteins have a variable N-terminal domain and a conserved SOCS box in the C-terminal domain. SOCS proteins bind to a substrate via their SH2 domain. The prototypical members, CIS and SOCS1-SOCS3, have been shown to regulate growth hormone signaling in vitro and in a classic negative feedback response compete for binding at phosphotyrosine sites in JAK kinase and receptor pathways to displace effector proteins and target bound receptors for proteasomal degradation. Loss of SOCS activity results in excessive cytokine signaling associated with a variety of hematopoietic, autoimmune, and inflammatory diseases and certain cancers. Members (SOCS4-SOCS7) were identified by their conserved SOCS box, an adapter motif of 3 helices that associates substrate binding domains, such as the SOCS SH2 domain, ankryin, and WD40 with ubiquitin ligase components. These show limited cytokine induction. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198250  Cd Length: 100  Bit Score: 45.21  E-value: 6.10e-06
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 1868045105 616 WYVGKINRTQAEEMLSGKRDGTFLIRESS-QRGCYACSVVVDGDTKHCVIYRTATGFGFAEPYNL--YASLKELVLH 689
Cdd:cd10387    12 WYWGPITRWEAEGKLANVPDGSFLVRDSSdDRYLLSLSFRSHGKTLHTRIEHSNGRFSFYEQPDVegHTSIVDLIEH 88
SH2_C-SH2_Syk_like cd10401
C-terminal Src homology 2 (SH2) domain found in Spleen tyrosine kinase (Syk) proteins; ZAP-70 ...
612-692 6.20e-06

C-terminal Src homology 2 (SH2) domain found in Spleen tyrosine kinase (Syk) proteins; ZAP-70 and Syk comprise a family of hematopoietic cell specific protein tyrosine kinases (PTKs) that are required for antigen and antibody receptor function. ZAP-70 is expressed in T and natural killer (NK) cells and Syk is expressed in B cells, mast cells, polymorphonuclear leukocytes, platelets, macrophages, and immature T cells. They are required for the proper development of T and B cells, immune receptors, and activating NK cells. They consist of two N-terminal Src homology 2 (SH2) domains and a C-terminal kinase domain separated from the SH2 domains by a linker or hinge region. Phosphorylation of both tyrosine residues within the Immunoreceptor Tyrosine-based Activation Motifs (ITAM; consensus sequence Yxx[LI]x(7,8)Yxx[LI]) by the Src-family PTKs is required for efficient interaction of ZAP-70 and Syk with the receptor subunits and for receptor function. ZAP-70 forms two phosphotyrosine binding pockets, one of which is shared by both SH2 domains. In Syk the two SH2 domains do not form such a phosphotyrosine-binding site. The SH2 domains here are believed to function independently. In addition, the two SH2 domains of Syk display flexibility in their relative orientation, allowing Syk to accommodate a greater variety of spacing sequences between the ITAM phosphotyrosines and singly phosphorylated non-classical ITAM ligands. This model contains the C-terminus SH2 domains of Syk. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198264  Cd Length: 99  Bit Score: 45.27  E-value: 6.20e-06
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 612 EERTWYVGKINRTQAEE-MLSGKR-DGTFLIRESSQRGCYACSVVVDGDTKHCVIYRTATGFGFAEPYNLYASLKELVLH 689
Cdd:cd10401     1 EKMPWFHGKISREESEQiLLIGSKtNGKFLIRERDNNGSYALCLLHDGKVLHYRIDKDKTGKLSIPDGKKFDTLWQLVEH 80

                  ...
gi 1868045105 690 YQH 692
Cdd:cd10401    81 YSY 83
SH2_HSH2_like cd09946
Src homology 2 domain found in hematopoietic SH2 (HSH2) protein; HSH2 is thought to function ...
310-411 6.53e-06

Src homology 2 domain found in hematopoietic SH2 (HSH2) protein; HSH2 is thought to function as an adapter protein involved in tyrosine kinase signaling. It may also be involved in regulating cytokine signaling and cytoskeletal reorganization in hematopoietic cells. HSH2 contains several putative protein-binding motifs, SH3-binding proline-rich regions, and phosphotyrosine sites, but lacks enzymatic motifs. HSH2 was found to interact with cytokine-regulated tyrosine kinase c-FES and an activated Cdc42-associated tyrosine kinase ACK1. HSH2 binds c-FES through both its C-terminal region and its N-terminal region including the SH2 domain and binds ACK1 via its N-terminal proline-rich region. Both kinases bound and tyrosine-phosphorylated HSH2 in mammalian cells. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198199  Cd Length: 102  Bit Score: 45.27  E-value: 6.53e-06
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 310 LANGGNPpslqdaEWYWGDISREEVNERLRDTPDGTFLVRDASSKIQgeYTLTLRKGGNNK--LIKVFHrDGHYGFS-EP 386
Cdd:cd09946     1 LAQDGVP------EWFHGAISREAAENMLESQPLGSFLIRVSHSHVG--YTLSYKAQSSCRhfMVKLLD-DGTFMIPgEK 71
                          90       100
                  ....*....|....*....|....*
gi 1868045105 387 LTFCSVVELISHYRHESLAQYNAKL 411
Cdd:cd09946    72 VAHTSLHALVTFHQQKPIEPRRELL 96
SH2_SLAP cd10344
Src homology 2 domain found in Src-like adaptor proteins; SLAP belongs to the subfamily of ...
324-399 7.44e-06

Src homology 2 domain found in Src-like adaptor proteins; SLAP belongs to the subfamily of adapter proteins that negatively regulate cellular signaling initiated by tyrosine kinases. It has a myristylated N-terminus, SH3 and SH2 domains with high homology to Src family tyrosine kinases, and a unique C-terminal tail, which is important for c-Cbl binding. SLAP negatively regulates platelet-derived growth factor (PDGF)-induced mitogenesis in fibroblasts and regulates F-actin assembly for dorsal ruffles formation. c-Cbl mediated SLAP inhibition towards actin remodeling. Moreover, SLAP enhanced PDGF-induced c-Cbl phosphorylation by SFK. In contrast, SLAP mitogenic inhibition was not mediated by c-Cbl, but it rather involved a competitive mechanism with SFK for PDGF-receptor (PDGFR) association and mitogenic signaling. Accordingly, phosphorylation of the Src mitogenic substrates Stat3 and Shc were reduced by SLAP. Thus, we concluded that SLAP regulates PDGFR signaling by two independent mechanisms: a competitive mechanism for PDGF-induced Src mitogenic signaling and a non-competitive mechanism for dorsal ruffles formation mediated by c-Cbl. SLAP is a hematopoietic adaptor containing Src homology (SH)3 and SH2 motifs and a unique carboxy terminus. Unlike c-Src, SLAP lacks a tyrosine kinase domain. Unlike c-Src, SLAP does not impact resorptive function of mature osteoclasts but induces their early apoptosis. SLAP negatively regulates differentiation of osteoclasts and proliferation of their precursors. Conversely, SLAP decreases osteoclast death by inhibiting activation of caspase 3. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198207  Cd Length: 104  Bit Score: 45.17  E-value: 7.44e-06
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 324 WYWGDISREEVNERLR--DTPDGTFLVRDASSKiQGEYTLTLRKGGNNKLIKVFH------RDGHYGFSEPLTFCSVVEL 395
Cdd:cd10344    12 WLFEGLSREKAEELLMlpGNQVGSFLIRESETR-RGCYSLSVRHRGSQSRDSVKHyrifrlDNGWFYISPRLTFQCLEDM 90

                  ....
gi 1868045105 396 ISHY 399
Cdd:cd10344    91 VNHY 94
SH3 smart00326
Src homology 3 domains; Src homology 3 (SH3) domains bind to target proteins through sequences ...
5-76 7.57e-06

Src homology 3 domains; Src homology 3 (SH3) domains bind to target proteins through sequences containing proline and hydrophobic amino acids. Pro-containing polypeptides may bind to SH3 domains in 2 different binding orientations.


Pssm-ID: 214620 [Multi-domain]  Cd Length: 56  Bit Score: 43.68  E-value: 7.57e-06
                           10        20        30        40        50        60        70
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1868045105    5 EGFQYRAVYPFRRERPEDLELLPGDLLVVSRValqalgvadggercpHNVGWMPGFNERtRQRGDFPGTYVE 76
Cdd:smart00326   1 EGPQVRALYDYTAQDPDELSFKKGDIITVLEK---------------SDDGWWKGRLGR-GKEGLFPSNYVE 56
SH2_Cterm_RasGAP cd10354
C-terminal Src homology 2 (SH2) domain found in Ras GTPase-activating protein 1 (GAP); RasGAP ...
323-399 8.07e-06

C-terminal Src homology 2 (SH2) domain found in Ras GTPase-activating protein 1 (GAP); RasGAP is part of the GAP1 family of GTPase-activating proteins. The protein is located in the cytoplasm and stimulates the GTPase activity of normal RAS p21, but not its oncogenic counterpart. Acting as a suppressor of RAS function, the protein enhances the weak intrinsic GTPase activity of RAS proteins resulting in RAS inactivation, thereby allowing control of cellular proliferation and differentiation. Mutations leading to changes in the binding sites of either protein are associated with basal cell carcinomas. Alternative splicing results in two isoforms. The shorter isoform which lacks the N-terminal hydrophobic region, has the same activity, and is expressed in placental tissues. In general longer isoform contains 2 SH2 domains, a SH3 domain, a pleckstrin homology (PH) domain, and a calcium-dependent phospholipid-binding C2 domain. The C-terminus contains the catalytic domain of RasGap which catalyzes the activation of Ras by hydrolyzing GTP-bound active Ras into an inactive GDP-bound form of Ras. This model contains the C-terminal SH2 domain. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198217  Cd Length: 77  Bit Score: 44.34  E-value: 8.07e-06
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 1868045105 323 EWYWGDISREE-VNERLRDTPDGTFLVRDaSSKIQGEYTLTLRKGGNNKLIKVFHRDGHYGFSEPLTFCSVVELISHY 399
Cdd:cd10354     1 IWFHGKISREEaYNMLVKVGGPGSFLVRE-SDNTPGDYSLSFRVNEGIKHFKIIPTGNNQFMMGGRYFSSLDDVIDRY 77
SH2_SHIP cd10343
Src homology 2 (SH2) domain found in SH2-containing inositol-5'-phosphatase (SHIP) and ...
320-421 8.54e-06

Src homology 2 (SH2) domain found in SH2-containing inositol-5'-phosphatase (SHIP) and SLAM-associated protein (SAP); The SH2-containing inositol-5'-phosphatase, SHIP (also called SHIP1/SHIP1a), is a hematopoietic-restricted phosphatidylinositide phosphatase that translocates to the plasma membrane after extracellular stimulation and hydrolyzes the phosphatidylinositol-3-kinase (PI3K)-generated second messenger PI-3,4,5-P3 (PIP3) to PI-3,4-P2. As a result, SHIP dampens down PIP3 mediated signaling and represses the proliferation, differentiation, survival, activation, and migration of hematopoietic cells. PIP3 recruits lipid-binding pleckstrin homology(PH) domain-containing proteins to the inner wall of the plasma membrane and activates them. PH domain-containing downstream effectors include the survival/proliferation enhancing serine/threonine kinase, Akt (protein kinase B), the tyrosine kinase, Btk, the regulator of protein translation, S6K, and the Rac and cdc42 guanine nucleotide exchange factor, Vav. SHIP is believed to act as a tumor suppressor during leukemogenesis and lymphomagenesis, and may play a role in activating the immune system to combat cancer. SHIP contains an N-terminal SH2 domain, a centrally located phosphatase domain that specifically hydrolyzes the 5'-phosphate from PIP3, PI-4,5-P2 and inositol-1,3,4,5- tetrakisphosphate (IP4), a C2 domain, that is an allosteric activating site when bound by SHIP's enzymatic product, PI-3,4-P2; 2 NPXY motifs that bind proteins with a phosphotyrosine binding (Shc, Dok 1, Dok 2) or an SH2 (p85a, SHIP2) domain; and a proline-rich domain consisting of four PxxP motifs that bind a subset of SH3-containing proteins including Grb2, Src, Lyn, Hck, Abl, PLCg1, and PIAS1. The SH2 domain of SHIP binds to the tyrosine phosphorylated forms of Shc, SHP-2, Doks, Gabs, CD150, platelet-endothelial cell adhesion molecule, Cas, c-Cbl, immunoreceptor tyrosine-based inhibitory motifs (ITIMs), and immunoreceptor tyrosine-based activation motifs (ITAMs). The X-linked lymphoproliferative syndrome (XLP) gene encodes SAP (also called SH2D1A/DSHP) a protein that consists of a 5 residue N-terminus, a single SH2 domain, and a short 25 residue C-terminal tail. XLP is characterized by an extreme sensitivity to Epstein-Barr virus. Both T and natural killer (NK) cell dysfunctions have been seen in XLP patients. SAP binds the cytoplasmic tail of Signaling lymphocytic activation molecule (SLAM), 2B4, Ly-9, and CD84. SAP is believed to function as a signaling inhibitor, by blocking or regulating binding of other signaling proteins. SAP and the SAP-like protein EAT-2 recognize the sequence motif TIpYXX(V/I), which is found in the cytoplasmic domains of a restricted number of T, B, and NK cell surface receptors and are proposed to be natural inhibitors or regulators of the physiological role of a small family of receptors on the surface of these cells. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198206  Cd Length: 103  Bit Score: 45.12  E-value: 8.54e-06
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 320 QDAEWYWGDISREEVNERL-RDTPDGTFLVRDASSkIQGEYTL---------TLRKGGN-NKLIKVFHRDGhygfSEPLT 388
Cdd:cd10343     1 MAPPWYHGNITRSKAEELLsKAGKDGSFLVRDSES-VSGAYALcvlyqncvhTYRILPNaEDKLSVQASEG----VPVRF 75
                          90       100       110
                  ....*....|....*....|....*....|...
gi 1868045105 389 FCSVVELISHYRHEslaqyNAKLDTRLLYPVSK 421
Cdd:cd10343    76 FTTLPELIEFYQKE-----NMGLVTHLLYPVER 103
SH2_Src_HCK cd10363
Src homology 2 (SH2) domain found in HCK; HCK is a member of the Src non-receptor type ...
323-403 1.11e-05

Src homology 2 (SH2) domain found in HCK; HCK is a member of the Src non-receptor type tyrosine kinase family of proteins and is expressed in hemopoietic cells. HCK is proposed to couple the Fc receptor to the activation of the respiratory burst. It may also play a role in neutrophil migration and in the degranulation of neutrophils. It has two different translational starts that have different subcellular localization. HCK has been shown to interact with BCR gene, ELMO1 Cbl gene, RAS p21 protein activator 1, RASA3, Granulocyte colony-stimulating factor receptor, ADAM15 and RAPGEF1. Like the other members of the Src family the SH2 domain in addition to binding the target, also plays an autoinhibitory role by binding to its C-terminal tail. In general SH2 domains are involved in signal transduction. HCK has a unique N-terminal domain, an SH3 domain, an SH2 domain, a kinase domain and a regulatory tail, as do the other members of the family. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198226  Cd Length: 104  Bit Score: 44.57  E-value: 1.11e-05
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 323 EWYWGDISREEVNERLRDTPD--GTFLVRDaSSKIQGEYTLTLR-----KGGNNKLIKVFHRD-GHYGFSEPLTFCSVVE 394
Cdd:cd10363     4 EWFFKGISRKDAERQLLAPGNmlGSFMIRD-SETTKGSYSLSVRdydpqHGDTVKHYKIRTLDnGGFYISPRSTFSTLQE 82

                  ....*....
gi 1868045105 395 LISHYRHES 403
Cdd:cd10363    83 LVDHYKKGN 91
SH2_SH2D4B cd10351
Src homology 2 domain found in the SH2 domain containing protein 4B (SH2D4B); SH2D4B contains ...
322-402 1.17e-05

Src homology 2 domain found in the SH2 domain containing protein 4B (SH2D4B); SH2D4B contains a single SH2 domain. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198214  Cd Length: 103  Bit Score: 44.50  E-value: 1.17e-05
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 322 AEWYWGDISREEVNERLRDTPDGTFLVRdASSKIQGeYTLTLRKGGNNKLIKVFHRDGHYGF--SEPLTFCSVVELISHY 399
Cdd:cd10351     7 APWFHGIISREEAEALLMNATEGSFLVR-VSEKIWG-YTLSYRLQSGFKHFLVDASGDFYSFlgVDPNRHATLTDLIDFH 84

                  ...
gi 1868045105 400 RHE 402
Cdd:cd10351    85 KEE 87
SH2_SHE cd10391
Src homology 2 domain found in SH2 domain-containing adapter protein E (SHE); SHE is expressed ...
614-710 1.58e-05

