RecName: Full=A-kinase anchor protein 1, mitochondrial; AltName: Full=Dual specificity A-kinase-anchoring protein 1; Short=D-AKAP-1; AltName: Full=Protein kinase A-anchoring protein 1; Short=PRKA1; AltName: Full=Spermatid A-kinase anchor protein; Short=S-AKAP; Flags: Precursor
A-kinase anchoring protein 1( domain architecture ID 16910147)
A-kinase anchoring protein 1 (AKAP1) anchors protein kinase A to the mitochondrial outer membrane which brings various molecules from the cytosol to mitochondria and that it regulates factors associated with mitochondrial physiological activities
List of domain hits
Name | Accession | Description | Interval | E-value | ||
Tudor_AKAP1 | cd20407 | Tudor domain found in mitochondrial A-kinase anchor protein 1 (AKAP1) and similar proteins; ... |
709-785 | 9.80e-40 | ||
Tudor domain found in mitochondrial A-kinase anchor protein 1 (AKAP1) and similar proteins; AKAP1, also called A-kinase anchor protein 149 kDa (AKAP 149), dual specificity A-kinase-anchoring protein 1 (D-AKAP-1), protein kinase A-anchoring protein 1 (PRKA1), or Spermatid A-kinase anchor protein 84 (S-AKAP84), is found in mitochondria and in the endoplasmic reticulum-nuclear envelope, where it anchors protein kinases, phosphatases, and a phosphodiesterase. It regulates multiple cellular processes governing mitochondrial homeostasis and cell viability. AKAP1 binds to type I and II regulatory subunits of protein kinase A and anchors them to the cytoplasmic face of the mitochondrial outer membrane. It contains a C-terminal Tudor domain. The Tudor domain binds to proteins with dimethylated arginine or lysine residues, and may also bind methylated histone tails to facilitate protein-protein interactions. : Pssm-ID: 410478 Cd Length: 76 Bit Score: 140.81 E-value: 9.80e-40
|
||||||
KH-I_AKAP1 | cd22395 | type I K homology (KH) RNA-binding domain found in mitochondrial A-kinase anchor protein 1 ... |
563-630 | 1.16e-34 | ||
type I K homology (KH) RNA-binding domain found in mitochondrial A-kinase anchor protein 1 (AKAP1) and similar proteins; AKAP1, also called A-kinase anchor protein 149 kDa, or AKAP 149, or dual specificity A-kinase-anchoring protein 1, or D-AKAP-1, or protein kinase A-anchoring protein 1 (PRKA1), or spermatid A-kinase anchor protein 84, or S-AKAP84, is a novel developmentally regulated A kinase anchor protein of male germ cells. It binds to type I and II regulatory subunits of protein kinase A and anchors them to the cytoplasmic face of the mitochondrial outer membrane. : Pssm-ID: 411823 [Multi-domain] Cd Length: 68 Bit Score: 126.10 E-value: 1.16e-34
|
||||||
Name | Accession | Description | Interval | E-value | |||
Tudor_AKAP1 | cd20407 | Tudor domain found in mitochondrial A-kinase anchor protein 1 (AKAP1) and similar proteins; ... |
709-785 | 9.80e-40 | |||
Tudor domain found in mitochondrial A-kinase anchor protein 1 (AKAP1) and similar proteins; AKAP1, also called A-kinase anchor protein 149 kDa (AKAP 149), dual specificity A-kinase-anchoring protein 1 (D-AKAP-1), protein kinase A-anchoring protein 1 (PRKA1), or Spermatid A-kinase anchor protein 84 (S-AKAP84), is found in mitochondria and in the endoplasmic reticulum-nuclear envelope, where it anchors protein kinases, phosphatases, and a phosphodiesterase. It regulates multiple cellular processes governing mitochondrial homeostasis and cell viability. AKAP1 binds to type I and II regulatory subunits of protein kinase A and anchors them to the cytoplasmic face of the mitochondrial outer membrane. It contains a C-terminal Tudor domain. The Tudor domain binds to proteins with dimethylated arginine or lysine residues, and may also bind methylated histone tails to facilitate protein-protein interactions. Pssm-ID: 410478 Cd Length: 76 Bit Score: 140.81 E-value: 9.80e-40
|
|||||||
KH-I_AKAP1 | cd22395 | type I K homology (KH) RNA-binding domain found in mitochondrial A-kinase anchor protein 1 ... |
563-630 | 1.16e-34 | |||
type I K homology (KH) RNA-binding domain found in mitochondrial A-kinase anchor protein 1 (AKAP1) and similar proteins; AKAP1, also called A-kinase anchor protein 149 kDa, or AKAP 149, or dual specificity A-kinase-anchoring protein 1, or D-AKAP-1, or protein kinase A-anchoring protein 1 (PRKA1), or spermatid A-kinase anchor protein 84, or S-AKAP84, is a novel developmentally regulated A kinase anchor protein of male germ cells. It binds to type I and II regulatory subunits of protein kinase A and anchors them to the cytoplasmic face of the mitochondrial outer membrane. Pssm-ID: 411823 [Multi-domain] Cd Length: 68 Bit Score: 126.10 E-value: 1.16e-34
|
|||||||
TUDOR | pfam00567 | Tudor domain; |
662-780 | 2.19e-17 | |||
Tudor domain; Pssm-ID: 425754 [Multi-domain] Cd Length: 117 Bit Score: 78.55 E-value: 2.19e-17
|
|||||||
KH_1 | pfam00013 | KH domain; KH motifs bind RNA in vitro. Autoantibodies to Nova, a KH domain protein, cause ... |
563-625 | 5.80e-12 | |||
KH domain; KH motifs bind RNA in vitro. Autoantibodies to Nova, a KH domain protein, cause paraneoplastic opsoclonus ataxia. Pssm-ID: 459630 [Multi-domain] Cd Length: 65 Bit Score: 61.53 E-value: 5.80e-12
|
|||||||
TUDOR | smart00333 | Tudor domain; Domain of unknown function present in several RNA-binding proteins. 10 copies in ... |
710-768 | 1.69e-10 | |||
Tudor domain; Domain of unknown function present in several RNA-binding proteins. 10 copies in the Drosophila Tudor protein. Initial proposal that the survival motor neuron gene product contain a Tudor domain are corroborated by more recent database search techniques such as PSI-BLAST (unpublished). Pssm-ID: 197660 Cd Length: 57 Bit Score: 57.28 E-value: 1.69e-10
|
|||||||
KH | smart00322 | K homology RNA-binding domain; |
560-628 | 1.95e-09 | |||
K homology RNA-binding domain; Pssm-ID: 197652 [Multi-domain] Cd Length: 68 Bit Score: 54.61 E-value: 1.95e-09
|
|||||||
Name | Accession | Description | Interval | E-value | |||
Tudor_AKAP1 | cd20407 | Tudor domain found in mitochondrial A-kinase anchor protein 1 (AKAP1) and similar proteins; ... |
709-785 | 9.80e-40 | |||
Tudor domain found in mitochondrial A-kinase anchor protein 1 (AKAP1) and similar proteins; AKAP1, also called A-kinase anchor protein 149 kDa (AKAP 149), dual specificity A-kinase-anchoring protein 1 (D-AKAP-1), protein kinase A-anchoring protein 1 (PRKA1), or Spermatid A-kinase anchor protein 84 (S-AKAP84), is found in mitochondria and in the endoplasmic reticulum-nuclear envelope, where it anchors protein kinases, phosphatases, and a phosphodiesterase. It regulates multiple cellular processes governing mitochondrial homeostasis and cell viability. AKAP1 binds to type I and II regulatory subunits of protein kinase A and anchors them to the cytoplasmic face of the mitochondrial outer membrane. It contains a C-terminal Tudor domain. The Tudor domain binds to proteins with dimethylated arginine or lysine residues, and may also bind methylated histone tails to facilitate protein-protein interactions. Pssm-ID: 410478 Cd Length: 76 Bit Score: 140.81 E-value: 9.80e-40
