NCBI Home Page NCBI Site Search page NCBI Guide that lists and describes the NCBI resources
Conserved domains on  [gi|1379605037|ref|XP_024626961|]
View 

transcription factor bHLH113 [Medicago truncatula]

Protein Classification

bHLH family transcription factor( domain architecture ID 14413057)

basic helix-loop-helix (bHLH) family transcription factor regulates the transcription of genes that are involved in fruit dehiscence, cell development (carpel, anther and epidermal), phytochrome signaling, flavonoid biosynthesis, hormone signaling and stress responses

Graphical summary

 Zoom to residue level

show extra options »

Show site features     Horizontal zoom: ×

List of domain hits

Name Accession Description Interval E-value
bHLH_AtbHLH_like cd11393
basic helix-loop-helix (bHLH) domain found in Arabidopsis thaliana genes coding transcription ...
157-201 2.29e-18

basic helix-loop-helix (bHLH) domain found in Arabidopsis thaliana genes coding transcription factors and similar proteins; bHLH proteins are the second largest class of plant transcription factors that regulate transcription of genes that are involve in many essential physiological and developmental process. bHLH proteins are transcriptional regulators that are found in organisms from yeast to humans. The Arabidopsis bHLH proteins that have been characterized so far have roles in regulation of fruit dehiscence, cell development (carpel, anther and epidermal), phytochrome signaling, flavonoid biosynthesis, hormone signaling and stress responses.


:

Pssm-ID: 381399 [Multi-domain]  Cd Length: 53  Bit Score: 76.84  E-value: 2.29e-18
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|....*
gi 1379605037 157 KKEKLGERIAALQQLVSPFGKTDTASVLHEATGYIRFLHDQVQVL 201
Cdd:cd11393     8 RREKINERIRALRSLVPNGGKTDKASILDEAIEYIKFLQEQVKVL 52
 
Name Accession Description Interval E-value
bHLH_AtbHLH_like cd11393
basic helix-loop-helix (bHLH) domain found in Arabidopsis thaliana genes coding transcription ...
157-201 2.29e-18

basic helix-loop-helix (bHLH) domain found in Arabidopsis thaliana genes coding transcription factors and similar proteins; bHLH proteins are the second largest class of plant transcription factors that regulate transcription of genes that are involve in many essential physiological and developmental process. bHLH proteins are transcriptional regulators that are found in organisms from yeast to humans. The Arabidopsis bHLH proteins that have been characterized so far have roles in regulation of fruit dehiscence, cell development (carpel, anther and epidermal), phytochrome signaling, flavonoid biosynthesis, hormone signaling and stress responses.


Pssm-ID: 381399 [Multi-domain]  Cd Length: 53  Bit Score: 76.84  E-value: 2.29e-18
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|....*
gi 1379605037 157 KKEKLGERIAALQQLVSPFGKTDTASVLHEATGYIRFLHDQVQVL 201
Cdd:cd11393     8 RREKINERIRALRSLVPNGGKTDKASILDEAIEYIKFLQEQVKVL 52
HLH smart00353
helix loop helix domain;
159-199 2.36e-04

helix loop helix domain;


Pssm-ID: 197674 [Multi-domain]  Cd Length: 53  Bit Score: 38.35  E-value: 2.36e-04
                           10        20        30        40
                   ....*....|....*....|....*....|....*....|....
gi 1379605037  159 EKLGERIAALQQLVSPFG---KTDTASVLHEATGYIRFLHDQVQ 199
Cdd:smart00353   9 RKINEAFDELRSLLPTLPknkKLSKAEILRLAIEYIKSLQEELQ 52
 
Name Accession Description Interval E-value
bHLH_AtbHLH_like cd11393
basic helix-loop-helix (bHLH) domain found in Arabidopsis thaliana genes coding transcription ...
157-201 2.29e-18

basic helix-loop-helix (bHLH) domain found in Arabidopsis thaliana genes coding transcription factors and similar proteins; bHLH proteins are the second largest class of plant transcription factors that regulate transcription of genes that are involve in many essential physiological and developmental process. bHLH proteins are transcriptional regulators that are found in organisms from yeast to humans. The Arabidopsis bHLH proteins that have been characterized so far have roles in regulation of fruit dehiscence, cell development (carpel, anther and epidermal), phytochrome signaling, flavonoid biosynthesis, hormone signaling and stress responses.