Src homology 2 domain found in SH2 domain-containing adapter protein E (SHE); SHE is expressed in heart, lung, brain, and skeletal muscle. SHE contains two pTry protein binding domains, protein interaction domain (PID) and a SH2 domain, followed by a glycine-proline rich region, all of which are N-terminal to the phosphotyrosine binding (PTB) domain. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198254  Cd Length: 98  Bit Score: 44.18  E-value: 1.58e-05
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 614 RTWYVGKINRTQAEEMLSGKRDGTFLIRES-SQRGCYACSVVVDGDTKHCVIYRTA-TGFGFAEPYNLYASLKELVLHYQ 691
Cdd:cd10391     1 QPWYHGSISRAEAESRLQPCKEASYLVRNSeSGNSKYSIALKTSQGCVHIIVAQTKdNKYTLNQTSAVFDSIPEVVHYYS 80
                          90
                  ....*....|....*....
gi 1868045105 692 HASLvQHNDALTVTLAHPV 710
Cdd:cd10391    81 NEKL-PFKGAEHMTLLHPV 98
SH2_SHF cd10392
Src homology 2 domain found in SH2 domain-containing adapter protein F (SHF); SHF is thought ...
324-419 1.69e-05

Src homology 2 domain found in SH2 domain-containing adapter protein F (SHF); SHF is thought to play a role in PDGF-receptor signaling and regulation of apoptosis. SHF is mainly expressed in skeletal muscle, brain, liver, prostate, testis, ovary, small intestine, and colon. SHF contains four putative tyrosine phosphorylation sites and an SH2 domain. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198255  Cd Length: 98  Bit Score: 43.90  E-value: 1.69e-05
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 324 WYWGDISREEVNERLRDTPDGTFLVRDASSKiQGEYTLTLRKGGNNKLIKVFH-RDGHY--GFSEPLtFCSVVELISHYR 400
Cdd:cd10392     3 WYHGAISRTDAENLLRLCKEASYLVRNSETS-KNDFSLSLKSSQGFMHMKLSRtKEHKYvlGQNSPP-FSSVPEIIHHYA 80
                          90
                  ....*....|....*....
gi 1868045105 401 HESLAQYNAKlDTRLLYPV 419
Cdd:cd10392    81 SRKLPIKGAE-HMSLLYPV 98
SH2_Src_Fyn_isoform_b_like cd10419
Src homology 2 (SH2) domain found in Fyn isoform b like proteins; Fyn is a member of the Src ...
614-694 1.72e-05

Src homology 2 (SH2) domain found in Fyn isoform b like proteins; Fyn is a member of the Src non-receptor type tyrosine kinase family of proteins. This cd contains the SH2 domain found in Fyn isoform b type proteins. Fyn is involved in the control of cell growth and is required in the following pathways: T and B cell receptor signaling, integrin-mediated signaling, growth factor and cytokine receptor signaling, platelet activation, ion channel function, cell adhesion, axon guidance, fertilization, entry into mitosis, and differentiation of natural killer cells, oligodendrocytes and keratinocytes. The protein associates with the p85 subunit of phosphatidylinositol 3-kinase and interacts with the Fyn-binding protein. Alternatively spliced transcript variants encoding distinct isoforms exist. Fyn is primarily localized to the cytoplasmic leaflet of the plasma membrane. Tyrosine phosphorylation of target proteins by Fyn serves to either regulate target protein activity, and/or to generate a binding site on the target protein that recruits other signaling molecules. FYN has been shown to interact with a number of proteins including: BCAR1, Cbl, Janus kinase, nephrin, Sky, tyrosine kinase, Wiskott-Aldrich syndrome protein, and Zap-70. Fyn has a unique N-terminal domain, an SH3 domain, an SH2 domain, a kinase domain and a regulatory tail, as do the other members of the family. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198282  Cd Length: 101  Bit Score: 44.28  E-value: 1.72e-05
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 614 RTWYVGKINRTQAE-EMLS-GKRDGTFLIRES-SQRGCYACSVV----VDGD-TKHCVIYRTATGFGFAEPYNLYASLKE 685
Cdd:cd10419     3 EEWYFGKLGRKDAErQLLSfGNPRGTFLIRESeTTKGAYSLSIRdwddMKGDhVKHYKIRKLDNGGYYITTRAQFETLQQ 82

                  ....*....
gi 1868045105 686 LVLHYQHAS 694
Cdd:cd10419    83 LVQHYSEKA 91
SH2_SHB_SHD_SHE_SHF_like cd09945
Src homology 2 domain found in SH2 domain-containing adapter proteins B, D, E, and F (SHB, SHD, ...
324-419 1.93e-05

Src homology 2 domain found in SH2 domain-containing adapter proteins B, D, E, and F (SHB, SHD, SHE, SHF); SHB, SHD, SHE, and SHF are SH2 domain-containing proteins that play various roles throughout the cell. SHB functions in generating signaling compounds in response to tyrosine kinase activation. SHB contains proline-rich motifs, a phosphotyrosine binding (PTB) domain, tyrosine phosphorylation sites, and a SH2 domain. SHB mediates certain aspects of platelet-derived growth factor (PDGF) receptor-, fibroblast growth factor (FGF) receptor-, neural growth factor (NGF) receptor TRKA-, T cell receptor-, interleukin-2 (IL-2) receptor- and focal adhesion kinase- (FAK) signaling. SRC-like FYN-Related Kinase FRK/RAK (also named BSK/IYK or GTK) and SHB regulate apoptosis, proliferation and differentiation. SHB promotes apoptosis and is also required for proper mitogenicity, spreading and tubular morphogenesis in endothelial cells. SHB also plays a role in preventing early cavitation of embryoid bodies and reduces differentiation to cells expressing albumin, amylase, insulin and glucagon. SHB is a multifunctional protein that has difference responses in different cells under various conditions. SHE is expressed in heart, lung, brain, and skeletal muscle, while expression of SHD is restricted to the brain. SHF is mainly expressed in skeletal muscle, brain, liver, prostate, testis, ovary, small intestine, and colon. SHD may be a physiological substrate of c-Abl and may function as an adapter protein in the central nervous system. It is also thought to be involved in apoptotic regulation. SHD contains five YXXP motifs, a substrate sequence preferred by Abl tyrosine kinases, in addition to a poly-proline rich region and a C-terminal SH2 domain. SHE contains two pTry protein binding domains, protein interaction domain (PID) and a SH2 domain, followed by a glycine-proline rich region, all of which are N-terminal to the phosphotyrosine binding (PTB) domain. SHF contains four putative tyrosine phosphorylation sites and an SH2 domain. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198198  Cd Length: 98  Bit Score: 43.96  E-value: 1.93e-05
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 324 WYWGDISREEVNERLRDTPDGTFLVRDASSKiQGEYTLTLRKGGNNKLIKVFH-RDGHY---GFSEPltFCSVVELISHY 399
Cdd:cd09945     3 WYHGAITRIEAESLLRPCKEGSYLVRNSEST-KQDYSLSLKSAKGFMHMRIQRnETGQYilgQFSRP--FETIPEMIRHY 79
                          90       100
                  ....*....|....*....|....*.
gi 1868045105 400 RheslaqyNAKLDTR------LLYPV 419
Cdd:cd09945    80 C-------LNKLPVRgaehmcLLEPV 98
SH2_Tensin_like cd09927
Src homology 2 domain found in Tensin-like proteins; SH2 domain found in Tensin-like proteins. ...
324-364 1.99e-05

Src homology 2 domain found in Tensin-like proteins; SH2 domain found in Tensin-like proteins. The Tensins are a family of intracellular proteins that interact with receptor tyrosine kinases (RTKs), integrins, and actin. They are thought act as signaling bridges between the extracellular space and the cytoskeleton. There are four homologues: Tensin1, Tensin2 (TENC1, C1-TEN), Tensin3 and Tensin4 (cten), all of which contain a C-terminal tandem SH2-PTB domain pairing, as well as actin-binding regions that may localize them to focal adhesions. The isoforms of Tensin2 and Tensin3 contain N-terminal C1 domains, which are atypical and not expected to bind to phorbol esters. Tensins 1-3 contain a phosphatase (PTPase) and C2 domain pairing which resembles PTEN (phosphatase and tensin homologue deleted on chromosome 10) protein. PTEN is a lipid phosphatase that dephosphorylates phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) to yield phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2). As PtdIns(3,4,5)P3 is the product of phosphatidylinositol 3-kinase (PI3K) activity, PTEN is therefore a key negative regulator of the PI3K pathway. Because of their PTEN-like domains, the Tensins may also possess phosphoinositide-binding or phosphatase capabilities. However, only Tensin2 and Tensin3 have the potential to be phosphatases since only their PTPase domains contain a cysteine residue that is essential for catalytic activity. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198181 [Multi-domain]  Cd Length: 116  Bit Score: 44.34  E-value: 1.99e-05
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|.
gi 1868045105 324 WYWGDISREEVNERLRDTPDGTFLVRDaSSKIQGEYTLTLR 364
Cdd:cd09927     5 WYKPNISRDQAIALLKDKPPGTFLVRD-STTYKGAYGLAVK 44
SH2_PTK6_Brk cd10358
Src homology 2 domain found in protein-tyrosine kinase-6 (PTK6) which is also known as breast ...
324-406 2.06e-05

Src homology 2 domain found in protein-tyrosine kinase-6 (PTK6) which is also known as breast tumor kinase (Brk); Human protein-tyrosine kinase-6 (PTK6, also known as breast tumor kinase (Brk)) is a member of the non-receptor protein-tyrosine kinase family and is expressed in two-thirds of all breast tumors. PTK6 (9). PTK6 contains a SH3 domain, a SH2 domain, and catalytic domains. For the case of the non-receptor protein-tyrosine kinases, the SH2 domain is typically involved in negative regulation of kinase activity by binding to a phosphorylated tyrosine residue near to the C terminus. The C-terminal sequence of PTK6 (PTSpYENPT where pY is phosphotyrosine) is thought to be a self-ligand for the SH2 domain. The structure of the SH2 domain resembles other SH2 domains except for a centrally located four-stranded antiparallel beta-sheet (strands betaA, betaB, betaC, and betaD). There are also differences in the loop length which might be responsible for PTK6 ligand specificity. There are two possible means of regulation of PTK6: autoinhibitory with the phosphorylation of Tyr playing a role in its negative regulation and autophosphorylation at this site, though it has been shown that PTK6 might phosphorylate signal transduction-associated proteins Sam68 and signal transducing adaptor family member 2 (STAP/BKS) in vivo. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198221  Cd Length: 100  Bit Score: 43.97  E-value: 2.06e-05
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 324 WYWGDISREEVNERLR--DTPDGTFLVRdASSKIQGEYTLTLRKGGNNKLIKVF-HRDGHYGFSEPLTFCSVVELISHYR 400
Cdd:cd10358     4 WFFGCISRSEAVRRLQaeGNATGAFLIR-VSEKPSADYVLSVRDTQAVRHYKIWrRAGGRLHLNEAVSFLSLPELVNYHR 82

                  ....*.
gi 1868045105 401 HESLAQ 406
Cdd:cd10358    83 AQSLSH 88
RhoGAP_MgcRacGAP cd04382
RhoGAP_MgcRacGAP: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain ...
125-254 2.25e-05

RhoGAP_MgcRacGAP: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain present in MgcRacGAP proteins. MgcRacGAP plays an important dual role in cytokinesis: i) it is part of centralspindlin-complex, together with the mitotic kinesin MKLP1, which is critical for the structure of the central spindle by promoting microtuble bundling. ii) after phosphorylation by aurora B MgcRacGAP becomes an effective regulator of RhoA and plays an important role in the assembly of the contractile ring and the initiation of cytokinesis. MgcRacGAP-like proteins contain a N-terminal C1-like domain, and a C-terminal RhoGAP domain. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239847  Cd Length: 193  Bit Score: 45.75  E-value: 2.25e-05
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 125 PPILVKLVEAIEQAGL-----------DSEC-YSRPELPAPRTDWSLSDVeqwDRNALYDAVKGFLLALPTPVVTpeaaA 192
Cdd:cd04382    18 PALIVHCVNEIEARGLteeglyrvsgsEREVkALKEKFLRGKTVPNLSKV---DIHVICGCLKDFLRSLKEPLIT----F 90
                          90       100       110       120       130       140
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 1868045105 193 EAHRALREAA-GPVGPVLEPPM------LPLHHALTLRFLLQHLGRVArRAPVQATAVHSLASAFGPLL 254
Cdd:cd04382    91 ALWKEFMEAAeILDEDNSRAALyqaiseLPQPNRDTLAFLILHLQRVA-QSPECKMDINNLARVFGPTI 158
SH2_Src_Lyn cd10364
Src homology 2 (SH2) domain found in Lyn; Lyn is a member of the Src non-receptor type ...
612-694 2.48e-05

Src homology 2 (SH2) domain found in Lyn; Lyn is a member of the Src non-receptor type tyrosine kinase family of proteins and is expressed in the hematopoietic cells, in neural tissues, liver, and adipose tissue. There are two alternatively spliced forms of Lyn. Lyn plays an inhibitory role in myeloid lineage proliferation. Following engagement of the B cell receptors, Lyn undergoes rapid phosphorylation and activation, triggering a cascade of signaling events mediated by Lyn phosphorylation of tyrosine residues within the immunoreceptor tyrosine-based activation motifs (ITAM) of the receptor proteins, and subsequent recruitment and activation of other kinases including Syk, phospholipase C2 (PLC2) and phosphatidyl inositol-3 kinase. These kinases play critical roles in proliferation, Ca2+ mobilization and cell differentiation. Lyn plays an essential role in the transmission of inhibitory signals through phosphorylation of tyrosine residues within the immunoreceptor tyrosine-based inhibitory motifs (ITIM) in regulatory proteins such as CD22, PIR-B and FC RIIb1. Their ITIM phosphorylation subsequently leads to recruitment and activation of phosphatases such as SHIP-1 and SHP-1 which further down modulate signaling pathways, attenuate cell activation and can mediate tolerance. Lyn also plays a role in the insulin signaling pathway. Activated Lyn phosphorylates insulin receptor substrate 1 (IRS1) leading to an increase in translocation of Glut-4 to the cell membrane and increased glucose utilization. It is the primary Src family member involved in signaling downstream of the B cell receptor. Lyn plays an unusual, 2-fold role in B cell receptor signaling; it is essential for initiation of signaling but is also later involved in negative regulation of the signal. Lyn has a unique N-terminal domain, an SH3 domain, an SH2 domain, a kinase domain and a regulatory tail, as do the other members of the family. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198227  Cd Length: 101  Bit Score: 43.82  E-value: 2.48e-05
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 612 EERTWYVGKINRTQAEEML--SGKRDGTFLIRES-SQRGCYACSV----VVDGDT-KHCVIYRTATGFGFAEPYNLYASL 683
Cdd:cd10364     1 ETEEWFFKDITRKDAERQLlaPGNSAGAFLIRESeTLKGSYSLSVrdydPQHGDViKHYKIRSLDNGGYYISPRITFPCI 80
                          90
                  ....*....|.
gi 1868045105 684 KELVLHYQHAS 694
Cdd:cd10364    81 SDMIKHYQKQS 91
SH2_SH2D7 cd10417
Src homology 2 domain found in the SH2 domain containing protein 7 (SH2D7); SH2D7 contains a ...
616-703 3.16e-05

Src homology 2 domain found in the SH2 domain containing protein 7 (SH2D7); SH2D7 contains a single SH2 domain. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 199832  Cd Length: 102  Bit Score: 43.34  E-value: 3.16e-05
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 616 WYVGKINRTQAEEMLSGKRDGTFLIRESSQRGCYACSVVVDGDTKHCVIYRTATG-FGFAEPYNLYASLKELVLHYQHAS 694
Cdd:cd10417     9 WFHGFITRKQTEQLLRDKALGSFLIRLSDRATGYILSYRGSDRCRHFVINQLRNRrYLISGDTSSHSTLAELVRHYQEVQ 88

                  ....*....
gi 1868045105 695 LVQHNDALT 703
Cdd:cd10417    89 LEPFGETLT 97
SH2_SOCS7 cd10388
Src homology 2 (SH2) domain found in suppressor of cytokine signaling (SOCS) proteins; SH2 ...
616-644 3.73e-05

Src homology 2 (SH2) domain found in suppressor of cytokine signaling (SOCS) proteins; SH2 domain found in SOCS proteins. SOCS was first recognized as a group of cytokine-inducible SH2 (CIS) domain proteins comprising eight family members in human (CIS and SOCS1-SOCS7). In addition to the SH2 domain, SOCS proteins have a variable N-terminal domain and a conserved SOCS box in the C-terminal domain. SOCS proteins bind to a substrate via their SH2 domain. The prototypical members, CIS and SOCS1-SOCS3, have been shown to regulate growth hormone signaling in vitro and in a classic negative feedback response compete for binding at phosphotyrosine sites in JAK kinase and receptor pathways to displace effector proteins and target bound receptors for proteasomal degradation. Loss of SOCS activity results in excessive cytokine signaling associated with a variety of hematopoietic, autoimmune, and inflammatory diseases and certain cancers. Members (SOCS4-SOCS7) were identified by their conserved SOCS box, an adapter motif of 3 helices that associates substrate binding domains, such as the SOCS SH2 domain, ankryin, and WD40 with ubiquitin ligase components. These show limited cytokine induction. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198251  Cd Length: 101  Bit Score: 43.11  E-value: 3.73e-05
                          10        20
                  ....*....|....*....|....*....
gi 1868045105 616 WYVGKINRTQAEEMLSGKRDGTFLIRESS 644
Cdd:cd10388    12 WYWGPMSWEDAEKVLSNKPDGSFLVRDSS 40
SMC_prok_B TIGR02168
chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of ...
391-600 3.77e-05

chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of chromosomes) proteins bind DNA and act in organizing and segregating chromosomes for partition. SMC proteins are found in bacteria, archaea, and eukaryotes. This family represents the SMC protein of most bacteria. The smc gene is often associated with scpB (TIGR00281) and scpA genes, where scp stands for segregation and condensation protein. SMC was shown (in Caulobacter crescentus) to be induced early in S phase but present and bound to DNA throughout the cell cycle. [Cellular processes, Cell division, DNA metabolism, Chromosome-associated proteins]