|
|||||||
KH-I_AKAP1 | cd22395 | type I K homology (KH) RNA-binding domain found in mitochondrial A-kinase anchor protein 1 ... |
563-630 | 1.16e-34 | |||
type I K homology (KH) RNA-binding domain found in mitochondrial A-kinase anchor protein 1 (AKAP1) and similar proteins; AKAP1, also called A-kinase anchor protein 149 kDa, or AKAP 149, or dual specificity A-kinase-anchoring protein 1, or D-AKAP-1, or protein kinase A-anchoring protein 1 (PRKA1), or spermatid A-kinase anchor protein 84, or S-AKAP84, is a novel developmentally regulated A kinase anchor protein of male germ cells. It binds to type I and II regulatory subunits of protein kinase A and anchors them to the cytoplasmic face of the mitochondrial outer membrane. Pssm-ID: 411823 [Multi-domain] Cd Length: 68 Bit Score: 126.10 E-value: 1.16e-34
|
|||||||
TUDOR | pfam00567 | Tudor domain; |
662-780 | 2.19e-17 | |||
Tudor domain; Pssm-ID: 425754 [Multi-domain] Cd Length: 117 Bit Score: 78.55 E-value: 2.19e-17
|
|||||||
KH_1 | pfam00013 | KH domain; KH motifs bind RNA in vitro. Autoantibodies to Nova, a KH domain protein, cause ... |
563-625 | 5.80e-12 | |||
KH domain; KH motifs bind RNA in vitro. Autoantibodies to Nova, a KH domain protein, cause paraneoplastic opsoclonus ataxia. Pssm-ID: 459630 [Multi-domain] Cd Length: 65 Bit Score: 61.53 E-value: 5.80e-12
|
|||||||
KH-I | cd00105 | K homology (KH) RNA-binding domain, type I; KH binds single-stranded RNA or DNA. It is found ... |
565-625 | 6.05e-12 | |||
K homology (KH) RNA-binding domain, type I; KH binds single-stranded RNA or DNA. It is found in a wide variety of proteins including ribosomal proteins, transcription factors and post-transcriptional modifiers of mRNA. There are two different KH domains that belong to different protein folds, but they share a single KH motif. The KH motif is folded into a beta alpha alpha beta unit. In addition to the core, type II KH domains (e.g. ribosomal protein S3) include an N-terminal extension and type I KH domains (e.g. hnRNP K) contain a C-terminal extension. Some KH-I superfamily members contain a divergent KH domain that lacks the RNA-binding GXXG motif. Some others have a mutated GXXG motif which may or may not have nucleic acid binding ability. Pssm-ID: 411802 [Multi-domain] Cd Length: 63 Bit Score: 61.55 E-value: 6.05e-12
|
|||||||
Tudor_TDRD2 | cd20412 | Tudor domain found in Tudor domain-containing protein 2 (TDRD2) and similar proteins; TDRD2, ... |
718-777 | 1.32e-11 | |||
Tudor domain found in Tudor domain-containing protein 2 (TDRD2) and similar proteins; TDRD2, also called Tudor and KH domain-containing protein (TDRKH), participates in the primary piwi-interacting RNA (piRNA) biogenesis pathway and is required during spermatogenesis to repress transposable elements and prevent their mobilization, which is essential for germline integrity. The family also includes the TDRD2 homolog found in Drosophila melanogaster (dTDRKH), which is also called partner of PIWIs protein, or PAPI, and is involved in Zucchini-mediated piRNA 3'-end maturation. TDRD2 contains two KH domains and one Tudor domain. The Tudor domain binds to proteins with dimethylated arginine or lysine residues, and may also bind methylated histone tails to facilitate protein-protein interactions. Pssm-ID: 410483 Cd Length: 95 Bit Score: 61.54 E-value: 1.32e-11
|
|||||||
KH-I_HEN4_like_rpt5 | cd22462 | fifth type I K homology (KH) RNA-binding domain found in Arabidopsis thaliana KH ... |
564-625 | 1.91e-11 | |||
fifth type I K homology (KH) RNA-binding domain found in Arabidopsis thaliana KH domain-containing protein HEN4 and similar protein; HEN4, also called protein HUA ENHANCER 4, plays a role in floral reproductive organ identity in the third whorl and floral determinacy specification by specifically promoting the processing of AGAMOUS (AG) pre-mRNA. It functions in association with HUA1 and HUA2. HEN4 contains five K-homology (KH) RNA-binding domains. The model corresponds to the KH5 domain of HEN4. Pssm-ID: 411890 [Multi-domain] Cd Length: 66 Bit Score: 59.96 E-value: 1.91e-11
|
|||||||
Tudor_TDRD7_rpt1 | cd20427 | first Tudor domain found in Tudor domain-containing protein 7 (TDRD7) and similar proteins; ... |
693-789 | 1.18e-10 | |||
first Tudor domain found in Tudor domain-containing protein 7 (TDRD7) and similar proteins; TDRD7, also called PCTAIRE2-binding protein, or Tudor repeat associator with PCTAIRE-2 (Trap), is a component of specific cytoplasmic RNA granules involved in post-transcriptional regulation of specific genes: probably acts by binding to specific mRNAs and regulating their translation. It is required for lens transparency during lens development, by regulating translation of genes such as CRYBB3 and HSPB1 in the developing lens. It is also essential for dynamic ribonucleoprotein (RNP) remodeling of chromatoid bodies during spermatogenesis. TDRD7 contains three Tudor domains. The model corresponds to the first one. The Tudor domain binds to proteins with dimethylated arginine or lysine residues, and may also bind methylated histone tails to facilitate protein-protein interactions. Pssm-ID: 410498 Cd Length: 98 Bit Score: 58.98 E-value: 1.18e-10
|
|||||||
TUDOR | smart00333 | Tudor domain; Domain of unknown function present in several RNA-binding proteins. 10 copies in ... |
710-768 | 1.69e-10 | |||
Tudor domain; Domain of unknown function present in several RNA-binding proteins. 10 copies in the Drosophila Tudor protein. Initial proposal that the survival motor neuron gene product contain a Tudor domain are corroborated by more recent database search techniques such as PSI-BLAST (unpublished). Pssm-ID: 197660 Cd Length: 57 Bit Score: 57.28 E-value: 1.69e-10
|
|||||||
Tudor_TDRD12_rpt2 | cd20435 | second Tudor domain found in Tudor domain-containing protein 12 (TDRD12) and similar proteins; ... |
673-790 | 3.46e-10 | |||