Pssm-ID: 381399 [Multi-domain]  Cd Length: 53  Bit Score: 76.84  E-value: 2.29e-18
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|....*
gi 1379605037 157 KKEKLGERIAALQQLVSPFGKTDTASVLHEATGYIRFLHDQVQVL 201
Cdd:cd11393     8 RREKINERIRALRSLVPNGGKTDKASILDEAIEYIKFLQEQVKVL 52
bHLH_AtIND_like cd11454
basic helix-loop-helix (bHLH) domain found in Arabidopsis thaliana protein INDEHISCENT (IND) ...
154-208 8.23e-09

basic helix-loop-helix (bHLH) domain found in Arabidopsis thaliana protein INDEHISCENT (IND) and similar proteins; The family includes several bHLH transcription factors from Arabidopsis thaliana, such as IND, HEC proteins (HEC1, HEC2 and HEC3) and UNE12. IND, also termed AtbHLH40, or EN 120, is a bHLH transcription regulator required for seed dispersal. It is involved in the differentiation of all three cell types required for fruit dehiscence. HEC1 (also termed AtbHLH88, or protein HECATE 1, or EN 118), HEC2 (also termed AtbHLH37, or protein HECATE 2, or EN 117) and HEC3 (also termed AtbHLH43, or protein HECATE 3, or EN 119) are required for the female reproductive tract development and fertility. Both IND and HEC proteins have been implicated in regulation of auxin signaling. They heterodimerize with SPATULA (SPT) bHLH transcription factor to regulate reproductive tract development in plant. UNE12, also termed AtbHLH59, or protein UNFERTILIZED EMBRYO SAC 12, or EN 93, is required for ovule fertilization.


Pssm-ID: 381460  Cd Length: 63  Bit Score: 51.24  E-value: 8.23e-09
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....*
gi 1379605037 154 AKPKKEKLGERIAALQQLVSPFGKTDTASVLHEATGYIRFLHDQVQVLCSPYLQP 208
Cdd:cd11454     9 ARHRRERISERIRILQRLVPGGTKMDTASMLDEAIHYVKFLQLQVKLLQSDDLWM 63
bHLH_AtPIF_like cd11445
basic helix-loop-helix (bHLH) domain found in Arabidopsis thaliana phytochrome interacting ...
157-201 2.09e-06

basic helix-loop-helix (bHLH) domain found in Arabidopsis thaliana phytochrome interacting factors (PIFs) and similar proteins; The family includes several bHLH transcription factors from Arabidopsis thaliana, such as PIFs, ALC, PIL1, SPATULA, and UNE10. PIFs (PIF1, PIF3, PIF4, PIF5, PIF6 and PIF7) have been shown to control light-regulated gene expression. They directly bind to the photoactivated phytochromes and are degraded in response to light signals. ALC, also termed AtbHLH73, or protein ALCATRAZ, or EN 98, is required for the dehiscence of fruit, especially for the separation of the valve cells from the replum. It promotes the differentiation of a strip of labile non-lignified cells sandwiched between layers of lignified cells. PIL1, also termed AtbHLH124, or protein phytochrome interacting factor 3-like 1, or EN 110, is involved in responses to transient and long-term shade. It is required for the light-mediated inhibition of hypocotyl elongation and necessary for rapid light-induced expression of the photomorphogenesis- and circadian-related gene APRR9. PIL1 seems to play a role in multiple PHYB responses, such as flowering transition and petiole elongation. SPATULA, also termed AtbHLH24, or EN 99, plays a role in floral organogenesis. It promotes the growth of carpel margins and of pollen tract tissues derived from them. UNE10, also termed AtbHLH16, or protein UNFERTILIZED EMBRYO SAC 10, or EN 99, is required during the fertilization of ovules by pollen.