Pssm-ID: 274008 [Multi-domain]  Cd Length: 1179  Bit Score: 47.36  E-value: 3.77e-05
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105  391 SVVELISHYRHESLAQYNAKLDTrLLYPVSKYQQDQVVKEDSVEAVGAQLKVYHQQYQDKSREYDQLYEEYTRTSQELQM 470
Cdd:TIGR02168  270 EELRLEVSELEEEIEELQKELYA-LANEISRLEQQKQILRERLANLERQLEELEAQLEELESKLDELAEELAELEEKLEE 348
                           90       100       110       120       130       140       150       160
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105  471 KRTAIEAFNETIKIFEEQGQTQEKCSKEY---LERFRREGNEKEMQRILLNSE--RLKSRIAEIHESRTKLEQDLRAQAS 545
Cdd:TIGR02168  349 LKEELESLEAELEELEAELEELESRLEELeeqLETLRSKVAQLELQIASLNNEieRLEARLERLEDRRERLQQEIEELLK 428
                          170       180       190       200       210       220
                   ....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105  546 -----DNREIDKRMNSLKPDLMQLRKIRDQYLVWLTQKGARQRKINEWLGIKNETEDQYS 600
Cdd:TIGR02168  429 kleeaELKELQAELEELEEELEELQEELERLEEALEELREELEEAEQALDAAERELAQLQ 488
SH2_Src_Yes cd10366
Src homology 2 (SH2) domain found in Yes; Yes is a member of the Src non-receptor type ...
616-706 4.13e-05

Src homology 2 (SH2) domain found in Yes; Yes is a member of the Src non-receptor type tyrosine kinase family of proteins. Yes is the cellular homolog of the Yamaguchi sarcoma virus oncogene. In humans it is encoded by the YES1 gene which maps to chromosome 18 and is in close proximity to thymidylate synthase. A corresponding Yes pseudogene has been found on chromosome 22. YES1 has been shown to interact with Janus kinase 2, CTNND1,RPL10, and Occludin. Yes1 has a unique N-terminal domain, an SH3 domain, an SH2 domain, a kinase domain and a regulatory tail, as do the other members of the family. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198229  Cd Length: 101  Bit Score: 43.08  E-value: 4.13e-05
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 616 WYVGKINRTQAEEML--SGKRDGTFLIRES-SQRGCYACSV----VVDGD-TKHCVIYRTATGFGFAEPYNLYASLKELV 687
Cdd:cd10366     5 WYFGKMGRKDAERLLlnPGNQRGIFLVRESeTTKGAYSLSIrdwdEVRGDnVKHYKIRKLDNGGYYITTRAQFDTLQKLV 84
                          90
                  ....*....|....*....
gi 1868045105 688 LHYQhaslvQHNDALTVTL 706
Cdd:cd10366    85 KHYT-----EHADGLCHKL 98
RhoGAP_ARAP cd04385
RhoGAP_ARAP: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain present ...
122-257 4.27e-05

RhoGAP_ARAP: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain present in ARAPs. ARAPs (also known as centaurin deltas) contain, besides the RhoGAP domain, an Arf GAP, ankyrin repeat ras-associating, and PH domains. Since their ArfGAP activity is PIP3-dependent, ARAPs are considered integration points for phosphoinositide, Arf and Rho signaling. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239850  Cd Length: 184  Bit Score: 44.99  E-value: 4.27e-05
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 122 DPAPPILV-KLVEAIEQAGLDSE-CYSRPE--------LPAPRTD-WSLsdveQWDRN-----ALYDAVKGFLLALPTPV 185
Cdd:cd04385    12 DNDIPVIVdKCIDFITQHGLMSEgIYRKNGknssvkklLEAFRKDaRSV----QLREGeytvhDVADVLKRFLRDLPDPL 87
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 186 VTPE-------AAAEAH-----RALREAAGpvgpvleppMLPLHHALTLRFLLQHLGRVARRAPVQATAVHSLASAFGPL 253
Cdd:cd04385    88 LTSElhaewieAAELENkderiARYKELIR---------RLPPINRATLKVLIGHLYRVQKHSDENQMSVHNLALVFGPT 158

                  ....
gi 1868045105 254 LLRT 257
Cdd:cd04385   159 LFQT 162
RhoGAP_FAM13A1a cd04393
RhoGAP_FAM13A1a: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ...
108-259 4.29e-05

RhoGAP_FAM13A1a: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of FAM13A1, isoform a-like proteins. The function of FAM13A1a is unknown. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by up several orders of magnitude.


Pssm-ID: 239858 [Multi-domain]  Cd Length: 189  Bit Score: 44.76  E-value: 4.29e-05
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 108 GLTLADLAEQFSPPDPAPPILVKLVEAIEQAGLDSECYSRPELPAPRTDW------SLSDV---EQWDRNALYDAVKGFL 178
Cdd:cd04393     4 GVPLQELQQAGQPENGVPAVVRHIVEYLEQHGLEQEGLFRVNGNAETVEWlrqrldSGEEVdlsKEADVCSAASLLRLFL 83
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 179 LALPTPVVTPEAAAEAHRALREAAGP------VGPVLEPpmLPLHHALTLRFLLQHLGRVARRAPVQATAVHSLASAFGP 252
Cdd:cd04393    84 QELPEGLIPASLQIRLMQLYQDYNGEdefgrkLRDLLQQ--LPPVNYSLLKFLCHFLSNVASQHHENRMTAENLAAVFGP 161

                  ....*..
gi 1868045105 253 LLLRTPP 259
Cdd:cd04393   162 DVFHVYT 168
SH2_SHB_SHD_SHE_SHF_like cd09945
Src homology 2 domain found in SH2 domain-containing adapter proteins B, D, E, and F (SHB, SHD, ...
616-710 4.34e-05

Src homology 2 domain found in SH2 domain-containing adapter proteins B, D, E, and F (SHB, SHD, SHE, SHF); SHB, SHD, SHE, and SHF are SH2 domain-containing proteins that play various roles throughout the cell. SHB functions in generating signaling compounds in response to tyrosine kinase activation. SHB contains proline-rich motifs, a phosphotyrosine binding (PTB) domain, tyrosine phosphorylation sites, and a SH2 domain. SHB mediates certain aspects of platelet-derived growth factor (PDGF) receptor-, fibroblast growth factor (FGF) receptor-, neural growth factor (NGF) receptor TRKA-, T cell receptor-, interleukin-2 (IL-2) receptor- and focal adhesion kinase- (FAK) signaling. SRC-like FYN-Related Kinase FRK/RAK (also named BSK/IYK or GTK) and SHB regulate apoptosis, proliferation and differentiation. SHB promotes apoptosis and is also required for proper mitogenicity, spreading and tubular morphogenesis in endothelial cells. SHB also plays a role in preventing early cavitation of embryoid bodies and reduces differentiation to cells expressing albumin, amylase, insulin and glucagon. SHB is a multifunctional protein that has difference responses in different cells under various conditions. SHE is expressed in heart, lung, brain, and skeletal muscle, while expression of SHD is restricted to the brain. SHF is mainly expressed in skeletal muscle, brain, liver, prostate, testis, ovary, small intestine, and colon. SHD may be a physiological substrate of c-Abl and may function as an adapter protein in the central nervous system. It is also thought to be involved in apoptotic regulation. SHD contains five YXXP motifs, a substrate sequence preferred by Abl tyrosine kinases, in addition to a poly-proline rich region and a C-terminal SH2 domain. SHE contains two pTry protein binding domains, protein interaction domain (PID) and a SH2 domain, followed by a glycine-proline rich region, all of which are N-terminal to the phosphotyrosine binding (PTB) domain. SHF contains four putative tyrosine phosphorylation sites and an SH2 domain. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198198  Cd Length: 98  Bit Score: 42.80  E-value: 4.34e-05
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 616 WYVGKINRTQAEEMLSGKRDGTFLIRES-SQRGCYACSVVVDGDTKHCVIYRTATG-FGFAEPYNLYASLKELVLHYQHA 693
Cdd:cd09945     3 WYHGAITRIEAESLLRPCKEGSYLVRNSeSTKQDYSLSLKSAKGFMHMRIQRNETGqYILGQFSRPFETIPEMIRHYCLN 82
                          90       100
                  ....*....|....*....|.
gi 1868045105 694 SL----VQHndaltVTLAHPV 710
Cdd:cd09945    83 KLpvrgAEH-----MCLLEPV 98
SH2_SH2D4A cd10350
Src homology 2 domain found in the SH2 domain containing protein 4A (SH2D4A); SH2D4A contains ...
616-691 4.47e-05

Src homology 2 domain found in the SH2 domain containing protein 4A (SH2D4A); SH2D4A contains a single SH2 domain. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198213  Cd Length: 103  Bit Score: 43.00  E-value: 4.47e-05
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 1868045105 616 WYVGKINRTQAEEMLSGKRDGTFLIRESSQRGCYACSVVVDGDTKHCVIYRTATGFGFAEPYNL-YASLKELVLHYQ 691
Cdd:cd10350     9 WFHGILTLKKANELLLSTMPGSFLIRVSEKIKGYALSYLSEEGCKHFLIDASADSYSFLGVDQLqHATLADLVEYHK 85
SH2_Src_Frk cd10369
Src homology 2 (SH2) domain found in the Fyn-related kinase (Frk); Frk is a member of the Src ...
324-403 4.79e-05

Src homology 2 (SH2) domain found in the Fyn-related kinase (Frk); Frk is a member of the Src non-receptor type tyrosine kinase family of proteins. The Frk subfamily is composed of Frk/Rak and Iyk/Bsk/Gst. It is expressed primarily epithelial cells. Frk is a nuclear protein and may function during G1 and S phase of the cell cycle and suppress growth. Unlike the other Src members it lacks a glycine at position 2 of SH4 which is important for addition of a myristic acid moiety that is involved in targeting Src PTKs to cellular membranes. FRK and SHB exert similar effects when overexpressed in rat phaeochromocytoma (PC12) and beta-cells, where both induce PC12 cell differentiation and beta-cell proliferation. Under conditions that cause beta-cell degeneration these proteins augment beta-cell apoptosis. The FRK-SHB responses involve FAK and insulin receptor substrates (IRS) -1 and -2. Frk has been demonstrated to interact with retinoblastoma protein. Frk regulates PTEN protein stability by phosphorylating PTEN, which in turn prevents PTEN degradation. Frk also plays a role in regulation of embryonal pancreatic beta cell formation. Frk has a unique N-terminal domain, an SH3 domain, an SH2 domain, a kinase domain and a regulatory tail, as do the other members of the family. Like the other members of the Src family the SH2 domain in addition to binding the target, also plays an autoinhibitory role by binding to its activation loop. The tryosine involved is at the same site as the tyrosine involved in the autophosphorylation of Src. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 199831  Cd Length: 96  Bit Score: 42.56  E-value: 4.79e-05
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 324 WYWGDISREEVNERL--RDTPDGTFLVRDASSKiQGEYTLTLRKGGNNKLIKVFHRD-GHYGFSEPLTFCSVVELISHYR 400
Cdd:cd10369     5 WFFGAIKRADAEKQLlySENQTGAFLIRESESQ-KGEFSLSVLDGGVVKHYRIRRLDeGGFFLTRRKTFSTLNEFVNYYT 83

                  ...
gi 1868045105 401 HES 403
Cdd:cd10369    84 TTS 86
SH2_BCAR3 cd10337
Src homology 2 (SH2) domain in the Breast Cancer Anti-estrogen Resistance protein 3; BCAR3 is ...
616-691 5.24e-05

Src homology 2 (SH2) domain in the Breast Cancer Anti-estrogen Resistance protein 3; BCAR3 is part of a growing family of guanine nucleotide exchange factors is responsible for activation of Ras-family GTPases, including Sos1 and 2, GRF1 and 2, CalDAG-GEF/GRP1-4, C3G, cAMP-GEF/Epac 1 and 2, PDZ-GEFs, MR-GEF, RalGDS family members, RalGPS, RasGEF, Smg GDS, and phospholipase C(epsilon). 12102558 21262352 BCAR3 binds to the carboxy-terminus of BCAR1/p130Cas, a focal adhesion adapter protein. Over expression of BCAR1 (p130Cas) and BCAR3 induces estrogen independent growth in normally estrogen-dependent cell lines. They have been linked to resistance to anti-estrogens in breast cancer, Rac activation, and cell motility, though the BCAR3/p130Cas complex is not required for this activity in BCAR3. Many BCAR3-mediated signaling events in epithelial and mesenchymal cells are independent of p130Cas association. Structurally these proteins contain a single SH2 domain upstream of their RasGEF domain, which is responsible for the ability of BCAR3 to enhance p130Cas over-expression-induced migration. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198200 [Multi-domain]  Cd Length: 136  Bit Score: 43.48  E-value: 5.24e-05
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 616 WYVGKINRTQAEEMLsgKRDGTFLIRES-SQRGCYACSVVVDGDTKHCVIYRTATGFGFAEPYNLYA-------SLKELV 687
Cdd:cd10337     8 WYHGRIPRQVAESLV--QREGDFLVRDSlSSPGDYVLTCRWKGQPLHFKINRVVLRPSEAYTRVQYQfedeqfdSIPALV 85

                  ....
gi 1868045105 688 LHYQ 691
Cdd:cd10337    86 HFYV 89
SH2_SHC cd09925
Src homology 2 (SH2) domain found in SH2 adaptor protein C (SHC); SHC is involved in a wide ...
616-661 5.33e-05

Src homology 2 (SH2) domain found in SH2 adaptor protein C (SHC); SHC is involved in a wide variety of pathways including regulating proliferation, angiogenesis, invasion and metastasis, and bone metabolism. An adapter protein, SHC has been implicated in Ras activation following the stimulation of a number of different receptors, including growth factors [insulin, epidermal growth factor (EGF), nerve growth factor, and platelet derived growth factor (PDGF)], cytokines [interleukins 2, 3, and 5], erythropoietin, and granulocyte/macrophage colony-stimulating factor, and antigens [T-cell and B-cell receptors]. SHC has been shown to bind to tyrosine-phosphorylated receptors, and receptor stimulation leads to tyrosine phosphorylation of SHC. Upon phosphorylation, SHC interacts with another adapter protein, Grb2, which binds to the Ras GTP/GDP exchange factor mSOS which leads to Ras activation. SHC is composed of an N-terminal domain that interacts with proteins containing phosphorylated tyrosines, a (glycine/proline)-rich collagen-homology domain that contains the phosphorylated binding site, and a C-terminal SH2 domain. SH2 has been shown to interact with the tyrosine-phosphorylated receptors of EGF and PDGF and with the tyrosine-phosphorylated C chain of the T-cell receptor, providing one of the mechanisms of T-cell-mediated Ras activation. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198179  Cd Length: 104  Bit Score: 42.72  E-value: 5.33e-05
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|....*..
gi 1868045105 616 WYVGKINRTQAEEMLsgKRDGTFLIRESSQ-RGCYACSVVVDGDTKH 661
Cdd:cd09925     9 WYHGKMSRRDAESLL--QTDGDFLVRESTTtPGQYVLTGMQNGQPKH 53
SH2_ShkD_ShkE cd10357
Src homology 2 (SH2) domain found in SH2 domain-bearing protein kinases D and E (ShkD and ShkE) ...
614-644 6.71e-05

Src homology 2 (SH2) domain found in SH2 domain-bearing protein kinases D and E (ShkD and ShkE); SH2-bearing genes cloned from Dictyostelium include two transcription factors, STATa and STATc, and a signaling factor, SHK1 (shkA). A database search of the Dictyostelium discoideum genome revealed two additional putative STAT sequences, dd-STATb and dd-STATd, and four additional putative SHK genes, dd-SHK2 (shkB), dd-SHK3 (shkC), dd-SHK4 (shkD), and dd-SHK5 (shkE). This model contains members of shkD and shkE. All of the SHK members are most closely related to the protein kinases found in plants. However these kinases in plants are not conjugated to any SH2 or SH2-like sequences. Alignment data indicates that the SHK SH2 domains carry some features of the STAT SH2 domains in Dictyostelium. When STATc's linker domain was used for a BLAST search, the sequence between the protein kinase domain and the SH2 domain (the linker) of SHK was recovered, suggesting a close relationship among these molecules within this region. SHK's linker domain is predicted to contain an alpha-helix which is indeed homologous to that of STAT. Based on the phylogenetic alignment, SH2 domains can be grouped into two categories, STAT-type and Src-type. SHK family members are in between, but are closer to the STAT-type which indicates a close relationship between SHK and STAT families in their SH2 domains and further supports the notion that SHKs linker-SH2 domain evolved from STAT or STATL (STAT-like Linker-SH2) domain found in plants. In SHK, STAT, and SPT6, the linker-SH2 domains all reside exclusively in the C-terminal regions. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198220  Cd Length: 87  Bit Score: 42.11  E-value: 6.71e-05
                          10        20        30
                  ....*....|....*....|....*....|.
gi 1868045105 614 RTWYVGKINRTQAEEMLSGKRDGTFLIRESS 644
Cdd:cd10357    10 KSWFHGDISRDEAEKRLRGRPEGTFLIRLSS 40
SH3_SNX9_like cd11763
Src Homology 3 domain of Sorting Nexin 9 and similar proteins; Sorting nexins (SNXs) are Phox ...
8-76 7.41e-05

Src Homology 3 domain of Sorting Nexin 9 and similar proteins; Sorting nexins (SNXs) are Phox homology (PX) domain containing proteins that are involved in regulating membrane traffic and protein sorting in the endosomal system. SNXs differ from each other in their lipid-binding specificity, subcellular localization and specific function in the endocytic pathway. This subfamily consists of SH3 domain containing SNXs including SNX9, SNX18, SNX33, and similar proteins. SNX9 is localized to plasma membrane endocytic sites and acts primarily in clathrin-mediated endocytosis, while SNX18 is localized to peripheral endosomal structures, and acts in a trafficking pathway that is clathrin-independent but relies on AP-1 and PACS1. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies.