second Tudor domain found in Tudor domain-containing protein 12 (TDRD12) and similar proteins; TDRD12, also called ES cell-associated transcript 8 protein (ECAT8), is a putative ATP-dependent DEAD-like RNA helicase that is essential for germ cell development and maintenance. It acts as a unique piRNA biogenesis factor essential for secondary PIWI interacting RNA (piRNA) biogenesis. TDRD12 contains two Tudor domains, one at the N-terminus and the other at the C-terminal end. The model corresponds to the second/C-terminal one. The Tudor domain binds to proteins with dimethylated arginine or lysine residues, and may also bind methylated histone tails to facilitate protein-protein interactions. Pssm-ID: 410506 Cd Length: 134 Bit Score: 58.80 E-value: 3.46e-10
|
|||||||
Tudor_TDRD1_rpt1 | cd20408 | first Tudor domain found in Tudor domain-containing protein 1 (TDRD1) and similar proteins; ... |
666-796 | 5.43e-10 | |||
first Tudor domain found in Tudor domain-containing protein 1 (TDRD1) and similar proteins; TDRD1, also called cancer/testis antigen 41.1 (CT41.1), plays a central role during spermatogenesis by participating in the repression transposable elements and preventing their mobilization, which is essential for germline integrity. It acts via the piRNA metabolic process, which mediates the repression of transposable elements during meiosis by forming complexes composed of piRNAs and Piwi proteins, and governs the methylation and subsequent repression of transposons. TDRD1 contains four Tudor domains. This model corresponds to the first one. The Tudor domain binds to proteins with dimethylated arginine or lysine residues, and may also bind methylated histone tails to facilitate protein-protein interactions. Pssm-ID: 410479 Cd Length: 130 Bit Score: 58.15 E-value: 5.43e-10
|
|||||||
Tudor_TDRD4_rpt2 | cd20415 | second Tudor domain found in Tudor domain-containing protein 4 (TDRD4) and similar proteins; ... |
719-780 | 5.78e-10 | |||
second Tudor domain found in Tudor domain-containing protein 4 (TDRD4) and similar proteins; TDRD4, also called RING finger protein 17 (RNF17), is a component of the mammalian germ cell nuage and is essential for spermiogenesis. It seems to be involved in the regulation of transcriptional activity of MYC. In vitro, TDRD4 inhibits the DNA-binding activity of Mad-MAX heterodimers. It can recruit Mad transcriptional repressors (MXD1, MXD3, MXD4 and MXI1) to the cytoplasm. TDRD4 also acts as a potential cancer/testis antigen in liver cancer. TDRD4 contains a RING finger and five Tudor domains. This model corresponds to the second one. The Tudor domain binds to proteins with dimethylated arginine or lysine residues, and may also bind methylated histone tails to facilitate protein-protein interactions. Pssm-ID: 410486 Cd Length: 96 Bit Score: 57.06 E-value: 5.78e-10
|
|||||||
KH-I_NOVA_rpt3 | cd09031 | third type I K homology (KH) RNA-binding domain found in the family of neuro-oncological ... |
565-628 | 1.85e-09 | |||
third type I K homology (KH) RNA-binding domain found in the family of neuro-oncological ventral antigen (Nova); The family includes two related neuronal RNA-binding proteins, Nova-1 and Nova-2. Nova-1, also called onconeural ventral antigen 1, or paraneoplastic Ri antigen, or ventral neuron-specific protein 1, may regulate RNA splicing or metabolism in a specific subset of developing neurons. It interacts with RNA containing repeats of the YCAY sequence. It is a brain-enriched splicing factor regulating neuronal alternative splicing. Nova-1 is involved in neurological disorders and carcinogenesis. Nova-2, also called astrocytic NOVA1-like RNA-binding protein, is a neuronal RNA-binding protein expressed in a broader central nervous system (CNS) distribution than Nova-1. It functions in neuronal RNA metabolism. NOVA family proteins contain three K-homology (KH) RNA-binding domains. The model corresponds to the third one. Pssm-ID: 411807 [Multi-domain] Cd Length: 71 Bit Score: 54.51 E-value: 1.85e-09
|
|||||||
KH | smart00322 | K homology RNA-binding domain; |
560-628 | 1.95e-09 | |||
K homology RNA-binding domain; Pssm-ID: 197652 [Multi-domain] Cd Length: 68 Bit Score: 54.61 E-value: 1.95e-09
|
|||||||
Tudor_TDRD15_rpt2 | cd20437 | second Tudor domain found in Tudor domain-containing protein 15 (TDRD15) and similar proteins; ... |
690-772 | 2.18e-09 | |||
second Tudor domain found in Tudor domain-containing protein 15 (TDRD15) and similar proteins; TDRD15 is an uncharacterized Tudor domain-containing protein that contains seven Tudor domains. This model corresponds to the second one. The Tudor domain binds to proteins with dimethylated arginine or lysine residues, and may also bind methylated histone tails to facilitate protein-protein interactions. Pssm-ID: 410508 Cd Length: 120 Bit Score: 55.89 E-value: 2.18e-09
|
|||||||
KH-I_MER1_like | cd22458 | type I K homology (KH) RNA-binding domain found in Saccharomyces cerevisiae meiotic ... |
562-625 | 2.91e-09 | |||
type I K homology (KH) RNA-binding domain found in Saccharomyces cerevisiae meiotic recombination 1 protein (MER1) and similar proteins; MER1 is required for chromosome pairing and genetic recombination. It may function to bring the axial elements of the synaptonemal complex corresponding to homologous chromosomes together by initiating recombination. MER1 might be responsible for regulating the MER2 gene and/or gene product. Pssm-ID: 411886 [Multi-domain] Cd Length: 65 Bit Score: 53.99 E-value: 2.91e-09
|
|||||||
Tudor_TDRD6_rpt2 | cd20421 | second Tudor domain found in Tudor domain-containing protein 6 (TDRD6) and similar proteins; ... |
661-772 | 4.84e-09 | |||
second Tudor domain found in Tudor domain-containing protein 6 (TDRD6) and similar proteins; TDRD6, also called antigen NY-CO-45 or cancer/testis antigen 41.2 (CT41.2), is a testis-specific expressed protein that was localized to the chromatoid bodies in germ cells, and is involved in spermiogenesis, chromatoid body formation, and for proper precursor and mature miRNA expression. Mutations in TDRD6 may be associated with human male infertility and early embryonic lethality. TDRD6 contains seven Tudor domains. This model corresponds to the second one. The Tudor domain binds to proteins with dimethylated arginine or lysine residues, and may also bind methylated histone tails to facilitate protein-protein interactions. Pssm-ID: 410492 Cd Length: 130 Bit Score: 55.12 E-value: 4.84e-09
|
|||||||
Tudor_TDRD6_rpt4 | cd20423 | fourth Tudor domain found in Tudor domain-containing protein 6 (TDRD6) and similar proteins; ... |
716-787 | 3.21e-08 | |||