Pssm-ID: 381451  Cd Length: 64  Bit Score: 44.29  E-value: 2.09e-06
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|....*
gi 1379605037 157 KKEKLGERIAALQQLVSPFGKTDTASVLHEATGYIRFLHDQVQVL 201
Cdd:cd11445    13 RRDRINEKMKALQELIPNCNKTDKASMLDEAIEYLKSLQLQVQMM 57
bHLH_AtNAI1_like cd11452
basic helix-loop-helix (bHLH) domain found in Arabidopsis thaliana protein NAI1 and similar ...
157-201 2.55e-05

basic helix-loop-helix (bHLH) domain found in Arabidopsis thaliana protein NAI1 and similar proteins; NAI1, also termed AtbHLH20, or EN 27, is a bHLH transcription activator that regulates the expression of at least NAI2, PYK10 and PBP1. It is required for and mediates the formation of endoplasmic reticulum bodies (ER bodies). It plays a role in the symbiotic interactions with the endophytes of the Sebacinaceae fungus family, such as Piriformospora indica and Sebacina.


Pssm-ID: 381458 [Multi-domain]  Cd Length: 75  Bit Score: 41.68  E-value: 2.55e-05
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|....*
gi 1379605037 157 KKEKLGERIAALQQLVSPFGKTDTASVLHEATGYIRFLHDQVQVL 201
Cdd:cd11452    13 RREKLSQRFIALSALVPGLKKMDKASVLGDAIKHIKQLQERVKEL 57
bHLH_AtAIB_like cd11449
basic helix-loop-helix (bHLH) domain found in Arabidopsis thaliana protein ABA-INDUCIBLE ...
155-201 1.72e-04

basic helix-loop-helix (bHLH) domain found in Arabidopsis thaliana protein ABA-INDUCIBLE bHLH-TYPE (AIB) and similar proteins; The family includes several bHLH transcription factors from Arabidopsis thaliana, such as AIB and MYC proteins (MYC2, MYC3 and MYC4). AIB, also termed AtbHLH17, or EN 35, is a transcription activator that regulates positively abscisic acid (ABA) response. MYC2, also termed protein jasmonate insensitive 1, or R-homologous Arabidopsis protein 1 (RAP-1), or AtbHLH6, or EN 38, or Z-box binding factor 1 protein, is a transcriptional activator involved in abscisic acid (ABA), jasmonic acid (JA), and light signaling pathways. MYC3, also termed protein altered tryptophan regulation 2, or AtbHLH5, or transcription factor ATR2, or EN 36, is a transcription factor involved in tryptophan, jasmonic acid (JA) and other stress-responsive gene regulation. MYC4, also termed AtbHLH4, or EN 37, is a transcription factor involved in jasmonic acid (JA) gene regulation. MYC2, together with MYC3 and MYC4, controls additively subsets of JA-dependent responses.


Pssm-ID: 381455 [Multi-domain]  Cd Length: 78  Bit Score: 39.30  E-value: 1.72e-04
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|....*..
gi 1379605037 155 KPKKEKLGERIAALQQLVSPFGKTDTASVLHEATGYIRFLHDQVQVL 201
Cdd:cd11449    14 RQRREKLNQRFYALRAVVPNVSKMDKASLLGDAISYINELKSKVQDM 60
HLH smart00353
helix loop helix domain;
159-199 2.36e-04

helix loop helix domain;