Pssm-ID: 212697 [Multi-domain]  Cd Length: 55  Bit Score: 40.77  E-value: 7.41e-05
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 1868045105   8 QYRAVYPFRRERPEDLELLPGDLLVVSRValqalgvaDGGErcphnvGWMPGFNERTrQRGDFPGTYVE 76
Cdd:cd11763     1 KVRALYDFDSQPSGELSLRAGEVLTITRQ--------DVGD------GWLEGRNSRG-EVGLFPSSYVE 54
SH2_Tensin_like cd09927
Src homology 2 domain found in Tensin-like proteins; SH2 domain found in Tensin-like proteins. ...
613-693 7.50e-05

Src homology 2 domain found in Tensin-like proteins; SH2 domain found in Tensin-like proteins. The Tensins are a family of intracellular proteins that interact with receptor tyrosine kinases (RTKs), integrins, and actin. They are thought act as signaling bridges between the extracellular space and the cytoskeleton. There are four homologues: Tensin1, Tensin2 (TENC1, C1-TEN), Tensin3 and Tensin4 (cten), all of which contain a C-terminal tandem SH2-PTB domain pairing, as well as actin-binding regions that may localize them to focal adhesions. The isoforms of Tensin2 and Tensin3 contain N-terminal C1 domains, which are atypical and not expected to bind to phorbol esters. Tensins 1-3 contain a phosphatase (PTPase) and C2 domain pairing which resembles PTEN (phosphatase and tensin homologue deleted on chromosome 10) protein. PTEN is a lipid phosphatase that dephosphorylates phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) to yield phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2). As PtdIns(3,4,5)P3 is the product of phosphatidylinositol 3-kinase (PI3K) activity, PTEN is therefore a key negative regulator of the PI3K pathway. Because of their PTEN-like domains, the Tensins may also possess phosphoinositide-binding or phosphatase capabilities. However, only Tensin2 and Tensin3 have the potential to be phosphatases since only their PTPase domains contain a cysteine residue that is essential for catalytic activity. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198181 [Multi-domain]  Cd Length: 116  Bit Score: 42.80  E-value: 7.50e-05
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 613 ERTWYVGKINRTQAEEMLSGKRDGTFLIRES-SQRGCYACSVVV------------DGD-----TKHCVIYRTATGF--- 671
Cdd:cd09927     2 SKYWYKPNISRDQAIALLKDKPPGTFLVRDStTYKGAYGLAVKVatpppgvnpfeaKGDpeselVRHFLIEPSPKGVklk 81
                          90       100
                  ....*....|....*....|...
gi 1868045105 672 GFA-EPYnlYASLKELVlhYQHA 693
Cdd:cd09927    82 GCPnEPV--FGSLSALV--YQHS 100
SH2_Grb7_family cd09944
Src homology 2 (SH2) domain found in the growth factor receptor bound, subclass 7 (Grb7) ...
611-664 8.16e-05

Src homology 2 (SH2) domain found in the growth factor receptor bound, subclass 7 (Grb7) proteins; The Grb family binds to the epidermal growth factor receptor (EGFR, erbB1) via their SH2 domains. There are 3 members of the Grb7 family of proteins: Grb7, Grb10, and Grb14. They are composed of an N-terminal Proline-rich domain, a Ras Associating-like (RA) domain, a Pleckstrin Homology (PH) domain, a phosphotyrosine interaction region (PIR, BPS) and a C-terminal SH2 domain. The SH2 domains of Grb7, Grb10 and Grb14 preferentially bind to a different RTK. Grb7 binds strongly to the erbB2 receptor, unlike Grb10 and Grb14 which bind weakly to it. Grb14 binds to Fibroblast Growth Factor Receptor (FGFR). Grb10 has been shown to interact with many different proteins, including the insulin and IGF1 receptors, platelet-derived growth factor (PDGF) receptor-beta, Ret, Kit, Raf1 and MEK1, and Nedd4. Grb7 family proteins are phosphorylated on serine/threonine as well as tyrosine residues. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198197 [Multi-domain]  Cd Length: 108  Bit Score: 42.41  E-value: 8.16e-05
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....*..
gi 1868045105 611 HEERTWYVGKINRTQAEEML--SGKRDGTFLIRES-SQRGCYACSVVVDGDTKHCVI 664
Cdd:cd09944     2 HRSQPWFHGGISRDEAARLIrqQGLVDGVFLVRESqSNPGAFVLSLKHGQKIKHYQI 58
SH2_Cterm_RasGAP cd10354
C-terminal Src homology 2 (SH2) domain found in Ras GTPase-activating protein 1 (GAP); RasGAP ...
616-690 8.40e-05

C-terminal Src homology 2 (SH2) domain found in Ras GTPase-activating protein 1 (GAP); RasGAP is part of the GAP1 family of GTPase-activating proteins. The protein is located in the cytoplasm and stimulates the GTPase activity of normal RAS p21, but not its oncogenic counterpart. Acting as a suppressor of RAS function, the protein enhances the weak intrinsic GTPase activity of RAS proteins resulting in RAS inactivation, thereby allowing control of cellular proliferation and differentiation. Mutations leading to changes in the binding sites of either protein are associated with basal cell carcinomas. Alternative splicing results in two isoforms. The shorter isoform which lacks the N-terminal hydrophobic region, has the same activity, and is expressed in placental tissues. In general longer isoform contains 2 SH2 domains, a SH3 domain, a pleckstrin homology (PH) domain, and a calcium-dependent phospholipid-binding C2 domain. The C-terminus contains the catalytic domain of RasGap which catalyzes the activation of Ras by hydrolyzing GTP-bound active Ras into an inactive GDP-bound form of Ras. This model contains the C-terminal SH2 domain. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198217  Cd Length: 77  Bit Score: 41.25  E-value: 8.40e-05
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 1868045105 616 WYVGKINRTQAEEML-SGKRDGTFLIRES-SQRGCYACSVVVDGDTKHCVIYRTATG-FGFAEPYnlYASLKELVLHY 690
Cdd:cd10354     2 WFHGKISREEAYNMLvKVGGPGSFLVRESdNTPGDYSLSFRVNEGIKHFKIIPTGNNqFMMGGRY--FSSLDDVIDRY 77
mS26_Tt cd23695
Tetrahymena thermophila ribosomal protein mS26 and similar proteins; Ribosomal protein mS26 is ...
447-603 9.73e-05

Tetrahymena thermophila ribosomal protein mS26 and similar proteins; Ribosomal protein mS26 is a component of small subunit (SSU) in Tetrahymena thermophila mitochondrial ribosome (mitoribosome). The structure of the mitoribosome reveals an assembly of 94-ribosomal proteins and four-rRNAs with an additional protein mass of ~700 kDa on the small subunit; the large mitoribosomal subunit (LSU) lacks 5S rRNA.


Pssm-ID: 467909 [Multi-domain]  Cd Length: 496  Bit Score: 45.58  E-value: 9.73e-05
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 447 YQDKSREYDQLYEEYTRtsqelqmkrtaieafnetiKIFEEQGQTQEKCSKEYLERFRREgnekEMQRILLNSERLKSRI 526
Cdd:cd23695     3 YEQERRAYKQLFKEYRK-------------------KHKKDYWESQTIVENEFIDKYNKE----ELKKQRKDLDKWRTSI 59
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 527 AEIHESRTKLEQDLraqasDNREIDKRMNSLKPDLMQ-LRKIRDQYLV---------WLTQKGARQrKINEWL----GIK 592
Cdd:cd23695    60 ITISKATQNHIKLL-----EKKSVKKEENERKYLLEQdVKAMNKKIILdvmneesknWINLQNMNE-KINPNLilpdTIL 133
                         170
                  ....*....|.
gi 1868045105 593 NETEDQYSLME 603
Cdd:cd23695   134 DETSYYLKLQE 144
SH2_Cterm_shark_like cd10348
C-terminal Src homology 2 (SH2) domain found in SH2 domains, ANK, and kinase domain (shark) ...
323-399 1.33e-04

C-terminal Src homology 2 (SH2) domain found in SH2 domains, ANK, and kinase domain (shark) proteins; These non-receptor protein-tyrosine kinases contain two SH2 domains, five ankyrin (ANK)-like repeats, and a potential tyrosine phosphorylation site in its carboxyl-terminal tail which resembles the phosphorylation site in members of the src family. Like, mammalian non-receptor protein-tyrosine kinases, ZAP-70 and syk proteins, they do not have SH3 domains. However, the presence of ANK makes these unique among protein-tyrosine kinases. Both tyrosine kinases and ANK repeats have been shown to transduce developmental signals, and SH2 domains are known to participate intimately in tyrosine kinase signaling. These tyrosine kinases are believed to be involved in epithelial cell polarity. The members of this family include the shark (SH2 domains, ANK, and kinase domain) gene in Drosophila and yellow fever mosquitos, as well as the hydra protein HTK16. Drosophila Shark is proposed to transduce intracellularly the Crumbs, a protein necessary for proper organization of ectodermal epithelia, intercellular signal. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198211  Cd Length: 86  Bit Score: 41.25  E-value: 1.33e-04
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 323 EWYWGDISREEVNERLRDTP--DGTFLVRdASSKIQGEYTLTLRKGGNNKLIKVFHRDGHYGFSE--PLtFCSVVELISH 398
Cdd:cd10348     1 QWLHGALDRNEAVEILKQKAdaDGSFLVR-YSRRRPGGYVLTLVYENHVYHFEIQNRDDKWFYIDdgPY-FESLEHLIEH 78

                  .
gi 1868045105 399 Y 399
Cdd:cd10348    79 Y 79
SH2_BCAR3 cd10337
Src homology 2 (SH2) domain in the Breast Cancer Anti-estrogen Resistance protein 3; BCAR3 is ...
319-399 1.36e-04

Src homology 2 (SH2) domain in the Breast Cancer Anti-estrogen Resistance protein 3; BCAR3 is part of a growing family of guanine nucleotide exchange factors is responsible for activation of Ras-family GTPases, including Sos1 and 2, GRF1 and 2, CalDAG-GEF/GRP1-4, C3G, cAMP-GEF/Epac 1 and 2, PDZ-GEFs, MR-GEF, RalGDS family members, RalGPS, RasGEF, Smg GDS, and phospholipase C(epsilon). 12102558 21262352 BCAR3 binds to the carboxy-terminus of BCAR1/p130Cas, a focal adhesion adapter protein. Over expression of BCAR1 (p130Cas) and BCAR3 induces estrogen independent growth in normally estrogen-dependent cell lines. They have been linked to resistance to anti-estrogens in breast cancer, Rac activation, and cell motility, though the BCAR3/p130Cas complex is not required for this activity in BCAR3. Many BCAR3-mediated signaling events in epithelial and mesenchymal cells are independent of p130Cas association. Structurally these proteins contain a single SH2 domain upstream of their RasGEF domain, which is responsible for the ability of BCAR3 to enhance p130Cas over-expression-induced migration. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198200 [Multi-domain]  Cd Length: 136  Bit Score: 42.32  E-value: 1.36e-04
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 319 LQDAEWYWGDISREEVNERLRDtpDGTFLVRDASSkIQGEYTLTLRKGGNN---KLIKVFHRDGH------YGFSEPlTF 389
Cdd:cd10337     3 LRSHAWYHGRIPRQVAESLVQR--EGDFLVRDSLS-SPGDYVLTCRWKGQPlhfKINRVVLRPSEaytrvqYQFEDE-QF 78
                          90
                  ....*....|
gi 1868045105 390 CSVVELISHY 399
Cdd:cd10337    79 DSIPALVHFY 88
RhoGAP_myosin_IXA cd04406
RhoGAP_myosin_IXA: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain ...
117-258 1.43e-04

RhoGAP_myosin_IXA: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain present in myosins IXA. Class IX myosins contain a characteristic head domain, a neck domain and a tail domain which contains a C6H2-zinc binding motif and a Rho-GAP domain. Class IX myosins are single-headed, processive myosins that are partly cytoplasmic, and partly associated with membranes and the actin cytoskeleton. Class IX myosins are implicated in the regulation of neuronal morphogenesis and function of sensory systems, like the inner ear. There are two major isoforms, myosin IXA and IXB with several splice variants, which are both expressed in developing neurons. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239871  Cd Length: 186  Bit Score: 43.45  E-value: 1.43e-04
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 117 QFSPPDPAPPILV-KLVEAIEQAGLDSECYSRPELPAPR---------TDWSLSDVEQWDRNALYDAVKGFLLALPTPVV 186
Cdd:cd04406     7 RLTSEDRSVPLVVeKLINYIEMHGLYTEGIYRKSGSTNKikelrqgldTDANSVNLDDYNIHVIASVFKQWLRDLPNPLM 86
                          90       100       110       120       130       140       150
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 1868045105 187 TPEAAAEAHRAL-----REAAGPVGPVLEppMLPLHHALTLRFLLQHLGRVARRAPVQATAVHSLASAFGPLLLRTP 258
Cdd:cd04406    87 TFELYEEFLRAMglqerRETVRGVYSVID--QLSRTHLNTLERLIFHLVRIALQEETNRMSANALAIVFAPCILRCP 161
SH2_C-SH2_Zap70 cd10402
C-terminal Src homology 2 (SH2) domain found in Zeta-chain-associated protein kinase 70 ...
324-400 1.44e-04

C-terminal Src homology 2 (SH2) domain found in Zeta-chain-associated protein kinase 70 (ZAP-70); ZAP-70 and Syk comprise a family of hematopoietic cell specific protein tyrosine kinases (PTKs) that are required for antigen and antibody receptor function. ZAP-70 is expressed in T and natural killer (NK) cells and Syk is expressed in B cells, mast cells, polymorphonuclear leukocytes, platelets, macrophages, and immature T cells. They are required for the proper development of T and B cells, immune receptors, and activating NK cells. They consist of two N-terminal Src homology 2 (SH2) domains and a C-terminal kinase domain separated from the SH2 domains by a linker or hinge region. Phosphorylation of both tyrosine residues within the Immunoreceptor Tyrosine-based Activation Motifs (ITAM; consensus sequence Yxx[LI]x(7,8)Yxx[LI]) by the Src-family PTKs is required for efficient interaction of ZAP-70 and Syk with the receptor subunits and for receptor function. ZAP-70 forms two phosphotyrosine binding pockets, one of which is shared by both SH2 domains. In Syk the two SH2 domains do not form such a phosphotyrosine-binding site. The SH2 domains here are believed to function independently. In addition, the two SH2 domains of Syk display flexibility in their relative orientation, allowing Syk to accommodate a greater variety of spacing sequences between the ITAM phosphotyrosines and singly phosphorylated non-classical ITAM ligands. This model contains the C-terminus SH2 domains of Zap70. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198265  Cd Length: 105  Bit Score: 41.45  E-value: 1.44e-04
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 324 WYWGDISREEVNERLRD--TPDGTFLVRDasSKIQGEYTLTLRKGGNnklikVFH------RDGHYGFSEPLTFCSVVEL 395
Cdd:cd10402    12 WYHGSIARDEAERRLYSgaQPDGKFLLRE--RKESGTYALSLVYGKT-----VYHyridqdKSGKYSIPEGTKFDTLWQL 84

                  ....*
gi 1868045105 396 ISHYR 400
Cdd:cd10402    85 VEYLK 89
SH2_Jak3 cd10380
Src homology 2 (SH2) domain in the Janus kinase 3 (Jak3) proteins; Jak3 is a member of the ...
631-691 1.63e-04

Src homology 2 (SH2) domain in the Janus kinase 3 (Jak3) proteins; Jak3 is a member of the Janus kinase (JAK) family of tyrosine kinases involved in cytokine receptor-mediated intracellular signal transduction. It is predominantly expressed in immune cells and transduces a signal in response to its activation via tyrosine phosphorylation by interleukin receptors. Mutations in this gene are associated with autosomal SCID (severe combined immunodeficiency disease). In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198243  Cd Length: 96  Bit Score: 41.31  E-value: 1.63e-04
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 1868045105 631 SGKRDGTFLIRESSQR-GCYACSVVVDG----DTKHCVIYRTATGFGFAEPYNLYASLKELVLHYQ 691
Cdd:cd10380    31 AGSEPGSFVLRRSPQDfDKFLLTVCVQTtlglDYKDCLIRKNEGHFSLAGVSRSFSSLKELLVTYQ 96
RhoGAP_p190 cd04373
RhoGAP_p190: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ...
114-256 1.86e-04

RhoGAP_p190: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of p190-like proteins. p190, also named RhoGAP5, plays a role in neuritogenesis and axon branch stability. p190 shows a preference for Rho, over Rac and Cdc42, and consists of an N-terminal GTPase domain and a C-terminal GAP domain. The central portion of p190 contains important regulatory phosphorylation sites. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude.