fourth Tudor domain found in Tudor domain-containing protein 6 (TDRD6) and similar proteins; TDRD6, also called antigen NY-CO-45 or cancer/testis antigen 41.2 (CT41.2), is a testis-specific expressed protein that was localized to the chromatoid bodies in germ cells, and is involved in spermiogenesis, chromatoid body formation, and for proper precursor and mature miRNA expression. Mutations in TDRD6 may be associated with human male infertility and early embryonic lethality. TDRD6 contains seven Tudor domains. This model corresponds to the fourth one. The Tudor domain binds to proteins with dimethylated arginine or lysine residues, and may also bind methylated histone tails to facilitate protein-protein interactions. Pssm-ID: 410494 Cd Length: 80 Bit Score: 51.33 E-value: 3.21e-08
|
|||||||
Tudor_TDRD15_rpt4 | cd20439 | fourth Tudor domain found in Tudor domain-containing protein 15 (TDRD15) and similar proteins; ... |
656-774 | 7.64e-08 | |||
fourth Tudor domain found in Tudor domain-containing protein 15 (TDRD15) and similar proteins; TDRD15 is an uncharacterized Tudor domain-containing protein that contains seven Tudor domains. This model corresponds to the fourth one. The Tudor domain binds to proteins with dimethylated arginine or lysine residues, and may also bind methylated histone tails to facilitate protein-protein interactions. Pssm-ID: 410510 Cd Length: 125 Bit Score: 51.72 E-value: 7.64e-08
|
|||||||
Tudor_TDRD4_rpt5 | cd20418 | fifth Tudor domain found in Tudor domain-containing protein 4 (TDRD4) and similar proteins; ... |
719-789 | 8.41e-08 | |||
fifth Tudor domain found in Tudor domain-containing protein 4 (TDRD4) and similar proteins; TDRD4, also called RING finger protein 17 (RNF17), is a component of the mammalian germ cell nuage and is essential for spermiogenesis. It seems to be involved in the regulation of transcriptional activity of MYC. In vitro, TDRD4 inhibits the DNA-binding activity of Mad-MAX heterodimers. It can recruit Mad transcriptional repressors (MXD1, MXD3, MXD4 and MXI1) to the cytoplasm. TDRD4 also acts as a potential cancer/testis antigen in liver cancer. TDRD4 contains a RING finger and five Tudor domains. This model corresponds to the fifth one. The Tudor domain binds to proteins with dimethylated arginine or lysine residues, and may also bind methylated histone tails to facilitate protein-protein interactions. Pssm-ID: 410489 Cd Length: 105 Bit Score: 50.87 E-value: 8.41e-08
|
|||||||
KH-I_FUBP_rpt1 | cd22396 | first type I K homology (KH) RNA-binding domain found in the FUBP family RNA/DNA-binding ... |
565-627 | 1.43e-07 | |||
first type I K homology (KH) RNA-binding domain found in the FUBP family RNA/DNA-binding proteins; The far upstream element-binding protein (FUBP) family includes FUBP1-3. FUBP1, also called FBP, or FUSE-binding protein 1, or DNA helicase V, or DH V, binds RNA and single-stranded DNA (ssDNA) and may act both as activator and repressor of transcription. It regulates MYC expression by binding to a single-stranded far-upstream element (FUSE) upstream of the MYC promoter. FUBP2, also called FUSE-binding protein 2, or KH type-splicing regulatory protein (KSRP), or p75, is a single-strand nucleic acid binding protein implicated in a variety of cellular processes, including splicing in the nucleus, mRNA decay, maturation of miRNA, and transcriptional control of proto-oncogenes such as c-myc. It regulates the stability and/or translatability of many mRNA species, encoding immune-relevant proteins, either by binding to AU-rich elements (AREs) of mRNA 3'UTR or by facilitating miRNA biogenesis to target mRNA. FUBP3, also called FUSE-binding protein 3, or MARTA2, was previously shown to mediate dendritic targeting of MAP2 mRNA in neurons. It may interact with single-stranded DNA from the far-upstream element (FUSE) and activate gene expression. It is required for beta-actin mRNA localization. It also interacts with fibroblast growth factor 9 (FGF9) 3'-UTR UG repeats and positively controls FGF9 expression through increasing translation of FGF9 mRNA. FUBP proteins contain four K-homology (KH) RNA-binding domains. The model corresponds to the first one. Pssm-ID: 411824 [Multi-domain] Cd Length: 68 Bit Score: 49.18 E-value: 1.43e-07
|
|||||||
KH-I_TDRKH_rpt2 | cd22429 | second type I K homology (KH) RNA-binding domain found in tudor and KH domain-containing ... |
565-631 | 1.84e-07 | |||
second type I K homology (KH) RNA-binding domain found in tudor and KH domain-containing protein (TDRKH) and similar proteins; TDRKH, also called tudor domain-containing protein 2 (TDRD2), is a mitochondria-anchored RNA-binding protein that is required for spermatogenesis and involved in piRNA biogenesis. It specifically recruits MIWI, but not MILI, to engage the piRNA pathway. TDRKH contains two K-homology (KH) RNA-binding domains and one tudor domain, which are involved in binding to RNA or single-strand DNA. The model corresponds to the second one. Pssm-ID: 411857 [Multi-domain] Cd Length: 82 Bit Score: 49.26 E-value: 1.84e-07
|
|||||||
Tudor_dTUD-like | cd20379 | Tudor domain found in Drosophila melanogaster maternal protein Tudor (dTUD) and similar ... |
718-764 | 1.03e-06 | |||
Tudor domain found in Drosophila melanogaster maternal protein Tudor (dTUD) and similar proteins; dTUD is required during oogenesis for the formation of primordial germ cells and for normal abdominal segmentation. It contains 11 Tudor domains. The family also includes mitochondrial A-kinase anchor protein 1 (AKAP1) and Tudor domain-containing proteins (TDRDs). AKAP1, also called A-kinase anchor protein 149 kDa (AKAP 149), or dual specificity A-kinase-anchoring protein 1 (D-AKAP-1), or protein kinase A-anchoring protein 1 (PRKA1), or Spermatid A-kinase anchor protein 84 (S-AKAP84), is found in mitochondria and in the endoplasmic reticulum-nuclear envelope where it anchors protein kinases, phosphatases, and a phosphodiesterase. It regulates multiple cellular processes governing mitochondrial homeostasis and cell viability. AKAP1 binds to type I and II regulatory subunits of protein kinase A and anchors them to the cytoplasmic face of the mitochondrial outer membrane. TDRDs have diverse biological functions and may contain one or more copies of the Tudor domain. The Tudor domain binds to proteins with dimethylated arginine or lysine residues, and may also bind methylated histone tails to facilitate protein-protein interactions. Pssm-ID: 410450 Cd Length: 50 Bit Score: 45.97 E-value: 1.03e-06
|
|||||||
KH-I_PCBP_rpt1 | cd22438 | first type I K homology (KH) RNA-binding domain found in the family of poly(C)-binding ... |
573-631 | 2.68e-06 | |||