Pssm-ID: 197674 [Multi-domain]  Cd Length: 53  Bit Score: 38.35  E-value: 2.36e-04
                           10        20        30        40
                   ....*....|....*....|....*....|....*....|....
gi 1379605037  159 EKLGERIAALQQLVSPFG---KTDTASVLHEATGYIRFLHDQVQ 199
Cdd:smart00353   9 RKINEAFDELRSLLPTLPknkKLSKAEILRLAIEYIKSLQEELQ 52
bHLH_AtBIM_like cd11453
basic helix-loop-helix (bHLH) domain found in Arabidopsis thaliana BES1-interacting Myc-like ...
157-211 3.48e-04

basic helix-loop-helix (bHLH) domain found in Arabidopsis thaliana BES1-interacting Myc-like proteins (BIMs) and similar proteins; The family includes Arabidopsis thaliana BIM1 and its homologs (BIM2 and BIM3), which are bHLH transcription factors that interact with BES1 to regulate transcription of Brassinosteroid (BR)-induced gene. BR regulates many growth and developmental processes such as cell elongation, vascular development, senescence stress responses, and photomorphogenesis. BIM1 heterodimerize with BES1 and bind to E-box sequences present in many BR-induced promoters to regulated BR-induced genes.


Pssm-ID: 381459  Cd Length: 77  Bit Score: 38.61  E-value: 3.48e-04
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....*..
gi 1379605037 157 KKEKLGERIAALQQLVsPFG--KTDTASVLHEATGYIRFLHDQVQVLCSPYLQPSQV 211
Cdd:cd11453    14 RRSKINERLQALRDLI-PHSdqKRDKASFLLEVIEYIQALQEKVAKLEEQVQGWGGE 69
bHLH_AtFIT_like cd11450
basic helix-loop-helix (bHLH) domain found in Arabidopsis thaliana Fe-deficiency induced ...
157-201 6.29e-04

basic helix-loop-helix (bHLH) domain found in Arabidopsis thaliana Fe-deficiency induced transcription factor 1 (FIT) and similar proteins; The family includes bHLH transcription factors from Arabidopsis thaliana, such as FIT and DYT1. FIT, also termed FER-like iron deficiency-induced transcription factor, or FER-like regulator of iron uptake, or AtbHLH29, or EN 43, is a bHLH transcription factor that is required for the iron deficiency response in plant. It regulates FRO2 at the level of mRNA accumulation and IRT1 at the level of protein accumulation. DYT1, also termed AtbHLH22, or protein dysfunctional tapetum 1, or EN 49, is a bHLH transcription factor involved in the control of tapetum development. It is required for male fertility and pollen differentiation, especially during callose deposition.


Pssm-ID: 381456 [Multi-domain]  Cd Length: 76  Bit Score: 37.89  E-value: 6.29e-04
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|....*
gi 1379605037 157 KKEKLGERIAALQQLVSPFGKTDTASVLHEATGYIRFLHDQVQVL 201
Cdd:cd11450    14 RRQKLNQRLFALRSVVPNITKMDKASIIKDAISYIQELQYQEKKL 58
bHLH_AtTT8_like cd11451
basic helix-loop-helix (bHLH) domain found in Arabidopsis thaliana protein transparent testa 8 ...
150-201 7.64e-04

basic helix-loop-helix (bHLH) domain found in Arabidopsis thaliana protein transparent testa 8 (TT8) and similar proteins; The family includes several bHLH transcription factors from Arabidopsis thaliana, such as TT8, EGL1, and GL3. TT8, also termed AtbHLH42, or EN 32, is involved in the control of flavonoid pigmentation and plays a key role in regulating leucoanthocyanidin reductase (BANYULS) and dihydroflavonol-4-reductase (DFR). EGL1, also termed AtbHLH2, or EN 30, or AtMYC146, or protein enhancer of GLABRA 3, is involved in epidermal cell fate specification and regulates negatively stomata formation but promotes trichome formation. GL3, also termed AtbHLH1, or AtMYC6, or protein shapeshifter, or EN 31, is involved in epidermal cell fate specification. It regulates negatively stomata formation, but, in association with TTG1 and MYB0/GL1, promotes trichome formation, branching and endoreplication.