Pssm-ID: 239838  Cd Length: 185  Bit Score: 42.83  E-value: 1.86e-04
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 114 LAEQFSPPDPAPPILVKLVEAIEQAGLDSECYSRpeLPAPRTDwsLSDVE-QWDR-------------NALYDAVKGFLL 179
Cdd:cd04373     5 LANVVTSEKPIPIFLEKCVEFIEATGLETEGIYR--VSGNKTH--LDSLQkQFDQdhnldlvskdftvNAVAGALKSFFS 80
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 180 ALPTPVVtPEAaaeAHRALREAAG---------PVGPVLEppMLPLHHALTLRFLLQHLGRVARRAPVQATAVHSLASAF 250
Cdd:cd04373    81 ELPDPLI-PYS---MHLELVEAAKindreqrlhALKELLK--KFPPENFDVFKYVITHLNKVSQNSKVNLMTSENLSICF 154

                  ....*.
gi 1868045105 251 GPLLLR 256
Cdd:cd04373   155 WPTLMR 160
YhaN COG4717
Uncharacterized conserved protein YhaN, contains AAA domain [Function unknown];
445-614 1.91e-04

Uncharacterized conserved protein YhaN, contains AAA domain [Function unknown];


Pssm-ID: 443752 [Multi-domain]  Cd Length: 641  Bit Score: 44.76  E-value: 1.91e-04
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 445 QQYQDKSREYDQLYEEYTRTSQELQMKRTAIEAFNETIKIFEEQGQTQEKCSKeyLERFRREGNEKEmQRIllnsERLKS 524
Cdd:COG4717    81 KEAEEKEEEYAELQEELEELEEELEELEAELEELREELEKLEKLLQLLPLYQE--LEALEAELAELP-ERL----EELEE 153
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 525 RIAEIHESRTKLEQDLRAQASDNREIDKRMNSLKPD-LMQLRKIRDQYLVWLTQKGARQRKINEWLGIKNETEDQYSLME 603
Cdd:COG4717   154 RLEELRELEEELEELEAELAELQEELEELLEQLSLAtEEELQDLAEELEELQQRLAELEEELEEAQEELEELEEELEQLE 233
                         170
                  ....*....|.
gi 1868045105 604 DEDALPHHEER 614
Cdd:COG4717   234 NELEAAALEER 244
SH2_Srm cd10360
Src homology 2 (SH2) domain found in Src-related kinase lacking C-terminal regulatory tyrosine ...
324-399 2.38e-04

Src homology 2 (SH2) domain found in Src-related kinase lacking C-terminal regulatory tyrosine and N-terminal myristoylation sites (srm); Srm is a nonreceptor protein kinase that has two SH2 domains, a SH3 domain, and a kinase domain with a tyrosine residue for autophosphorylation. However it lacks an N-terminal glycine for myristoylation and a C-terminal tyrosine which suppresses kinase activity when phosphorylated. Srm is most similar to members of the Tec family who other members include: Tec, Btk/Emb, and Itk/Tsk/Emt. However Srm differs in its N-terminal unique domain it being much smaller than in the Tec family and is closer to Src. Srm is thought to be a new family of nonreceptor tyrosine kinases that may be redundant in function. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198223  Cd Length: 79  Bit Score: 40.32  E-value: 2.38e-04
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 324 WYWGDISREEVNERLRDTPD--GTFLVRDASSKIqGEYTLTLRKGGnnkliKVFH------RDGHYGFSEPLTFCSVVEL 395
Cdd:cd10360     2 WYFSGISRTQAQQLLLSPPNepGAFLIRPSESSL-GGYSLSVRAQA-----KVCHyricmaPSGSLYLQKGRLFPGLEEL 75

                  ....
gi 1868045105 396 ISHY 399
Cdd:cd10360    76 LAYY 79
SH3_MYO7A cd11881
Src Homology 3 domain of Myosin VIIa and similar proteins; Myo7A is an uncoventional myosin ...
23-75 2.41e-04

Src Homology 3 domain of Myosin VIIa and similar proteins; Myo7A is an uncoventional myosin that is involved in organelle transport. It is required for sensory function in both Drosophila and mammals. Mutations in the Myo7A gene cause both syndromic deaf-blindness [Usher syndrome I (USH1)] and nonsyndromic (DFNB2 and DFNA11) deafness in humans. It contains an N-terminal motor domain, light chain-binding IQ motifs, a coiled-coil region for heavy chain dimerization, and a tail consisting of a pair of MyTH4-FERM tandems separated by a SH3 domain. SH3 domains bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs; they play a role in the regulation of enzymes by intramolecular interactions, changing the subcellular localization of signal pathway components and mediate multiprotein complex assemblies.


Pssm-ID: 212814  Cd Length: 64  Bit Score: 39.80  E-value: 2.41e-04
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|...
gi 1868045105  23 LELLPGDLLVVSRvalqalgvaDGGERCPHNvGWMPGFNERTRQRGDFPGTYV 75
Cdd:cd11881    20 LSFAKGDLIILDQ---------DTGEQVMNS-GWCNGRNDRTGQRGDFPADCV 62
COG4372 COG4372
Uncharacterized protein, contains DUF3084 domain [Function unknown];
423-628 2.44e-04

Uncharacterized protein, contains DUF3084 domain [Function unknown];


Pssm-ID: 443500 [Multi-domain]  Cd Length: 370  Bit Score: 44.12  E-value: 2.44e-04
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 423 QQDQVVKEdsVEAVGAQLKVYHQQYQDKSREYDQLYEEYTRTSQELQMKRTAIEAFNETIKIFEEQgqtqekcskeyLER 502
Cdd:COG4372    39 ELDKLQEE--LEQLREELEQAREELEQLEEELEQARSELEQLEEELEELNEQLQAAQAELAQAQEE-----------LES 105
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 503 FRREGN--EKEMQRILLNSERLKSRIAEIHESRTKLEQDLRAQASDNREIDKRMNSLKPDLMQLRKIRDQYLvwltqKGA 580
Cdd:COG4372   106 LQEEAEelQEELEELQKERQDLEQQRKQLEAQIAELQSEIAEREEELKELEEQLESLQEELAALEQELQALS-----EAE 180
                         170       180       190       200
                  ....*....|....*....|....*....|....*....|....*...
gi 1868045105 581 RQRKINEWLGIKNETEDQYSLMEDEDALPHHEERTWYVGKINRTQAEE 628
Cdd:COG4372   181 AEQALDELLKEANRNAEKEEELAEAEKLIESLPRELAEELLEAKDSLE 228
SH2_N-SH2_SHP_like cd10340
N-terminal Src homology 2 (N-SH2) domain found in SH2 domain Phosphatases (SHP) proteins; The ...
324-419 2.70e-04

N-terminal Src homology 2 (N-SH2) domain found in SH2 domain Phosphatases (SHP) proteins; The SH2 domain phosphatases (SHP-1, SHP-2/Syp, Drosophila corkscrew (csw), and Caenorhabditis elegans Protein Tyrosine Phosphatase (Ptp-2)) are cytoplasmic signaling enzymes. They are both targeted and regulated by interactions of their SH2 domains with phosphotyrosine docking sites. These proteins contain two SH2 domains (N-SH2, C-SH2) followed by a tyrosine phosphatase (PTP) domain, and a C-terminal extension. Shp1 and Shp2 have two tyrosyl phosphorylation sites in their C-tails, which are phosphorylated differentially by receptor and nonreceptor PTKs. Csw retains the proximal tyrosine and Ptp-2 lacks both sites. Shp-binding proteins include receptors, scaffolding adapters, and inhibitory receptors. Some of these bind both Shp1 and Shp2 while others bind only one. Most proteins that bind a Shp SH2 domain contain one or more immuno-receptor tyrosine-based inhibitory motifs (ITIMs): [IVL]xpYxx[IVL]. Shp1 N-SH2 domain blocks the catalytic domain and keeps the enzyme in the inactive conformation, and is thus believed to regulate the phosphatase activity of SHP-1. Its C-SH2 domain is thought to be involved in searching for phosphotyrosine activators. The SHP2 N-SH2 domain is a conformational switch; it either binds and inhibits the phosphatase, or it binds phosphoproteins and activates the enzyme. The C-SH2 domain contributes binding energy and specificity, but it does not have a direct role in activation. Csw SH2 domain function is essential, but either SH2 domain can fulfill this requirement. The role of the csw SH2 domains during Sevenless receptor tyrosine kinase (SEV) signaling is to bind Daughter of Sevenless rather than activated SEV. Ptp-2 acts in oocytes downstream of sheath/oocyte gap junctions to promote major sperm protein (MSP)-induced MAP Kinase (MPK-1) phosphorylation. Ptp-2 functions in the oocyte cytoplasm, not at the cell surface to inhibit multiple RasGAPs, resulting in sustained Ras activation. It is thought that MSP triggers PTP-2/Ras activation and ROS production to stimulate MPK-1 activity essential for oocyte maturation and that secreted MSP domains and Cu/Zn superoxide dismutases function antagonistically to control ROS and MAPK signaling. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198203  Cd Length: 99  Bit Score: 40.46  E-value: 2.70e-04
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 324 WYWGDISREEVNERLRDT-PDGTFLVRdASSKIQGEYTLTLRKGGNNKLIKVFHRDGHYGFSEPLTFCSVVELISHY--R 400
Cdd:cd10340     2 WFHPVISGIEAENLLKTRgVDGSFLAR-PSKSNPGDFTLSVRRGDEVTHIKIQNTGDYYDLYGGEKFATLSELVQYYmeQ 80
                          90
                  ....*....|....*....
gi 1868045105 401 HESLAQYNAKLdTRLLYPV 419
Cdd:cd10340    81 HGQLREKNGDV-IELKYPL 98
SH2_Nck2 cd10409
Src homology 2 (SH2) domain found in Nck; Nck proteins are adaptors that modulate actin ...
616-702 3.38e-04

Src homology 2 (SH2) domain found in Nck; Nck proteins are adaptors that modulate actin cytoskeleton dynamics by linking proline-rich effector molecules to tyrosine kinases or phosphorylated signaling intermediates. There are two members known in this family: Nck1 (Nckalpha) and Nck2 (Nckbeta and Growth factor receptor-bound protein 4 (Grb4)). They are characterized by having 3 SH3 domains and a C-terminal SH2 domain. Nck1 and Nck2 have overlapping functions as determined by gene knockouts. Both bind receptor tyrosine kinases and other tyrosine-phosphorylated proteins through their SH2 domains. In addition they also bind distinct targets. Neuronal signaling proteins: EphrinB1, EphrinB2, and Disabled-1 (Dab-1) all bind to Nck-2 exclusively. And in the case of PDGFR, Tyr(P)751 binds to Nck1 while Tyr(P)1009 binds to Nck2. Nck1 and Nck2 have a role in the infection process of enteropathogenic Escherichia coli (EPEC). Their SH3 domains are involved in recruiting and activating the N-WASP/Arp2/3 complex inducing actin polymerization resulting in the production of pedestals, dynamic bacteria-presenting protrusions of the plasma membrane. A similar thing occurs in the vaccinia virus where motile plasma membrane projections are formed beneath the virus. Recently it has been shown that the SH2 domains of both Nck1 and Nck2 bind the G-protein coupled receptor kinase-interacting protein 1 (GIT1) in a phosphorylation-dependent manner. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198272  Cd Length: 98  Bit Score: 40.40  E-value: 3.38e-04
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 616 WYVGKINRTQAEEMLSGKR-DGTFLIRES-SQRGCYACSVVVDGDTKHCVIYRTATGFGFAEpyNLYASLKELVLHYQHA 693
Cdd:cd10409     3 WYYGNVTRHQAECALNERGvEGDFLIRDSeSSPSDFSVSLKAVGKNKHFKVQLVDNVYCIGQ--RRFNSMDELVEHYKKA 80
                          90
                  ....*....|.
gi 1868045105 694 SLV--QHNDAL 702
Cdd:cd10409    81 PIFtsEHGEKL 91
SH2_Nterm_RasGAP cd10353
N-terminal Src homology 2 (SH2) domain found in Ras GTPase-activating protein 1 (GAP); RasGAP ...
598-694 3.62e-04

N-terminal Src homology 2 (SH2) domain found in Ras GTPase-activating protein 1 (GAP); RasGAP is part of the GAP1 family of GTPase-activating proteins. The protein is located in the cytoplasm and stimulates the GTPase activity of normal RAS p21, but not its oncogenic counterpart. Acting as a suppressor of RAS function, the protein enhances the weak intrinsic GTPase activity of RAS proteins resulting in RAS inactivation, thereby allowing control of cellular proliferation and differentiation. Mutations leading to changes in the binding sites of either protein are associated with basal cell carcinomas. Alternative splicing results in two isoforms. The shorter isoform which lacks the N-terminal hydrophobic region, has the same activity, and is expressed in placental tissues. In general the longer isoform contains 2 SH2 domains, a SH3 domain, a pleckstrin homology (PH) domain, and a calcium-dependent phospholipid-binding C2 domain. The C-terminus contains the catalytic domain of RasGap which catalyzes the activation of Ras by hydrolyzing GTP-bound active Ras into an inactive GDP-bound form of Ras. This model contains the N-terminal SH2 domain. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198216  Cd Length: 103  Bit Score: 40.59  E-value: 3.62e-04
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 598 QYSLMEDEDALPHHEERTWYVGKINRTQAEEMLSG-KRDGTFLIRESSQR-GCYACSVVVDGDTKHCVIyrTATGFGFAE 675
Cdd:cd10353     3 EYEEEEVAIPLTAPPTNQWYHGRLDRTIAEERLRQaGKLGSYLIRESDRRpGSFVLSFLSRTGVNHFRI--IAMCGDYYI 80
                          90
                  ....*....|....*....
gi 1868045105 676 PYNLYASLKELVLHYQHAS 694
Cdd:cd10353    81 GGRRFSSLSDLIGYYSHVS 99
SH2_SHC cd09925
Src homology 2 (SH2) domain found in SH2 adaptor protein C (SHC); SHC is involved in a wide ...
324-419 3.76e-04

Src homology 2 (SH2) domain found in SH2 adaptor protein C (SHC); SHC is involved in a wide variety of pathways including regulating proliferation, angiogenesis, invasion and metastasis, and bone metabolism. An adapter protein, SHC has been implicated in Ras activation following the stimulation of a number of different receptors, including growth factors [insulin, epidermal growth factor (EGF), nerve growth factor, and platelet derived growth factor (PDGF)], cytokines [interleukins 2, 3, and 5], erythropoietin, and granulocyte/macrophage colony-stimulating factor, and antigens [T-cell and B-cell receptors]. SHC has been shown to bind to tyrosine-phosphorylated receptors, and receptor stimulation leads to tyrosine phosphorylation of SHC. Upon phosphorylation, SHC interacts with another adapter protein, Grb2, which binds to the Ras GTP/GDP exchange factor mSOS which leads to Ras activation. SHC is composed of an N-terminal domain that interacts with proteins containing phosphorylated tyrosines, a (glycine/proline)-rich collagen-homology domain that contains the phosphorylated binding site, and a C-terminal SH2 domain. SH2 has been shown to interact with the tyrosine-phosphorylated receptors of EGF and PDGF and with the tyrosine-phosphorylated C chain of the T-cell receptor, providing one of the mechanisms of T-cell-mediated Ras activation. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198179  Cd Length: 104  Bit Score: 40.41  E-value: 3.76e-04
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 324 WYWGDISREEVNERLRDtpDGTFLVRDaSSKIQGEYTLTLRKGGNNK---LI----KVFHRDghygfsepLTFCSVVELI 396
Cdd:cd09925     9 WYHGKMSRRDAESLLQT--DGDFLVRE-STTTPGQYVLTGMQNGQPKhllLVdpegVVRTKD--------RVFESISHLI 77
                          90       100
                  ....*....|....*....|...
gi 1868045105 397 SHYRHESLAQYNAKLDTRLLYPV 419
Cdd:cd09925    78 NYHVTNGLPIISEGSELHLRRPV 100
SH2_STAT_family cd09919
Src homology 2 (SH2) domain found in signal transducer and activator of transcription (STAT) ...
611-666 3.93e-04