first type I K homology (KH) RNA-binding domain found in the family of poly(C)-binding proteins (PCBPs); The PCBP family, also known as hnRNP E family, comprises four members, PCBP1-4, which are RNA-binding proteins that interact in a sequence-specific manner with single-stranded poly(C) sequences. They are mainly involved in various posttranscriptional regulations, including mRNA stabilization or translational activation/silencing. Besides, PCBPs may share iron chaperone activity. PCBPs contain three K-homology (KH) RNA-binding domains. The model corresponds to the first one. Pssm-ID: 411866 [Multi-domain] Cd Length: 67 Bit Score: 45.71 E-value: 2.68e-06
|
|||||||
Tudor_TDRD9 | cd20431 | Tudor domain found in Tudor domain-containing protein 9 (TDRD9) and similar proteins; TDRD9 is ... |
672-772 | 3.62e-06 | |||
Tudor domain found in Tudor domain-containing protein 9 (TDRD9) and similar proteins; TDRD9 is an ATP-dependent DEAD-like RNA helicase required during spermatogenesis. It is involved in the biosynthesis of PIWI-interacting RNAs (piRNAs). A recessive deleterious mutation mutation in TDRD9 causes non-obstructive azoospermia in infertile men. TDRD9 contains an N-terminal HrpA-like RNA helicase module and a Tudor domain. The Tudor domain binds to proteins with dimethylated arginine or lysine residues, and may also bind methylated histone tails to facilitate protein-protein interactions. Pssm-ID: 410502 Cd Length: 101 Bit Score: 46.23 E-value: 3.62e-06
|
|||||||
KH-I_IGF2BP_rpt2 | cd22401 | second type I K homology (KH) RNA-binding domain found in the insulin-like growth factor 2 ... |
569-631 | 1.11e-05 | |||
second type I K homology (KH) RNA-binding domain found in the insulin-like growth factor 2 mRNA-binding protein (IGF2BP) family; The IGF2BP family includes three members: IGF2BP1/IMP-1/ CRD-BP/ VICKZ1, IGF2BP2/IMP-2/ VICKZ2, and IGF2BP3/IMP-3/VICKZ3, which are RNA-binding factors that recruit target transcripts to cytoplasmic protein-RNA complexes (mRNPs). They function by binding to the 5' UTR of the insulin-like growth factor 2 (IGF2) mRNA and regulating IGF2 translation. IGF2BP proteins contain four K-homology (KH) RNA-binding domains which are important in RNA binding and are known to be involved in RNA synthesis and metabolism. The model corresponds to the second one. Pssm-ID: 411829 [Multi-domain] Cd Length: 72 Bit Score: 44.14 E-value: 1.11e-05
|
|||||||
KH-I_PCBP_rpt3 | cd22439 | third type I K homology (KH) RNA-binding domain found in the family of poly(C)-binding ... |
565-625 | 1.31e-05 | |||
third type I K homology (KH) RNA-binding domain found in the family of poly(C)-binding proteins (PCBPs); The PCBP family, also known as hnRNP E family, comprises four members, PCBP1-4, which are RNA-binding proteins that interact in a sequence-specific manner with single-stranded poly(C) sequences. They are mainly involved in various posttranscriptional regulations, including mRNA stabilization or translational activation/silencing. Besides, PCBPs may share iron chaperone activity. PCBPs contain three K-homology (KH) RNA-binding domains. The model corresponds to the third one. Pssm-ID: 411867 [Multi-domain] Cd Length: 68 Bit Score: 43.76 E-value: 1.31e-05
|
|||||||
Tudor_TDRD5 | cd20419 | Tudor domain found in Tudor domain-containing protein 5 (TDRD5) and similar proteins; TDRD5 is ... |
668-774 | 1.94e-05 | |||
Tudor domain found in Tudor domain-containing protein 5 (TDRD5) and similar proteins; TDRD5 is an RNA-binding protein directly associated with piRNA precursors. It is required for retrotransposon silencing, chromatoid body assembly, and spermiogenesis. TDRD5 participates in the repression of transposable elements and prevents their mobilization, which is essential for germline integrity. TDRD5 contains three LOTUS domains and one Tudor domain. The Tudor domain binds to proteins with dimethylated arginine or lysine residues, and may also bind methylated histone tails to facilitate protein-protein interactions. Pssm-ID: 410490 Cd Length: 118 Bit Score: 44.75 E-value: 1.94e-05
|
|||||||
KH-I_BTR1_rpt3 | cd22514 | third type I K homology (KH) RNA-binding domain found in Arabidopsis thaliana protein BTR1 and ... |
566-628 | 2.06e-05 | |||
third type I K homology (KH) RNA-binding domain found in Arabidopsis thaliana protein BTR1 and similar proteins; BTR1, also called Binding to ToMV RNA 1, is a negative regulator of tomato mosaic virus (ToMV) multiplication but has no effect on the multiplication of cucumber mosaic virus (CMV). BTR1 contains three K-homology (KH) RNA-binding domains. The model corresponds to the third one. Pssm-ID: 411942 [Multi-domain] Cd Length: 71 Bit Score: 43.18 E-value: 2.06e-05
|
|||||||
KH-I_Vigilin_rpt6 | cd02394 | sixth type I K homology (KH) RNA-binding domain found in vigilin and similar proteins; Vigilin, ... |
565-625 | 2.14e-05 | |||
sixth type I K homology (KH) RNA-binding domain found in vigilin and similar proteins; Vigilin, also called high density lipoprotein-binding protein, or HDL-binding protein, is a ubiquitous and highly conserved RNA-binding protein that shuttles between nucleus and cytoplasm presumably in contact with RNA molecules. It may be involved in chromosome partitioning at mitosis, facilitating translation and tRNA transport, and control of mRNA metabolism, including estrogen-mediated stabilization of vitellogenin mRNA. Vigilin is up-regulated by cholesterol loading of cells and functions to protect cells from over-accumulation of cholesterol. It may play a role in cell sterol metabolism. Disruption of human vigilin impairs chromosome condensation and segregation. Vigilin has a unique structure of 14-15 consecutively arranged, but non-identical K-homology (KH) domains which apparently mediate RNA-protein binding. The model corresponds to the sixth one. Pssm-ID: 411804 [Multi-domain] Cd Length: 68 Bit Score: 42.94 E-value: 2.14e-05
|
|||||||
KH-I_PEPPER_rpt2_like | cd22460 | second type I K homology (KH) RNA-binding domain found in Arabidopsis thaliana RNA-binding KH ... |
568-627 | 2.78e-05 | |||