Pssm-ID: 381457  Cd Length: 75  Bit Score: 37.40  E-value: 7.64e-04
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....*
gi 1379605037 150 STGHA---KPKKEKLGERIAALQQLVSPFGKTDTASVLHEATGYIRFLHDQVQVL 201
Cdd:cd11451     3 DGSHAmaeRRRREKLNERFITLRSMVPFVTKMDKVSILGDAIEYLKQLQRRVEEL 57
bHLH_AtILR3_like cd11446
basic helix-loop-helix (bHLH) domain found in Arabidopsis thaliana protein IAA-leucine ...
155-201 3.29e-03

basic helix-loop-helix (bHLH) domain found in Arabidopsis thaliana protein IAA-leucine resistant 3 (ILR3) and similar proteins; ILR3, also termed AtbHLH105, or EN 133, is a bHLH transcription factor that plays a role in resistance to amide-linked indole-3-acetic acid (IAA) conjugates such as IAA-Leu and IAA-Phe. It may regulate gene expression in response to metal homeostasis changes.


Pssm-ID: 381452 [Multi-domain]  Cd Length: 76  Bit Score: 35.77  E-value: 3.29e-03
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|....*....
gi 1379605037 155 KPKKEKLGERIAALQQLVSPFG--KTDTASVLHEATGYIRFLHDQVQVL 201
Cdd:cd11446     6 KLRRDKLNERFMELSNVLEPGRppKTDKATILGDAIRMLKQLRGEVQKL 54
bHLH_AtIBH1_like cd11444
basic helix-loop-helix (bHLH) domain found in Arabidopsis thaliana ILI1-BINDING BHLH 1 (IBH1) ...
157-201 8.29e-03

basic helix-loop-helix (bHLH) domain found in Arabidopsis thaliana ILI1-BINDING BHLH 1 (IBH1) and similar proteins; The family includes several bHLH transcription factors from Arabidopsis thaliana, such as IBH1, UPBEAT1, PAR1 and PAR2. IBH1, also termed bHLH zeta, or AtbHLH158, is an atypical and probable non DNA-binding bHLH transcription factor that acts as transcriptional repressor that negatively regulates cell and organ elongation in response to gibberellin (GA) and brassinosteroid (BR) signaling. IBH1 forms heterodimer with BHLH49, thus inhibiting DNA binding of BHLH49, which is a transcriptional activator that regulates the expression of a subset of genes involved in cell expansion by binding to the G-box motif. UPBEAT1, also termed AtbHLH151, or EN 146, is a bHLH transcription factor that modulates the balance between cellular proliferation and differentiation in root growth. It does not act through cytokinin and auxin signaling, but by repressing peroxidase expression in the elongation zone. PAR1 (also termed AtbHLH165, or protein helix-loop-helix 1, or protein phytochrome rapidly regulated 1) and PAR2 (also termed AtbHLH166, or protein helix-loop-helix 2, or protein phytochrome rapidly regulated 2) are two atypical bHLH transcription factors that act as negative regulators of a variety of shade avoidance syndrome (SAS) responses, including seedling elongation and photosynthetic pigment accumulation. They act as direct transcriptional repressor of two auxin-responsive genes, SAUR15 and SAUR68. They may function in integrating shade and hormone transcriptional networks in response to light and auxin changes.


Pssm-ID: 381450  Cd Length: 57  Bit Score: 34.14  E-value: 8.29e-03
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|....*.
gi 1379605037 157 KKEKLGERIAALQQLV-SPFGKTDTASVLHEATGYIRFLHDQVQVL 201
Cdd:cd11444     8 GEEAIERRLRALRRLVpGGRESMEVEELLQETADYIMFLEMQVKVM 53
 
Blast search parameters
Data Source: Precalculated data, version = cdd.v.3.21
Preset Options:Database: CDSEARCH/cdd   Low complexity filter: no  Composition Based Adjustment: yes   E-value threshold: 0.01

References:

  • Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
  • Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
  • Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
Help | Disclaimer | Write to the Help Desk
NCBI | NLM | NIH