Src homology 2 (SH2) domain found in signal transducer and activator of transcription (STAT) family; STAT proteins mediate the signaling of cytokines and a number of growth factors from the receptors of these extracellular signaling molecules to the cell nucleus. STATs are specifically phosphorylated by receptor-associated Janus kinases, receptor tyrosine kinases, or cytoplasmic tyrosine kinases. The phosphorylated STAT molecules dimerize by reciprocal binding of their SH2 domains to the phosphotyrosine residues. These dimeric STATs translocate into the nucleus, bind to specific DNA sequences, and regulate the transcription of their target genes. However there are a number of unphosphorylated STATs that travel between the cytoplasm and nucleus and some STATs that exist as dimers in unstimulated cells that can exert biological functions independent of being activated by a receptor. There are seven mammalian STAT family members which have been identified: STAT1, STAT2, STAT3, STAT4, STAT5 (STAT5A and STAT5B), and STAT6. There are 6 conserved domains in STAT: N-terminal domain (NTD), coiled-coil domain (CCD), DNA-binding domain (DBD), alpha-helical linker domain (LD), SH2 domain, and transactivation domain (TAD). NTD is involved in dimerization of unphosphorylated STATs monomers and for the tetramerization between STAT1, STAT3, STAT4 and STAT5 on promoters with two or more tandem STAT binding sites. It also plays a role in promoting interactions with transcriptional co-activators such as CREB binding protein (CBP)/p300, as well as being important for nuclear import and deactivation of STATs involving tyrosine de-phosphorylation. The CCD interacts with other proteins, such as IFN regulatory protein 9 (IRF-9/p48) with STAT1 and c-JUN with STAT3 and is also thought to participate in the negative regulation of these proteins. Distinct genes are bound to STATs via their DBD domain. This domain is also involved in nuclear translocation of activated STAT1 and STAT3 phosphorylated dimers upon cytokine stimulation. LD links the DNA-binding and SH2 domains and is important for the transcriptional activation of STAT1 in response to IFN-gamma. It also plays a role in protein-protein interactions and has also been implicated in the constitutive nucleocytoplasmic shuttling of unphosphorylated STATs in resting cells. The SH2 domain is necessary for receptor association and tyrosine phosphodimer formation. Residues within this domain may be particularly important for some cellular functions mediated by the STATs as well as residues adjacent to this domain. The TAD interacts with several proteins, namely minichromosome maintenance complex component 5 (MCM5), breast cancer 1 (BRCA1) and CBP/p300. TAD also contains a modulatory phosphorylation site that regulates STAT activity and is necessary for maximal transcription of a number of target genes. The conserved tyrosine residue present in the C-terminus is crucial for dimerization via interaction with the SH2 domain upon the interaction of the ligand with the receptor. STAT activation by tyrosine phosphorylation also determines nuclear import and retention, DNA binding to specific DNA elements in the promoters of responsive genes, and transcriptional activation of STAT dimers. In addition to the SH2 domain there is a coiled-coil domain, a DNA binding domain, and a transactivation domain in the STAT proteins. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198175  Cd Length: 115  Bit Score: 40.65  E-value: 3.93e-04
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|.
gi 1868045105 611 HEERTWY----VGKINRTQAEEMLSGKRDGTFLIRES-SQRGCYACSVVVDGDTKHCVIYR 666
Cdd:cd09919    12 HLLKLWQdgliMGFISKEEAEDLLKKKPPGTFLLRFSdSELGGITIAWVNEDPDGQSQVIH 72
SH2_CIS cd10718
Src homology 2 (SH2) domain found in cytokine-inducible SH2-containing protein (CIS); CIS ...
612-644 4.12e-04

Src homology 2 (SH2) domain found in cytokine-inducible SH2-containing protein (CIS); CIS family members are known to be cytokine-inducible negative regulators of cytokine signaling. The expression of the CIS gene can be induced by IL2, IL3, GM-CSF and EPO in hematopoietic cells. Proteasome-mediated degradation of this protein has been shown to be involved in the inactivation of the erythropoietin receptor. Suppressor of cytokine signalling (SOCS) was first recognized as a group of cytokine-inducible SH2 (CIS) domain proteins comprising eight family members in human (CIS and SOCS1-SOCS7). In addition to the SH2 domain, SOCS proteins have a variable N-terminal domain and a conserved SOCS box in the C-terminal domain. SOCS proteins bind to a substrate via their SH2 domain. The prototypical members, CIS and SOCS1-SOCS3, have been shown to regulate growth hormone signaling in vitro and in a classic negative feedback response compete for binding at phosphotyrosine sites in JAK kinase and receptor pathways to displace effector proteins and target bound receptors for proteasomal degradation. Loss of SOCS activity results in excessive cytokine signaling associated with a variety of hematopoietic, autoimmune, and inflammatory diseases and certain cancers. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198285  Cd Length: 88  Bit Score: 39.74  E-value: 4.12e-04
                          10        20        30
                  ....*....|....*....|....*....|...
gi 1868045105 612 EERTWYVGKINRTQAEEMLSGKRDGTFLIRESS 644
Cdd:cd10718     2 RESGWYWGSITASEAHQALQKAPEGTFLVRDSS 34
SH2_Src_Yes cd10366
Src homology 2 (SH2) domain found in Yes; Yes is a member of the Src non-receptor type ...
320-399 4.76e-04

Src homology 2 (SH2) domain found in Yes; Yes is a member of the Src non-receptor type tyrosine kinase family of proteins. Yes is the cellular homolog of the Yamaguchi sarcoma virus oncogene. In humans it is encoded by the YES1 gene which maps to chromosome 18 and is in close proximity to thymidylate synthase. A corresponding Yes pseudogene has been found on chromosome 22. YES1 has been shown to interact with Janus kinase 2, CTNND1,RPL10, and Occludin. Yes1 has a unique N-terminal domain, an SH3 domain, an SH2 domain, a kinase domain and a regulatory tail, as do the other members of the family. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198229  Cd Length: 101  Bit Score: 40.00  E-value: 4.76e-04
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 320 QDAEWYWGDISREEVnERLRDTPD---GTFLVRDaSSKIQGEYTLTLR-----KGGNNKLIKVFHRD-GHYGFSEPLTFC 390
Cdd:cd10366     1 QAEEWYFGKMGRKDA-ERLLLNPGnqrGIFLVRE-SETTKGAYSLSIRdwdevRGDNVKHYKIRKLDnGGYYITTRAQFD 78

                  ....*....
gi 1868045105 391 SVVELISHY 399
Cdd:cd10366    79 TLQKLVKHY 87
SH3_Lasp1_C cd11934
C-terminal Src Homology 3 domain of LIM and SH3 domain protein 1; Lasp1 is a cytoplasmic ...
6-76 4.88e-04

C-terminal Src Homology 3 domain of LIM and SH3 domain protein 1; Lasp1 is a cytoplasmic protein that binds focal adhesion proteins and is involved in cell signaling, migration, and proliferation. It is overexpressed in several cancer cells including breast, ovarian, bladder, and liver. In cancer cells, it can be found in the nucleus; its degree of nuclear localization correlates with tumor size and poor prognosis. Lasp1 is a 36kD protein containing an N-terminal LIM domain, two nebulin repeats, and a C-terminal SH3 domain. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies.


Pssm-ID: 212867 [Multi-domain]  Cd Length: 59  Bit Score: 38.82  E-value: 4.88e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1868045105   6 GFQYRAVYPFRRERPEDLELLPGDLLV-VSRValqalgvadggercphNVGWMPGFNERTRQRGDFPGTYVE 76
Cdd:cd11934     2 GKRYRAVYDYNAADEDEVSFQDGDTIVnVQQI----------------DDGWMYGTVERTGDTGMLPANYVE 57
SH3_Nostrin cd11823
Src homology 3 domain of Nitric Oxide Synthase TRaffic INducer; Nostrin is expressed in ...
8-76 7.39e-04

Src homology 3 domain of Nitric Oxide Synthase TRaffic INducer; Nostrin is expressed in endothelial and epithelial cells and is involved in the regulation, trafficking and targeting of endothelial NOS (eNOS). It facilitates the endocytosis of eNOS by coordinating the functions of dynamin and the Wiskott-Aldrich syndrome protein (WASP). Increased expression of Nostrin may be correlated to preeclampsia. Nostrin contains an N-terminal F-BAR domain and a C-terminal SH3 domain. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies.


Pssm-ID: 212757 [Multi-domain]  Cd Length: 53  Bit Score: 38.09  E-value: 7.39e-04
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 1868045105   8 QYRAVYPFRRERPEDLELLPGDLLVVSRvalqalgvadggercPHNVGWMPGfnERTRQRGDFPGTYVE 76
Cdd:cd11823     1 RCKALYSYTANREDELSLQPGDIIEVHE---------------KQDDGWWLG--ELNGKKGIFPATYVE 52
AAA_13 pfam13166
AAA domain; This family of domains contain a P-loop motif that is characteriztic of the AAA ...
394-570 9.50e-04

AAA domain; This family of domains contain a P-loop motif that is characteriztic of the AAA superfamily. Many of the proteins in this family are conjugative transfer proteins. This family includes the PrrC protein that is thought to be the active component of the anticodon nuclease.


Pssm-ID: 463796 [Multi-domain]  Cd Length: 712  Bit Score: 42.74  E-value: 9.50e-04
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 394 ELISHY---RHESLAQYNAKLDTRLLYPVSKYQQDQVvkEDSVEAVGAQLKVYHQQYQDK------SREYDQLYEEYTRT 464
Cdd:pfam13166 290 KLIEKVesaISSLLAQLPAVSDLASLLSAFELDVEDI--ESEAEVLNSQLDGLRRALEAKrkdpfkSIELDSVDAKIESI 367
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 465 SQELQMKRTAIEAFNETIKIFEEQgqtQEKCSKEyLERFRREGNEKEMQrillnseRLKSRIAEIHESRTKLEQDLRAQA 544
Cdd:pfam13166 368 NDLVASINELIAKHNEITDNFEEE---KNKAKKK-LRLHLVEEFKSEID-------EYKDKYAGLEKAINSLEKEIKNLE 436
                         170       180
                  ....*....|....*....|....*.
gi 1868045105 545 SDNREIDKRMNSLKPDLMQLRKIRDQ 570
Cdd:pfam13166 437 AEIKKLREEIKELEAQLRDHKPGADE 462
SH2_SH2D2A_SH2D7 cd10349
Src homology 2 domain found in the SH2 domain containing protein 2A and 7 (SH2D2A and SH2D7); ...
616-690 1.01e-03

Src homology 2 domain found in the SH2 domain containing protein 2A and 7 (SH2D2A and SH2D7); SH2D2A and SH7 both contain a single SH2 domain. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 199830  Cd Length: 77  Bit Score: 38.27  E-value: 1.01e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 1868045105 616 WYVGKINRTQAEEMLSGKRDGTFLIRESSQRGCYACSVVVDGDTKHCVIYRTATG-FGFAEPYNLYASLKELVLHY 690
Cdd:cd10349     2 WFHGFITRREAERLLEPKPQGCYLVRFSESAVTFVLSYRSRTCCRHFLLAQLRDGrHVVLGEDSAHARLQDLLLHY 77
SH2_SH2D4B cd10351
Src homology 2 domain found in the SH2 domain containing protein 4B (SH2D4B); SH2D4B contains ...
616-671 1.11e-03

Src homology 2 domain found in the SH2 domain containing protein 4B (SH2D4B); SH2D4B contains a single SH2 domain. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198214  Cd Length: 103  Bit Score: 39.10  E-value: 1.11e-03
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....*.
gi 1868045105 616 WYVGKINRTQAEEMLSGKRDGTFLIRESSQRGCYACSvvvdgdtkhcviYRTATGF 671
Cdd:cd10351     9 WFHGIISREEAEALLMNATEGSFLVRVSEKIWGYTLS------------YRLQSGF 52
DUF5401 pfam17380
Family of unknown function (DUF5401); This is a family of unknown function found in ...
424-605 1.15e-03

Family of unknown function (DUF5401); This is a family of unknown function found in Chromadorea.


Pssm-ID: 375164 [Multi-domain]  Cd Length: 722  Bit Score: 42.42  E-value: 1.15e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 424 QDQVVKEDSVEAVGAQLKVYHQQyqDKSREYDQLYEEYTRTSQELQMK-----RTAIEAFNETIKIFEEQG-----QTQE 493
Cdd:pfam17380 214 QMSTVAPKEVQGMPHTLAPYEKM--ERRKESFNLAEDVTTMTPEYTVRyngqtMTENEFLNQLLHIVQHQKavserQQQE 291
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 494 KCSKEYLERFRREGNEK--EMQRILLNSERLKSRIAEIHESRTKLEQDLRAQASDNREIDK-RMNSLKPDLMQLR----- 565
Cdd:pfam17380 292 KFEKMEQERLRQEKEEKarEVERRRKLEEAEKARQAEMDRQAAIYAEQERMAMERERELERiRQEERKRELERIRqeeia 371
                         170       180       190       200
                  ....*....|....*....|....*....|....*....|....
gi 1868045105 566 ----KIRDQYLVWLTqkgaRQRKiNEWLGIKNETEDQYSLMEDE 605
Cdd:pfam17380 372 meisRMRELERLQME----RQQK-NERVRQELEAARKVKILEEE 410
DR0291 COG1579
Predicted nucleic acid-binding protein DR0291, contains C4-type Zn-ribbon domain [General ...
438-571 1.18e-03

Predicted nucleic acid-binding protein DR0291, contains C4-type Zn-ribbon domain [General function prediction only];


Pssm-ID: 441187 [Multi-domain]  Cd Length: 236  Bit Score: 41.06  E-value: 1.18e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 438 AQLKVYHQQYQDKSREYDQLYEEYTRTSQELQMKRTAIEAFNETIKIFEEQgQTQEKCSKEY---------LERfRREGN 508
Cdd:COG1579    31 AELAELEDELAALEARLEAAKTELEDLEKEIKRLELEIEEVEARIKKYEEQ-LGNVRNNKEYealqkeiesLKR-RISDL 108
                          90       100       110       120       130       140
                  ....*....|....*....|....*....|....*....|....*....|....*....|...
gi 1868045105 509 EKEMQRILLNSERLKSRIAEIHESRTKLEQDLRAQASdnrEIDKRMNSLKPDLMQLRKIRDQY 571
Cdd:COG1579   109 EDEILELMERIEELEEELAELEAELAELEAELEEKKA---ELDEELAELEAELEELEAEREEL 168
SH2_Src_Lck cd10362
Src homology 2 (SH2) domain in lymphocyte cell kinase (Lck); Lck is a member of the Src ...
320-418 1.22e-03

Src homology 2 (SH2) domain in lymphocyte cell kinase (Lck); Lck is a member of the Src non-receptor type tyrosine kinase family of proteins. It is expressed in the brain, T-cells, and NK cells. The unique domain of Lck mediates its interaction with two T-cell surface molecules, CD4 and CD8. It associates with their cytoplasmic tails on CD4 T helper cells and CD8 cytotoxic T cells to assist signaling from the T cell receptor (TCR) complex. When the T cell receptor is engaged by the specific antigen presented by MHC, Lck phosphorylase the intracellular chains of the CD3 and zeta-chains of the TCR complex, allowing ZAP-70 to bind them. Lck then phosphorylates and activates ZAP-70, which in turn phosphorylates Linker of Activated T cells (LAT), a transmembrane protein that serves as a docking site for proteins including: Shc-Grb2-SOS, PI3K, and phospholipase C (PLC). The tyrosine phosphorylation cascade culminates in the intracellular mobilization of a calcium ions and activation of important signaling cascades within the lymphocyte, including the Ras-MEK-ERK pathway, which goes on to activate certain transcription factors such as NFAT, NF-kappaB, and AP-1. These transcription factors regulate the production cytokines such as Interleukin-2 that promote long-term proliferation and differentiation of the activated lymphocytes. The N-terminal tail of Lck is myristoylated and palmitoylated and it tethers the protein to the plasma membrane of the cell. Lck also contains a SH3 domain, a SH2 domain, and a C-terminal tyrosine kinase domain. Lck has 2 phosphorylation sites, the first an autophosphorylation site that is linked to activation of the protein and the second which is phosphorylated by Csk, which inhibits it. Lck is also inhibited by SHP-1 dephosphorylation and by Cbl ubiquitin ligase, which is part of the ubiquitin-mediated pathway. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198225  Cd Length: 101  Bit Score: 38.70  E-value: 1.22e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 320 QDAEWYWGDISREEVnERLRDTP---DGTFLVRDASSKiQGEYTLTLRKGGNNKLIKVFH------RDGHYGFSEPLTFC 390
Cdd:cd10362     1 EPEPWFFKNLSRNDA-ERQLLAPgntHGSFLIRESETT-AGSFSLSVRDFDQNQGEVVKHykirnlDNGGFYISPRITFP 78
                          90       100
                  ....*....|....*....|....*...
gi 1868045105 391 SVVELISHYRHESlaqynAKLDTRLLYP 418
Cdd:cd10362    79 GLHELVRHYTNAS-----DGLCTRLSRP 101
Mplasa_alph_rch TIGR04523
helix-rich Mycoplasma protein; Members of this family occur strictly within a subset of ...
394-605 1.37e-03

helix-rich Mycoplasma protein; Members of this family occur strictly within a subset of Mycoplasma species. Members average 750 amino acids in length, including signal peptide. Sequences are predicted (Jpred 3) to be almost entirely alpha-helical. These sequences show strong periodicity (consistent with long alpha helical structures) and low complexity rich in D,E,N,Q, and K. Genes encoding these proteins are often found in tandem. The function is unknown.