second type I K homology (KH) RNA-binding domain found in Arabidopsis thaliana RNA-binding KH domain-containing protein PEPPER and similar proteins; The family includes a group of plant RNA-binding KH domain-containing proteins, such as PEPPER, flowering locus K homology domain protein (FLK), RNA-binding KH domain-containing protein RCF3 and KH domain-containing protein HEN4. PEPPER regulates vegetative and gynoecium development. It acts as a positive regulator of the central floral repressor FLOWERING LOCUS C. In concert with HUA2, PEPPER antagonizes FLK by positively regulating FLC probably at transcriptional and post-transcriptional levels, and thus acts as a negative regulator of flowering. FLK, also called flowering locus KH domain protein, regulates positively flowering by repressing FLC expression and post-transcriptional modification. PEPPER and FLK contain three K-homology (KH) RNA-binding domains. RCF3, also called protein ENHANCED STRESS RESPONSE 1 (ESR1), or protein HIGH OSMOTIC STRESS GENE EXPRESSION 5 (HOS5), or protein REGULATOR OF CBF GENE EXPRESSION 3, or protein SHINY 1 (SHI1), acts as negative regulator of osmotic stress-induced gene expression. It is involved in the regulation of thermotolerance responses under heat stress. It functions as an upstream regulator of heat stress transcription factor (HSF) genes. HEN4, also called protein HUA ENHANCER 4, plays a role in floral reproductive organ identity in the third whorl and floral determinacy specification by specifically promoting the processing of AGAMOUS (AG) pre-mRNA. It functions in association with HUA1 and HUA2. RCF3 and HEN4 contain five KH RNA-binding domains. The model corresponds to the KH2 domain of PEPPER and FLK, as well as KH2 and KH4 domains of RCF3 and HEN4. Pssm-ID: 411888 [Multi-domain] Cd Length: 73 Bit Score: 42.99 E-value: 2.78e-05
|
|||||||
KH-I_MASK | cd22404 | type I K homology (KH) RNA-binding domain found in Mask family proteins; The Mask family ... |
565-631 | 3.43e-05 | |||
type I K homology (KH) RNA-binding domain found in Mask family proteins; The Mask family includes Drosophila melanogaster ankyrin repeat and KH domain-containing protein Mask, and its mammalian homologues Mask1/ANKHD1 and Mask2/ANKRD17. Mask, also called multiple ankyrin repeat single KH domain-containing protein, is a large ankyrin repeat and KH domain-containing protein involved in Drosophila receptor tyrosine kinase signaling. It acts as a mediator of receptor tyrosine kinase (RTK) signaling and may act either downstream of MAPK or transduce signaling through a parallel branch of the RTK pathway. Mask is required for the development and organization of indirect flight muscle sarcomeres by regulating the formation of M line and H zone and the correct assembly of thick and thin filaments in the sarcomere. Mask1/ANKHD1, also called HIV-1 Vpr-binding ankyrin repeat protein, or multiple ankyrin repeats single KH domain, or Hmask, is highly expressed in various cancer tissues and is involved in cancer progression, including proliferation and invasion. Mask2/ANKRD17, also called ankyrin repeat protein 17, or gene trap ankyrin repeat protein (GTAR), or serologically defined breast cancer antigen NY-BR-16, is a ubiquitously expressed ankyrin factor essential for the vascular integrity during embryogenesis. It may be directly involved in the DNA replication process and play pivotal roles in cell cycle and DNA regulation. It is also involved in innate immune defense against bacteria and viruses. Pssm-ID: 411832 [Multi-domain] Cd Length: 71 Bit Score: 42.58 E-value: 3.43e-05
|
|||||||
Tudor_TDRD1_rpt3 | cd20410 | third Tudor domain found in Tudor domain-containing protein 1 (TDRD1) and similar proteins; ... |
711-768 | 4.24e-05 | |||
third Tudor domain found in Tudor domain-containing protein 1 (TDRD1) and similar proteins; TDRD1, also called cancer/testis antigen 41.1 (CT41.1), plays a central role during spermatogenesis by participating in the repression transposable elements and preventing their mobilization, which is essential for germline integrity. It acts via the piRNA metabolic process, which mediates the repression of transposable elements during meiosis by forming complexes composed of piRNAs and Piwi proteins, and governs the methylation and subsequent repression of transposons. TDRD1 contains four Tudor domains. This model corresponds to the third one. The Tudor domain binds to proteins with dimethylated arginine or lysine residues, and may also bind methylated histone tails to facilitate protein-protein interactions. Pssm-ID: 410481 [Multi-domain] Cd Length: 59 Bit Score: 41.94 E-value: 4.24e-05
|
|||||||
KH-I_IGF2BP_rpt4 | cd22403 | fourth type I K homology (KH) RNA-binding domain found in the insulin-like growth factor 2 ... |
565-597 | 4.88e-05 | |||
fourth type I K homology (KH) RNA-binding domain found in the insulin-like growth factor 2 mRNA-binding protein (IGF2BP) family; The IGF2BP family includes three members: IGF2BP1/IMP-1/CRD-BP/VICKZ1, IGF2BP2/IMP-2/VICKZ2, and IGF2BP3/IMP-3/VICKZ3, which are RNA-binding factors that recruit target transcripts to cytoplasmic protein-RNA complexes (mRNPs). They function by binding to the 5' UTR of the insulin-like growth factor 2 (IGF2) mRNA and regulating IGF2 translation. IGF2BP proteins contain four K-homology (KH) RNA-binding domains which are important in RNA binding and are known to be involved in RNA synthesis and metabolism. The model corresponds to the fourth one. Pssm-ID: 411831 [Multi-domain] Cd Length: 66 Bit Score: 41.84 E-value: 4.88e-05
|
|||||||
KH-I_FUBP_rpt3 | cd22398 | third type I K homology (KH) RNA-binding domain found in the FUBP family RNA/DNA-binding ... |
565-625 | 1.12e-04 | |||
third type I K homology (KH) RNA-binding domain found in the FUBP family RNA/DNA-binding proteins; The far upstream element-binding protein (FUBP) family includes FUBP1-3. FUBP1, also called FBP, or FUSE-binding protein 1, or DNA helicase V, or DH V, binds RNA and single-stranded DNA (ssDNA) and may act both as activator and repressor of transcription. It regulates MYC expression by binding to a single-stranded far-upstream element (FUSE) upstream of the MYC promoter. FUBP2, also called FUSE-binding protein 2, or KH type-splicing regulatory protein (KSRP), or p75, is a single-strand nucleic acid binding protein implicated in a variety of cellular processes, including splicing in the nucleus, mRNA decay, maturation of miRNA, and transcriptional control of proto-oncogenes such as c-myc. It regulates the stability and/or translatability of many mRNA species, encoding immune-relevant proteins, either by binding to AU-rich elements (AREs) of mRNA 3'UTR or by facilitating miRNA biogenesis to target mRNA. FUBP3, also called FUSE-binding protein 3, or MARTA2, was previously shown to mediate dendritic targeting of MAP2 mRNA in neurons. It may interact with single-stranded DNA from the far-upstream element (FUSE) and activate gene expression. It is required for beta-actin mRNA localization. It also interacts with fibroblast growth factor 9 (FGF9) 3'-UTR UG repeats and positively controls FGF9 expression through increasing translation of FGF9 mRNA. FUBP proteins contain four K-homology (KH) RNA-binding domains. The model corresponds to the third one. Pssm-ID: 411826 [Multi-domain] Cd Length: 67 Bit Score: 41.09 E-value: 1.12e-04
|
|||||||
KH-I_IGF2BP2_rpt2 | cd22494 | second type I K homology (KH) RNA-binding domain found in insulin-like growth factor 2 ... |
572-631 | 1.20e-04 | |||
second type I K homology (KH) RNA-binding domain found in insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2) and similar proteins; IGF2BP2, also called IGF2 mRNA-binding protein 2 (IMP-2), or hepatocellular carcinoma autoantigen p62, or IGF-II mRNA-binding protein 2, or VICKZ family member 2 (VICKZ2), is an RNA-binding factor that recruits target transcripts to cytoplasmic protein-RNA complexes (mRNPs). It functions by binding to the 5' UTR of the insulin-like growth factor 2 (IGF2) mRNA and regulating IGF2 translation. It also binds to beta-actin/ACTB and MYC transcripts. IGF2BP2 can form homooligomers and heterooligomers with IGF2BP1 and IGF2BP3 in an RNA-dependent manner. It contains four K-homology (KH) RNA-binding domains which are important in RNA binding and are known to be involved in RNA synthesis and metabolism. The model corresponds to the second one. Pssm-ID: 411922 Cd Length: 77 Bit Score: 41.17 E-value: 1.20e-04
|
|||||||
Tudor_TDRD1_rpt4 | cd20411 | fourth Tudor domain found in Tudor domain-containing protein 1 (TDRD1) and similar proteins; ... |
700-774 | 1.24e-04 | |||
fourth Tudor domain found in Tudor domain-containing protein 1 (TDRD1) and similar proteins; TDRD1, also called cancer/testis antigen 41.1 (CT41.1), plays a central role during spermatogenesis by participating in the repression transposable elements and preventing their mobilization, which is essential for germline integrity. It acts via the piRNA metabolic process, which mediates the repression of transposable elements during meiosis by forming complexes composed of piRNAs and Piwi proteins, and governs the methylation and subsequent repression of transposons. TDRD1 contains four Tudor domains. This model corresponds to the fourth one. The Tudor domain binds to proteins with dimethylated arginine or lysine residues, and may also bind methylated histone tails to facilitate protein-protein interactions. Pssm-ID: 410482 Cd Length: 116 Bit Score: 42.43 E-value: 1.24e-04
|
|||||||
KH-I_Rnc1_rpt3 | cd22457 | third type I K homology (KH) RNA-binding domain found in Schizosaccharomyces pombe RNA-binding ... |
566-625 | 3.56e-04 | |||
third type I K homology (KH) RNA-binding domain found in Schizosaccharomyces pombe RNA-binding protein Rnc1 and similar proteins; Rnc1, also called RNA-binding protein that suppresses calcineurin deletion 1, is an RNA-binding protein that acts as an important regulator of the posttranscriptional expression of the MAPK phosphatase Pmp1 in fission yeast. It binds and stabilizes pmp1 mRNA and hence acts as a negative regulator of pmk1 signaling. Overexpression of Rnc1 suppresses the Cl(-) sensitivity of calcineurin deletion. The nuclear export of Rnc1 requires mRNA-binding ability and the mRNA export factor Rae1. Rnc1 contains three K-homology (KH) RNA-binding domains. The model corresponds to the third one. Pssm-ID: 411885 [Multi-domain] Cd Length: 64 Bit Score: 39.36 E-value: 3.56e-04
|
|||||||
KH-I_PCBP3_rpt3 | cd22522 | third type I K homology (KH) RNA-binding domain found in poly(rC)-binding protein 3 (PCBP3) ... |
565-628 | 1.35e-03 | |||
third type I K homology (KH) RNA-binding domain found in poly(rC)-binding protein 3 (PCBP3) and similar proteins; PCBP3, also called alpha-CP3, or PCBP3-overlapping transcript, or PCBP3-overlapping transcript 1, or heterogeneous nuclear ribonucleoprotein E3, or hnRNP E3, is a single-stranded nucleic acid binding protein that binds preferentially to oligo dC. It can function as a repressor dependent on binding to single-strand and double-stranded poly(C) sequences. PCBP3 contains three K-homology (KH) RNA-binding domains. The model corresponds to the third one. Pssm-ID: 411950 [Multi-domain] Cd Length: 75 Bit Score: 38.17 E-value: 1.35e-03
|
|||||||
KH-I_RCF3_like_rpt5 | cd22463 | fifth type I K homology (KH) RNA-binding domain found in Arabidopsis thaliana RNA-binding KH ... |
565-625 | 1.54e-03 | |||
fifth type I K homology (KH) RNA-binding domain found in Arabidopsis thaliana RNA-binding KH domain-containing protein RCF3 and similar protein; RCF3, also called protein ENHANCED STRESS RESPONSE 1 (ESR1), or protein HIGH OSMOTIC STRESS GENE EXPRESSION 5 (HOS5), or protein REGULATOR OF CBF GENE EXPRESSION 3, or protein SHINY 1 (SHI1), acts as negative regulator of osmotic stress-induced gene expression. It is involved in the regulation of thermotolerance responses under heat stress. It functions as an upstream regulator of heat stress transcription factor (HSF) genes. HEN4, also called protein HUA ENHANCER 4, plays a role in floral reproductive organ identity in the third whorl and floral determinacy specification by specifically promoting the processing of AGAMOUS (AG) pre-mRNA. It functions in association with HUA1 and HUA2. RCF3 contains five K-homology (KH) RNA-binding domains. The model corresponds to the KH5 domain of RCF3. Pssm-ID: 411891 [Multi-domain] Cd Length: 71 Bit Score: 37.80 E-value: 1.54e-03
|
|||||||
KH-I_NOVA_rpt1 | cd22435 | first type I K homology (KH) RNA-binding domain found in the family of neuro-oncological ... |
568-630 | 2.06e-03 | |||
first type I K homology (KH) RNA-binding domain found in the family of neuro-oncological ventral antigen (Nova); The family includes two related neuronal RNA-binding proteins, Nova-1 and Nova-2. Nova-1, also called onconeural ventral antigen 1, or paraneoplastic Ri antigen, or ventral neuron-specific protein 1, may regulate RNA splicing or metabolism in a specific subset of developing neurons. It interacts with RNA containing repeats of the YCAY sequence. It is a brain-enriched splicing factor regulating neuronal alternative splicing. Nova-1 is involved in neurological disorders and carcinogenesis. Nova-2, also called astrocytic NOVA1-like RNA-binding protein, is a neuronal RNA-binding protein expressed in a broader central nervous system (CNS) distribution than Nova-1. It functions in neuronal RNA metabolism. NOVA family proteins contain three K-homology (KH) RNA-binding domains. The model corresponds to the first one. Pssm-ID: 411863 [Multi-domain] Cd Length: 73 Bit Score: 37.52 E-value: 2.06e-03
|
|||||||