Pssm-ID: 275316 [Multi-domain]  Cd Length: 745  Bit Score: 41.93  E-value: 1.37e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 394 ELISHYRHESLAQYNAKLDTrLLYPVSKYQQDQVVKEDSVEAVGAQLKVYHQQYQDKSREYDQLYEEYTRTSQELQMKRT 473
Cdd:TIGR04523 196 LLKLELLLSNLKKKIQKNKS-LESQISELKKQNNQLKDNIEKKQQEINEKTTEISNTQTQLNQLKDEQNKIKKQLSEKQK 274
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 474 AIEAFNETIKIFEEQGQT---------QEKcSKEYLERFRREGNEKEMQRILLNSERLKS--RIAEIHESRTKLEQDLRA 542
Cdd:TIGR04523 275 ELEQNNKKIKELEKQLNQlkseisdlnNQK-EQDWNKELKSELKNQEKKLEEIQNQISQNnkIISQLNEQISQLKKELTN 353
                         170       180       190       200       210       220       230
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 1868045105 543 QASDNREIDKRMNSLKPDLMQLRKIRDQYLVW----------LTQKGARQRKINEWLGIKNET-EDQYSLMEDE 605
Cdd:TIGR04523 354 SESENSEKQRELEEKQNEIEKLKKENQSYKQEiknlesqindLESKIQNQEKLNQQKDEQIKKlQQEKELLEKE 427
SH2_Grb7_family cd09944
Src homology 2 (SH2) domain found in the growth factor receptor bound, subclass 7 (Grb7) ...
324-376 1.49e-03

Src homology 2 (SH2) domain found in the growth factor receptor bound, subclass 7 (Grb7) proteins; The Grb family binds to the epidermal growth factor receptor (EGFR, erbB1) via their SH2 domains. There are 3 members of the Grb7 family of proteins: Grb7, Grb10, and Grb14. They are composed of an N-terminal Proline-rich domain, a Ras Associating-like (RA) domain, a Pleckstrin Homology (PH) domain, a phosphotyrosine interaction region (PIR, BPS) and a C-terminal SH2 domain. The SH2 domains of Grb7, Grb10 and Grb14 preferentially bind to a different RTK. Grb7 binds strongly to the erbB2 receptor, unlike Grb10 and Grb14 which bind weakly to it. Grb14 binds to Fibroblast Growth Factor Receptor (FGFR). Grb10 has been shown to interact with many different proteins, including the insulin and IGF1 receptors, platelet-derived growth factor (PDGF) receptor-beta, Ret, Kit, Raf1 and MEK1, and Nedd4. Grb7 family proteins are phosphorylated on serine/threonine as well as tyrosine residues. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198197 [Multi-domain]  Cd Length: 108  Bit Score: 38.94  E-value: 1.49e-03
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....*
gi 1868045105 324 WYWGDISREEVNERLRD--TPDGTFLVRDASSKIQGeYTLTLRKGGnnkliKVFH 376
Cdd:cd09944     7 WFHGGISRDEAARLIRQqgLVDGVFLVRESQSNPGA-FVLSLKHGQ-----KIKH 55
PRK03918 PRK03918
DNA double-strand break repair ATPase Rad50;
452-569 1.52e-03

DNA double-strand break repair ATPase Rad50;


Pssm-ID: 235175 [Multi-domain]  Cd Length: 880  Bit Score: 41.97  E-value: 1.52e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 452 REYDQLYEEYTRTSQELQMKRTAIEAFNetiKIFEEQgqTQEKCSKEYLERfrregnEKEMQRILLNSERLKSRIAEIHE 531
Cdd:PRK03918  626 EELDKAFEELAETEKRLEELRKELEELE---KKYSEE--EYEELREEYLEL------SRELAGLRAELEELEKRREEIKK 694
                          90       100       110
                  ....*....|....*....|....*....|....*....
gi 1868045105 532 SRTKLEQDLRAQASDNREIDKrMNSLKPDLMQLR-KIRD 569
Cdd:PRK03918  695 TLEKLKEELEEREKAKKELEK-LEKALERVEELReKVKK 732
SH2_SOCS3 cd10384
Src homology 2 (SH2) domain found in suppressor of cytokine signaling (SOCS) proteins; SH2 ...
605-660 1.53e-03

Src homology 2 (SH2) domain found in suppressor of cytokine signaling (SOCS) proteins; SH2 domain found in SOCS proteins. SOCS was first recognized as a group of cytokine-inducible SH2 (CIS) domain proteins comprising eight family members in human (CIS and SOCS1-SOCS7). In addition to the SH2 domain, SOCS proteins have a variable N-terminal domain and a conserved SOCS box in the C-terminal domain. SOCS proteins bind to a substrate via their SH2 domain. The prototypical members, CIS and SOCS1-SOCS3, have been shown to regulate growth hormone signaling in vitro and in a classic negative feedback response compete for binding at phosphotyrosine sites in JAK kinase and receptor pathways to displace effector proteins and target bound receptors for proteasomal degradation. Loss of SOCS activity results in excessive cytokine signaling associated with a variety of hematopoietic, autoimmune, and inflammatory diseases and certain cancers. Members (SOCS4-SOCS7) were identified by their conserved SOCS box, an adapter motif of 3 helices that associates substrate binding domains, such as the SOCS SH2 domain, ankryin, and WD40 with ubiquitin ligase components. These show limited cytokine induction. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198247  Cd Length: 101  Bit Score: 38.57  E-value: 1.53e-03
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....*..
gi 1868045105 605 EDALPHHEERTWYVGKINRTQAEEMLSGKRDGTFLIRESS-QRGCYACSVVVDGDTK 660
Cdd:cd10384     1 VNAVRKLQESGFYWSTVSGKEANLLLSAEPAGTFLIRDSSdQRHFFTLSVKTESGTK 57
SMC_prok_A TIGR02169
chromosome segregation protein SMC, primarily archaeal type; SMC (structural maintenance of ...
423-598 1.73e-03

chromosome segregation protein SMC, primarily archaeal type; SMC (structural maintenance of chromosomes) proteins bind DNA and act in organizing and segregating chromosomes for partition. SMC proteins are found in bacteria, archaea, and eukaryotes. It is found in a single copy and is homodimeric in prokaryotes, but six paralogs (excluded from this family) are found in eukarotes, where SMC proteins are heterodimeric. This family represents the SMC protein of archaea and a few bacteria (Aquifex, Synechocystis, etc); the SMC of other bacteria is described by TIGR02168. The N- and C-terminal domains of this protein are well conserved, but the central hinge region is skewed in composition and highly divergent. [Cellular processes, Cell division, DNA metabolism, Chromosome-associated proteins]


Pssm-ID: 274009 [Multi-domain]  Cd Length: 1164  Bit Score: 41.98  E-value: 1.73e-03
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105  423 QQDQVVKEDSVEAVGAQLKVYHQQYQDKSREYDQLYEEYTRTSQELQMKRTAIEAFNETIkifEEQGQTQEKCSKEyLER 502
Cdd:TIGR02169  694 QSELRRIENRLDELSQELSDASRKIGEIEKEIEQLEQEEEKLKERLEELEEDLSSLEQEI---ENVKSELKELEAR-IEE 769
                           90       100       110       120       130       140       150       160
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105  503 FRREGNEKEMQRILLNSERLKSRIAEIHESRTKLEQDLRAQASDNREIDKRMNSLKPDLMQLRK----IRDQYLVWLTQK 578
Cdd:TIGR02169  770 LEEDLHKLEEALNDLEARLSHSRIPEIQAELSKLEEEVSRIEARLREIEQKLNRLTLEKEYLEKeiqeLQEQRIDLKEQI 849
                          170       180
                   ....*....|....*....|
gi 1868045105  579 GARQRKINEWLGIKNETEDQ 598
Cdd:TIGR02169  850 KSIEKEIENLNGKKEELEEE 869
SH3_Nebulin_family_C cd11789
C-terminal Src Homology 3 domain of the Nebulin family of proteins; Nebulin family proteins ...
55-76 1.77e-03

C-terminal Src Homology 3 domain of the Nebulin family of proteins; Nebulin family proteins contain multiple nebulin repeats, and may contain an N-terminal LIM domain and/or a C-terminal SH3 domain. They have molecular weights ranging from 34 to 900 kD, depending on the number of nebulin repeats, and they all bind actin. They are involved in the regulation of actin filament architecture and function as stabilizers and scaffolds for cytoskeletal structures with which they associate, such as long actin filaments or focal adhesions. Nebulin family proteins that contain a C-terminal SH3 domain include the giant filamentous protein nebulin, nebulette, Lasp1, and Lasp2. Lasp2, also called LIM-nebulette, is an alternatively spliced variant of nebulette. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies.


Pssm-ID: 212723 [Multi-domain]  Cd Length: 55  Bit Score: 36.91  E-value: 1.77e-03
                          10        20
                  ....*....|....*....|..
gi 1868045105  55 GWMPGFNERTRQRGDFPGTYVE 76
Cdd:cd11789    33 GWMEGTVQRTGQSGMLPANYVE 54
COG1340 COG1340
Uncharacterized coiled-coil protein, contains DUF342 domain [Function unknown];
438-571 1.82e-03

Uncharacterized coiled-coil protein, contains DUF342 domain [Function unknown];


Pssm-ID: 440951 [Multi-domain]  Cd Length: 297  Bit Score: 41.05  E-value: 1.82e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 438 AQLKVYHQQYQDKSREYDQLYEEYTRTSQELQMKRTAIEAFNETI-KIFEEQGQTQE-KCSKEYLERfRREGNEKEMQ-- 513
Cdd:COG1340    50 AQVKELREEAQELREKRDELNEKVKELKEERDELNEKLNELREELdELRKELAELNKaGGSIDKLRK-EIERLEWRQQte 128
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 514 --------RILLNSERLKSRIA----------EIHESRTKLEQdLRAQASDNR-----------EIDKRMNSLKPDLMQL 564
Cdd:COG1340   129 vlspeeekELVEKIKELEKELEkakkalekneKLKELRAELKE-LRKEAEEIHkkikelaeeaqELHEEMIELYKEADEL 207

                  ....*..
gi 1868045105 565 RKIRDQY 571
Cdd:COG1340   208 RKEADEL 214
rad50 TIGR00606
rad50; All proteins in this family for which functions are known are involvedin recombination, ...
450-571 1.85e-03

rad50; All proteins in this family for which functions are known are involvedin recombination, recombinational repair, and/or non-homologous end joining.They are components of an exonuclease complex with MRE11 homologs. This family is distantly related to the SbcC family of bacterial proteins.This family is based on the phylogenomic analysis of JA Eisen (1999, Ph.D. Thesis, Stanford University).


Pssm-ID: 129694 [Multi-domain]  Cd Length: 1311  Bit Score: 41.96  E-value: 1.85e-03
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105  450 KSREYDQLYEEYTRTSQELQMKRTAIEAFNETIKIFEEQGQTQEKCSKEYLERFRR-EGNEKEMQRILLNS--ERLKSRI 526
Cdd:TIGR00606  424 KQEQADEIRDEKKGLGRTIELKKEILEKKQEELKFVIKELQQLEGSSDRILELDQElRKAERELSKAEKNSltETLKKEV 503
                           90       100       110       120
                   ....*....|....*....|....*....|....*....|....*
gi 1868045105  527 AEIHESRTKLEQDLRAQASDNREIDKRMNSLKPDLMQLRKIRDQY 571
Cdd:TIGR00606  504 KSLQNEKADLDRKLRKLDQEMEQLNHHTTTRTQMEMLTKDKMDKD 548
SH2_DAPP1_BAM32_like cd10355
Src homology 2 domain found in dual adaptor for phosphotyrosine and 3-phosphoinositides ( ...
319-404 2.12e-03

Src homology 2 domain found in dual adaptor for phosphotyrosine and 3-phosphoinositides ( DAPP1)/B lymphocyte adaptor molecule of 32 kDa (Bam32)-like proteins; DAPP1/Bam32 contains a putative myristoylation site at its N-terminus, followed by a SH2 domain, and a pleckstrin homology (PH) domain at its C-terminus. DAPP1 could potentially be recruited to the cell membrane by any of these domains. Its putative myristoylation site could facilitate the interaction of DAPP1 with the lipid bilayer. Its SH2 domain may also interact with phosphotyrosine residues on membrane-associated proteins such as activated tyrosine kinase receptors. And finally its PH domain exhibits a high-affinity interaction with the PtdIns(3,4,5)P(3) PtdIns(3,4)P(2) second messengers produced at the cell membrane following the activation of PI 3-kinases. DAPP1 is thought to interact with both tyrosine phosphorylated proteins and 3-phosphoinositides and therefore may play a role in regulating the location and/or activity of such proteins(s) in response to agonists that elevate PtdIns(3,4,5)P(3) and PtdIns(3,4)P(2). This protein is likely to play an important role in triggering signal transduction pathways that lie downstream from receptor tyrosine kinases and PI 3-kinase. It is likely that DAPP1 functions as an adaptor to recruit other proteins to the plasma membrane in response to extracellular signals. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198218  Cd Length: 92  Bit Score: 37.84  E-value: 2.12e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 319 LQDAEWYWGDISREEVNE-RLRDTPDGTFLVRDASSKIqGEYTLTLRkggNNKLIKVFH--RDGHY---GFSEpltFCSV 392
Cdd:cd10355     3 LQSLGWYHGNLTRHAAEAlLLSNGVDGSYLLRNSNEGT-GLFSLSVR---AKDSVKHFHveYTGYSfkfGFNE---FSSL 75
                          90
                  ....*....|..
gi 1868045105 393 VELISHYRHESL 404
Cdd:cd10355    76 QDFVKHFANQPL 87
Smc COG1196
Chromosome segregation ATPase Smc [Cell cycle control, cell division, chromosome partitioning]; ...
433-570 2.38e-03

Chromosome segregation ATPase Smc [Cell cycle control, cell division, chromosome partitioning];


Pssm-ID: 440809 [Multi-domain]  Cd Length: 983  Bit Score: 41.46  E-value: 2.38e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 433 VEAVGAQLKVYHQQYQDKSREYDQLYEEYTRTSQELQMKRTAIEAFNETIKIFEEQGQTQEKcsKEYLERFRREGNEKEM 512
Cdd:COG1196   227 AELLLLKLRELEAELEELEAELEELEAELEELEAELAELEAELEELRLELEELELELEEAQA--EEYELLAELARLEQDI 304
                          90       100       110       120       130
                  ....*....|....*....|....*....|....*....|....*....|....*...
gi 1868045105 513 QRILLNSERLKSRIAEIHESRTKLEQDLRAQASDNREIDKRMNSLKPDLMQLRKIRDQ 570
Cdd:COG1196   305 ARLEERRRELEERLEELEEELAELEEELEELEEELEELEEELEEAEEELEEAEAELAE 362
SH3_SH3RF1_3 cd11926
Third Src Homology 3 domain of SH3 domain containing ring finger 1, an E3 ubiquitin-protein ...
9-75 2.68e-03

Third Src Homology 3 domain of SH3 domain containing ring finger 1, an E3 ubiquitin-protein ligase; SH3RF1 is also called POSH (Plenty of SH3s) or SH3MD2 (SH3 multiple domains protein 2). It is a scaffold protein that acts as an E3 ubiquitin-protein ligase. It plays a role in calcium homeostasis through the control of the ubiquitin domain protein Herp. It may also have a role in regulating death receptor mediated and JNK mediated apoptosis. SH3RF1 also enhances the ubiquitination of ROMK1 potassium channel resulting in its increased endocytosis. It contains an N-terminal RING finger domain and four SH3 domains. This model represents the third SH3 domain, located in the middle, of SH3RF1. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies.