Tudor_TDRD7_rpt3 | cd20429 | third Tudor domain found in Tudor domain-containing protein 7 (TDRD7) and similar proteins; ... |
688-775 | 3.09e-03 | |||
third Tudor domain found in Tudor domain-containing protein 7 (TDRD7) and similar proteins; TDRD7, also called PCTAIRE2-binding protein, or Tudor repeat associator with PCTAIRE-2 (Trap), is a component of specific cytoplasmic RNA granules involved in post-transcriptional regulation of specific genes: probably acts by binding to specific mRNAs and regulating their translation. It is required for lens transparency during lens development, by regulating translation of genes such as CRYBB3 and HSPB1 in the developing lens. It is also essential for dynamic ribonucleoprotein (RNP) remodeling of chromatoid bodies during spermatogenesis. TDRD7 contains three Tudor domains. The model corresponds to the third one. The Tudor domain binds to proteins with dimethylated arginine or lysine residues, and may also bind methylated histone tails to facilitate protein-protein interactions. Pssm-ID: 410500 Cd Length: 91 Bit Score: 37.47 E-value: 3.09e-03
|
|||||||
Tudor_TDRD6_rpt7 | cd20426 | seventh Tudor domain found in Tudor domain-containing protein 6 (TDRD6) and similar proteins; ... |
725-774 | 3.89e-03 | |||
seventh Tudor domain found in Tudor domain-containing protein 6 (TDRD6) and similar proteins; TDRD6, also called antigen NY-CO-45 or cancer/testis antigen 41.2 (CT41.2), is a testis-specific expressed protein that was localized to the chromatoid bodies in germ cells, and is involved in spermiogenesis, chromatoid body formation, and for proper precursor and mature miRNA expression. Mutations in TDRD6 may be associated with human male infertility and early embryonic lethality. TDRD6 contains seven Tudor domains. This model corresponds to the seventh one. The Tudor domain binds to proteins with dimethylated arginine or lysine residues, and may also bind methylated histone tails to facilitate protein-protein interactions. Pssm-ID: 410497 Cd Length: 140 Bit Score: 38.63 E-value: 3.89e-03
|
|||||||
Tudor_TDRD1_rpt2 | cd20409 | second Tudor domain found in Tudor domain-containing protein 1 (TDRD1) and similar proteins; ... |
716-764 | 4.43e-03 | |||
second Tudor domain found in Tudor domain-containing protein 1 (TDRD1) and similar proteins; TDRD1, also called cancer/testis antigen 41.1 (CT41.1), plays a central role during spermatogenesis by participating in the repression transposable elements and preventing their mobilization, which is essential for germline integrity. It acts via the piRNA metabolic process, which mediates the repression of transposable elements during meiosis by forming complexes composed of piRNAs and Piwi proteins, and governs the methylation and subsequent repression of transposons. TDRD1 contains four Tudor domains. This model corresponds to the second one. The Tudor domain binds to proteins with dimethylated arginine or lysine residues, and may also bind methylated histone tails to facilitate protein-protein interactions. Pssm-ID: 410480 Cd Length: 82 Bit Score: 37.05 E-value: 4.43e-03
|
|||||||
KH-I_HNRNPK_rpt3 | cd22434 | third type I K homology (KH) RNA-binding domain found in heterogeneous nuclear ... |
568-621 | 4.93e-03 | |||
third type I K homology (KH) RNA-binding domain found in heterogeneous nuclear ribonucleoprotein K (hnRNP K) and similar proteins; hnRNP K, also called transformation up-regulated nuclear protein (TUNP), is a pre-mRNA binding protein that binds tenaciously to poly(C) sequences. It may be involved in the nuclear metabolism of hnRNAs, particularly for pre-mRNAs that contain cytidine-rich sequences. It can also bind poly(C) single-stranded DNA. hnRNP K plays an important role in p53/TP53 response to DNA damage, acting at the level of both transcription activation and repression. hnRNP K contains three K-homology (KH) RNA-binding domains. The model corresponds to the third one. Pssm-ID: 411862 [Multi-domain] Cd Length: 74 Bit Score: 36.53 E-value: 4.93e-03
|
|||||||
KH-I_PCBP1_2_rpt3 | cd22521 | third type I K homology (KH) RNA-binding domain found in poly(rC)-binding protein 1 (PCBP1) ... |
565-625 | 5.59e-03 | |||
third type I K homology (KH) RNA-binding domain found in poly(rC)-binding protein 1 (PCBP1) and similar proteins; The family includes PCBP1 (also called alpha-CP1, or heterogeneous nuclear ribonucleoprotein E1, or hnRNP E1, or nucleic acid-binding protein SUB2.3) and PCBP2 (also called alpha-CP2, or heterogeneous nuclear ribonucleoprotein E2, or hnRNP E2). They are single-stranded nucleic acid binding proteins that bind preferentially to oligo dC. They act as iron chaperones for ferritin. In case of infection by poliovirus, PCBP1 plays a role in initiation of viral RNA replication in concert with the viral protein 3CD. PCBP2 is a major cellular poly(rC)-binding protein. It also binds poly(rU). PCBP2 negatively regulates cellular antiviral responses mediated by MAVS signaling. It acts as an adapter between MAVS and the E3 ubiquitin ligase ITCH, therefore triggering MAVS ubiquitination and degradation. PCBP2 forms a metabolon with the heme oxygenase 1/cytochrome P450 reductase complex for heme catabolism and iron transfer. Both PCBP1 and PCBP2 contain three K-homology (KH) RNA-binding domains. The model corresponds to the third one. Pssm-ID: 411949 Cd Length: 76 Bit Score: 36.57 E-value: 5.59e-03
|
|||||||
KH-I_NOVA_rpt2 | cd22436 | second type I K homology (KH) RNA-binding domain found in the family of neuro-oncological ... |
566-625 | 9.53e-03 | |||
second type I K homology (KH) RNA-binding domain found in the family of neuro-oncological ventral antigen (Nova); The family includes two related neuronal RNA-binding proteins, Nova-1 and Nova-2. Nova-1, also called onconeural ventral antigen 1, or paraneoplastic Ri antigen, or ventral neuron-specific protein 1, may regulate RNA splicing or metabolism in a specific subset of developing neurons. It interacts with RNA containing repeats of the YCAY sequence. It is a brain-enriched splicing factor regulating neuronal alternative splicing. Nova-1 is involved in neurological disorders and carcinogenesis. Nova-2, also called astrocytic NOVA1-like RNA-binding protein, is a neuronal RNA-binding protein expressed in a broader central nervous system (CNS) distribution than Nova-1. It functions in neuronal RNA metabolism. NOVA family proteins contain three K-homology (KH) RNA-binding domains. The model corresponds to the second one. Pssm-ID: 411864 [Multi-domain] Cd Length: 70 Bit Score: 35.67 E-value: 9.53e-03
|
|||||||
Blast search parameters | ||||
|