Pssm-ID: 212859 [Multi-domain]  Cd Length: 55  Bit Score: 36.49  E-value: 2.68e-03
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 1868045105   9 YRAVYPFRRERPEDLELLPGDLLVVSrvalqalgvadggERCPHnvGWMPGFNERTRQRGDFPGTYV 75
Cdd:cd11926     2 YVAIYPYTPRKEDELELRKGEMFLVF-------------ERCQD--GWFKGTSMHTSKIGVFPGNYV 53
SH2_SHD cd10390
Src homology 2 domain found in SH2 domain-containing adapter proteins D (SHD); The expression ...
616-710 2.79e-03

Src homology 2 domain found in SH2 domain-containing adapter proteins D (SHD); The expression of SHD is restricted to the brain. SHD may be a physiological substrate of c-Abl and may function as an adapter protein in the central nervous system. It is also thought to be involved in apoptotic regulation. SHD contains five YXXP motifs, a substrate sequence preferred by Abl tyrosine kinases, in addition to a poly-proline rich region and a C-terminal SH2 domain. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198253  Cd Length: 98  Bit Score: 37.75  E-value: 2.79e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 616 WYVGKINRTQAEEMLSGKRDGTFLIR--ESSQRGCyACSVVVDGDTKHCVIYRT-ATGFGFAEPYNLYASLKELVLHYQH 692
Cdd:cd10390     3 WFHGPLSRADAENLLSLCKEGSYLVRlsETRPQDC-SLSLRSSQGFLHLKFARTrENQVVLGQHSGPFPSVPELVLHYSS 81
                          90
                  ....*....|....*....
gi 1868045105 693 ASL-VQHNDALtvTLAHPV 710
Cdd:cd10390    82 RPLpVQGAEHL--ALLYPV 98
SH3_Sorbs2_3 cd11917
Third (or C-terminal) Src Homology 3 domain of Sorbin and SH3 domain containing 2 (Sorbs2), ...
6-78 3.00e-03

Third (or C-terminal) Src Homology 3 domain of Sorbin and SH3 domain containing 2 (Sorbs2), also called Arg-binding protein 2 (ArgBP2); Sorbs2 or ArgBP2 is an adaptor protein containing one sorbin homology (SoHo) and three SH3 domains. It regulates actin-dependent processes including cell adhesion, morphology, and migration. It is expressed in many tissues and is abundant in the heart. Like vinexin, it is found in focal adhesion where it interacts with vinculin and afadin. It also localizes in epithelial cell stress fibers and in cardiac muscle cell Z-discs. Sorbs2 has been implicated to play roles in the signaling of c-Arg, Akt, and Pyk2. Other interaction partners of Sorbs2 include c-Abl, flotillin, spectrin, dynamin 1/2, synaptojanin, PTP-PEST, among others. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies.


Pssm-ID: 212850 [Multi-domain]  Cd Length: 61  Bit Score: 36.51  E-value: 3.00e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 1868045105   6 GFQYRAVYPFRRERPEDLELLPGDllvvsrvalqalgVADGGERCphNVGWMPGFNERTRQRGDFPGTYVEFL 78
Cdd:cd11917     4 GEPFQALYNYMPRNEDELELREGD-------------VIDVMEKC--DDGWFVGTSRRTKFFGTFPGNYVKRL 61
PksD COG3321
Acyl transferase domain in polyketide synthase (PKS) enzymes [Secondary metabolites ...
13-288 4.66e-03

Acyl transferase domain in polyketide synthase (PKS) enzymes [Secondary metabolites biosynthesis, transport and catabolism];


Pssm-ID: 442550 [Multi-domain]  Cd Length: 1386  Bit Score: 40.63  E-value: 4.66e-03
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105   13 YPFRRE-RPEDLELLPGDLLVVSRVALQALGVADGGERCPHNVGWMPGFNERTRQRGDFPGTYVEFLGPVALARPGPRPR 91
Cdd:COG3321    866 YPFQREdAAAALLAAALAAALAAAAALGALLLAALAAALAAALLALAAAAAAALALAAAALAALLALVALAAAAAALLAL 945
                           90       100       110       120       130       140       150       160
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105   92 GPRPLPARPLDGPSESGLTLADLAEQFSPPDPAPPILVKLVEAIEQAGLDSECYSRPELPAPRTDWSLSDVEQWDRNALY 171
Cdd:COG3321    946 AAAAAAAAAALAAAEAGALLLLAAAAAAAAAAAAAAAAAAAAAAAAAAAALAAAAALALLAAAALLLAAAAAAAALLALA 1025
                          170       180       190       200       210       220       230       240
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105  172 DAVKGFLLALPTPVVTPEAAAEAHRALREAAGPVGPVLEPPMLPLHHALTLRFLLQHLGRVARRAPVQATAVHSLASAFG 251
Cdd:COG3321   1026 ALLAAAAAALAAAAAAAAAAAALAALAAAAAAAAALALALAALLLLAALAELALAAAALALAAALAAAALALALAALAAA 1105
                          250       260       270
                   ....*....|....*....|....*....|....*..
gi 1868045105  252 PLLLRTPPPGGDTDGSEPGPGFPVLLLERLLQEHVDE 288
Cdd:COG3321   1106 LLLLALLAALALAAAAAALLALAALLAAAAAAAALAA 1142
SH2_SH2D2A_SH2D7 cd10349
Src homology 2 domain found in the SH2 domain containing protein 2A and 7 (SH2D2A and SH2D7); ...
324-399 7.29e-03

Src homology 2 domain found in the SH2 domain containing protein 2A and 7 (SH2D2A and SH2D7); SH2D2A and SH7 both contain a single SH2 domain. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 199830  Cd Length: 77  Bit Score: 35.96  E-value: 7.29e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 1868045105 324 WYWGDISREEVNERLRDTPDGTFLVRDASSKIQgeYTLTLR-KGGNNKLIKVFHRDGHYGFS-EPLTFCSVVELISHY 399
Cdd:cd10349     2 WFHGFITRREAERLLEPKPQGCYLVRFSESAVT--FVLSYRsRTCCRHFLLAQLRDGRHVVLgEDSAHARLQDLLLHY 77
SH2_SOCS2 cd10383
Src homology 2 (SH2) domain found in suppressor of cytokine signaling (SOCS) proteins; SH2 ...
616-646 7.41e-03

Src homology 2 (SH2) domain found in suppressor of cytokine signaling (SOCS) proteins; SH2 domain found in SOCS proteins. SOCS was first recognized as a group of cytokine-inducible SH2 (CIS) domain proteins comprising eight family members in human (CIS and SOCS1-SOCS7). In addition to the SH2 domain, SOCS proteins have a variable N-terminal domain and a conserved SOCS box in the C-terminal domain. SOCS proteins bind to a substrate via their SH2 domain. The prototypical members, CIS and SOCS1-SOCS3, have been shown to regulate growth hormone signaling in vitro and in a classic negative feedback response compete for binding at phosphotyrosine sites in JAK kinase and receptor pathways to displace effector proteins and target bound receptors for proteasomal degradation. Loss of SOCS activity results in excessive cytokine signaling associated with a variety of hematopoietic, autoimmune, and inflammatory diseases and certain cancers. Members (SOCS4-SOCS7) were identified by their conserved SOCS box, an adapter motif of 3 helices that associates substrate binding domains, such as the SOCS SH2 domain, ankryin, and WD40 with ubiquitin ligase components. These show limited cytokine induction. In general SH2 domains are involved in signal transduction. They typically bind pTyr-containing ligands via two surface pockets, a pTyr and hydrophobic binding pocket, allowing proteins with SH2 domains to localize to tyrosine phosphorylated sites.


Pssm-ID: 198246  Cd Length: 103  Bit Score: 36.78  E-value: 7.41e-03
                          10        20        30
                  ....*....|....*....|....*....|.
gi 1868045105 616 WYVGKINRTQAEEMLSGKRDGTFLIRESSQR 646
Cdd:cd10383     9 WYWGSMTVNEAKEKLQDAPEGTFLVRDSSHS 39
SH3_Intersectin_1 cd11836
First Src homology 3 domain (or SH3A) of Intersectin; Intersectins (ITSNs) are adaptor ...
9-76 7.56e-03

First Src homology 3 domain (or SH3A) of Intersectin; Intersectins (ITSNs) are adaptor proteins that function in exo- and endocytosis, actin cytoskeletal reorganization, and signal transduction. They are essential for initiating clathrin-coated pit formation. They bind to many proteins through their multidomain structure and facilitate the assembly of multimeric complexes. Vertebrates contain two ITSN proteins, ITSN1 and ITSN2, which exist in alternatively spliced short and long isoforms. The short isoforms contain two Eps15 homology domains (EH1 and EH2), a coiled-coil region and five SH3 domains (SH3A-E), while the long isoforms, in addition, contain RhoGEF (also called Dbl-homologous or DH), Pleckstrin homology (PH) and C2 domains. ITSN1 and ITSN2 are both widely expressed, with variations depending on tissue type and stage of development. The first SH3 domain (or SH3A) of ITSN1 has been shown to bind many proteins including Sos1, dynamin1/2, CIN85, c-Cbl, PI3K-C2, SHIP2, N-WASP, and CdGAP, among others. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies.


Pssm-ID: 212770 [Multi-domain]  Cd Length: 55  Bit Score: 35.41  E-value: 7.56e-03
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 1868045105   9 YRAVYPFRRERPEDLELLPGDLLVVSRValqalgvaDGGErcPhnvGWMPG-FNERTrqrGDFPGTYVE 76
Cdd:cd11836     2 YRALYAFEARNPDEISFQPGDIIQVDES--------QVAE--P---GWLAGeLKGKT---GWFPANYVE 54
CDC3 COG5019
Septin family protein [Cell cycle control, cell division, chromosome partitioning, ...
455-558 7.60e-03

Septin family protein [Cell cycle control, cell division, chromosome partitioning, Cytoskeleton];


Pssm-ID: 227352 [Multi-domain]  Cd Length: 373  Bit Score: 39.23  E-value: 7.60e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 455 DQLYEEYtrtsqelqmkRTaieafnetiKIFEEQGQTQEKCSKE----YLERFRREGNEKEMQRILLNSERLKSRIAEIH 530
Cdd:COG5019   281 NLLYENY----------RT---------EKLSGLKNSGEPSLKEiheaRLNEEERELKKKFTEKIREKEKRLEELEQNLI 341
                          90       100
                  ....*....|....*....|....*...
gi 1868045105 531 ESRTKLEQDLRAQASDNREIDKRMNSLK 558
Cdd:COG5019   342 EERKELNSKLEEIQKKLEDLEKRLEKLK 369
CwlO1 COG3883
Uncharacterized N-terminal coiled-coil domain of peptidoglycan hydrolase CwlO [Function ...
429-607 8.04e-03

Uncharacterized N-terminal coiled-coil domain of peptidoglycan hydrolase CwlO [Function unknown];


Pssm-ID: 443091 [Multi-domain]  Cd Length: 379  Bit Score: 39.04  E-value: 8.04e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 429 KEDSVEAVGAQLKVYHQQYQDKSREYDQLYEEYTRTSQELQMKRTAIEAFNETIKIFEEQGQTQEKCSKEYLERFRREGN 508
Cdd:COG3883    21 KQKELSELQAELEAAQAELDALQAELEELNEEYNELQAELEALQAEIDKLQAEIAEAEAEIEERREELGERARALYRSGG 100
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 509 EKEMQRILLNSE-------RLkSRIAEIHESRTKLeqdLRAQASDNREIDKRMNSLKPDLMQLRKIRDQYlvwLTQKGAR 581
Cdd:COG3883   101 SVSYLDVLLGSEsfsdfldRL-SALSKIADADADL---LEELKADKAELEAKKAELEAKLAELEALKAEL---EAAKAEL 173
                         170       180
                  ....*....|....*....|....*.
gi 1868045105 582 QRKINEWLGIKNETEDQYSLMEDEDA 607
Cdd:COG3883   174 EAQQAEQEALLAQLSAEEAAAEAQLA 199
PRK01156 PRK01156
chromosome segregation protein; Provisional
429-588 8.23e-03

chromosome segregation protein; Provisional


Pssm-ID: 100796 [Multi-domain]  Cd Length: 895  Bit Score: 39.50  E-value: 8.23e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 429 KEDSVEAVGAQLKVYHQQYQDKSREYDQLYEEYTRTSQELQMKRTAIEAFN---ETIKIFEEQGQT-QEKCSKEYLERFR 504
Cdd:PRK01156  195 SNLELENIKKQIADDEKSHSITLKEIERLSIEYNNAMDDYNNLKSALNELSsleDMKNRYESEIKTaESDLSMELEKNNY 274
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 505 REGNEKEMQRILLNS-------------------------ERLKSRIAEIHESRTKLEqDLRAQASDNREIDKRMNSLKP 559
Cdd:PRK01156  275 YKELEERHMKIINDPvyknrnyindyfkykndienkkqilSNIDAEINKYHAIIKKLS-VLQKDYNDYIKKKSRYDDLNN 353
                         170       180
                  ....*....|....*....|....*....
gi 1868045105 560 DLMQLRKIRDQYLVWLTQKGARQRKINEW 588
Cdd:PRK01156  354 QILELEGYEMDYNSYLKSIESLKKKIEEY 382
SH3_SH3RF3_3 cd11925
Third Src Homology 3 domain of SH3 domain containing ring finger 3, an E3 ubiquitin-protein ...
9-75 8.75e-03

Third Src Homology 3 domain of SH3 domain containing ring finger 3, an E3 ubiquitin-protein ligase; SH3RF3 is also called POSH2 (Plenty of SH3s 2) or SH3MD4 (SH3 multiple domains protein 4). It is a scaffold protein with E3 ubiquitin-protein ligase activity. It was identified in the screen for interacting partners of p21-activated kinase 2 (PAK2). It may play a role in regulating JNK mediated apoptosis in certain conditions. It also interacts with GTP-loaded Rac1. SH3RF3 is highly homologous to SH3RF1; it also contains an N-terminal RING finger domain and four SH3 domains. This model represents the third SH3 domain, located in the middle, of SH3RF3. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies.


Pssm-ID: 212858  Cd Length: 57  Bit Score: 35.36  E-value: 8.75e-03
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 1868045105   9 YRAVYPFRRERPEDLELLPGDLLVVSrvalqalgvadggERCPHnvGWMPGFNERTRQRGDFPGTYV 75
Cdd:cd11925     3 YLALYAYKPQKNDELELRKGEMYRVI-------------EKCQD--GWFKGTSLRTGVSGVFPGNYV 54
sbcc TIGR00618
exonuclease SbcC; All proteins in this family for which functions are known are part of an ...
417-646 8.93e-03

exonuclease SbcC; All proteins in this family for which functions are known are part of an exonuclease complex with sbcD homologs. This complex is involved in the initiation of recombination to regulate the levels of palindromic sequences in DNA. This family is based on the phylogenomic analysis of JA Eisen (1999, Ph.D. Thesis, Stanford University). [DNA metabolism, DNA replication, recombination, and repair]


Pssm-ID: 129705 [Multi-domain]  Cd Length: 1042  Bit Score: 39.57  E-value: 8.93e-03
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105  417 YPVSKYQQDQVVKEdsVEAVGAQLKVYHQQYQDKsreyDQLYEEYTRTSQELQMKRTAIEAFNETIKIFEEQgqtQEKcs 496
Cdd:TIGR00618  217 YHERKQVLEKELKH--LREALQQTQQSHAYLTQK----REAQEEQLKKQQLLKQLRARIEELRAQEAVLEET---QER-- 285
                           90       100       110       120       130       140       150       160
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105  497 keylerfrregnekemqrilLNSERLKSRIAEIHESRTKLEQDLRaqaSDNREIDKRMNSLKPDLMQLRKIRDQYLVWLT 576
Cdd:TIGR00618  286 --------------------INRARKAAPLAAHIKAVTQIEQQAQ---RIHTELQSKMRSRAKLLMKRAAHVKQQSSIEE 342
                          170       180       190       200       210       220       230
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 1868045105  577 QKGARQRKINEWLGIKNETEDQYSLMEDED---ALPHHeERTWYVGKINRTQAEEMLSGKRD------GTFLIRESSQR 646
Cdd:TIGR00618  343 QRRLLQTLHSQEIHIRDAHEVATSIREISCqqhTLTQH-IHTLQQQKTTLTQKLQSLCKELDilqreqATIDTRTSAFR 420
PRK03918 PRK03918
DNA double-strand break repair ATPase Rad50;
454-568 9.49e-03

DNA double-strand break repair ATPase Rad50;


Pssm-ID: 235175 [Multi-domain]  Cd Length: 880  Bit Score: 39.28  E-value: 9.49e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1868045105 454 YDQLYEEYTRTSQELQMKRTAIEAFNETIKIFEEQGQTQEKCSKEYLERFR------------REGNEKEMQRIllnsER 521
Cdd:PRK03918  160 YENAYKNLGEVIKEIKRRIERLEKFIKRTENIEELIKEKEKELEEVLREINeisselpelreeLEKLEKEVKEL----EE 235
                          90       100       110       120
                  ....*....|....*....|....*....|....*....|....*..
gi 1868045105 522 LKSRIAEIHESRTKLEQDLRAQASDNREIDKRMNSLKPDLMQLRKIR 568
Cdd:PRK03918  236 LKEEIEELEKELESLEGSKRKLEEKIRELEERIEELKKEIEELEEKV 282
 
Blast search parameters
Data Source: Precalculated data, version = cdd.v.3.21
Preset Options:Database: CDSEARCH/cdd   Low complexity filter: no  Composition Based Adjustment: yes   E-value threshold: 0.01

References:

  • Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
  • Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
  • Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
Help | Disclaimer | Write to the Help Desk
NCBI | NLM | NIH