NCBI Home Page NCBI Site Search page NCBI Guide that lists and describes the NCBI resources
Conserved domains on  [gi|2244986492|ref|NP_001393896|]
View 

CUGBP Elav-like family member 2 isoform 30 [Mus musculus]

Protein Classification

RNA-binding protein( domain architecture ID 12981139)

RNA-binding protein recognizes RNA via an RNA recognition motif (RRM); similar to Plasmodium falciparum clustered-asparagine-rich protein (CARP)

Graphical summary

 Zoom to residue level

show extra options »

Show site features     Horizontal zoom: ×

List of domain hits

Name Accession Description Interval E-value
RRM1_CELF1_2_Bruno cd12631
RNA recognition motif 1 (RRM1) found in CUGBP Elav-like family member CELF-1, CELF-2, ...
15-98 8.68e-63

RNA recognition motif 1 (RRM1) found in CUGBP Elav-like family member CELF-1, CELF-2, Drosophila melanogaster Bruno protein and similar proteins; This subgroup corresponds to the RRM1 of CELF-1, CELF-2 and Bruno protein. CELF-1 (also termed BRUNOL-2, or CUG-BP1, or EDEN-BP) and CELF-2 (also termed BRUNOL-3, or ETR-3, or CUG-BP2, or NAPOR) belong to the CUGBP1 and ETR-3-like factors (CELF) or BRUNOL (Bruno-like) family of RNA-binding proteins that have been implicated in regulation of pre-mRNA splicing, and control of mRNA translation and deadenylation. CELF-1 is strongly expressed in all adult and fetal tissues tested. The human CELF-1 is a nuclear and cytoplasmic RNA-binding protein that regulates multiple aspects of nuclear and cytoplasmic mRNA processing, with implications for onset of type 1 myotonic dystrophy (DM1), a neuromuscular disease associated with an unstable CUG triplet expansion in the 3'-UTR (3'-untranslated region) of the DMPK (myotonic dystrophy protein kinase) gene; it preferentially targets UGU-rich mRNA elements. It has been shown to bind to a Bruno response element, a cis-element involved in translational control of oskar mRNA in Drosophila, and share sequence similarity to Bruno, the Drosophila protein that mediates this process. The Xenopus homolog embryo deadenylation element-binding protein (EDEN-BP) mediates sequence-specific deadenylation of Eg5 mRNA. It binds specifically to the EDEN motif in the 3'-untranslated regions of maternal mRNAs and targets these mRNAs for deadenylation and translational repression. CELF-1 contain three highly conserved RNA recognition motifs (RRMs), also known as RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains): two consecutive RRMs (RRM1 and RRM2) situated in the N-terminal region followed by a linker region and the third RRM (RRM3) close to the C-terminus of the protein. The two N-terminal RRMs of EDEN-BP are necessary for the interaction with EDEN as well as a part of the linker region (between RRM2 and RRM3). Oligomerization of EDEN-BP is required for specific mRNA deadenylation and binding. CELF-2 is expressed in all tissues at some level, but highest in brain, heart, and thymus. It has been implicated in the regulation of nuclear and cytoplasmic RNA processing events, including alternative splicing, RNA editing, stability and translation. CELF-2 shares high sequence identity with CELF-1, but shows different binding specificity; it binds preferentially to sequences with UG repeats and UGUU motifs. It has been shown to bind to a Bruno response element, a cis-element involved in translational control of oskar mRNA in Drosophila, and share sequence similarity to Bruno, the Drosophila protein that mediates this process. It also binds to the 3'-UTR of cyclooxygenase-2 messages, affecting both translation and mRNA stability, and binds to apoB mRNA, regulating its C to U editing. CELF-2 also contains three highly conserved RRMs. It binds to RNA via the first two RRMs, which are also important for localization in the cytoplasm. The splicing activation or repression activity of CELF-2 on some specific substrates is mediated by RRM1/RRM2. Both, RRM1 and RRM2 of CELF-2, can activate cardiac troponin T (cTNT) exon 5 inclusion. In addition, CELF-2 possesses a typical arginine and lysine-rich nuclear localization signal (NLS) in the C-terminus, within RRM3. This subgroup also includes Drosophila melanogaster Bruno protein, which plays a central role in regulation of Oskar (Osk) expression in flies. It mediates repression by binding to regulatory Bruno response elements (BREs) in the Osk mRNA 3' UTR. The full-length Bruno protein contains three RRMs, two located in the N-terminal half of the protein and the third near the C-terminus, separated by a linker region.


:

Pssm-ID: 410040 [Multi-domain]  Cd Length: 84  Bit Score: 197.35  E-value: 8.68e-63
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2244986492  15 AIKMFVGQIPRSWSEKELKELFEPYGAVYQINVLRDRSQNPPQSKGCCFVTFYTRKAALEAQNALHNIKTLPGMHHPIQM 94
Cdd:cd12631     1 AIKMFVGQIPRSWSEKELRELFEQYGAVYQINVLRDRSQNPPQSKGCCFVTFYTRKAALEAQNALHNIKTLPGMHHPIQM 80

                  ....
gi 2244986492  95 KPAD 98
Cdd:cd12631    81 KPAD 84
RRM2_CELF1_2 cd12634
RNA recognition motif 2 (RRM2) found in CUGBP Elav-like family member CELF-1, CELF-2 and ...
107-187 3.31e-56

RNA recognition motif 2 (RRM2) found in CUGBP Elav-like family member CELF-1, CELF-2 and similar proteins; This subgroup corresponds to the RRM2 of CELF-1 (also termed BRUNOL-2, or CUG-BP1, or EDEN-BP), CELF-2 (also termed BRUNOL-3, or ETR-3, or CUG-BP2, or NAPOR), both of which belong to the CUGBP1 and ETR-3-like factors (CELF) or BRUNOL (Bruno-like) family of RNA-binding proteins that have been implicated in the regulation of pre-mRNA splicing and in the control of mRNA translation and deadenylation. CELF-1 is strongly expressed in all adult and fetal tissues tested. Human CELF-1 is a nuclear and cytoplasmic RNA-binding protein that regulates multiple aspects of nuclear and cytoplasmic mRNA processing, with implications for onset of type 1 myotonic dystrophy (DM1), a neuromuscular disease associated with an unstable CUG triplet expansion in the 3'-UTR (3'-untranslated region) of the DMPK (myotonic dystrophy protein kinase) gene; it preferentially targets UGU-rich mRNA elements. It has been shown to bind to a Bruno response element, a cis-element involved in translational control of oskar mRNA in Drosophila, and share sequence similarity to Bruno, the Drosophila protein that mediates this process. The Xenopus homolog embryo deadenylation element-binding protein (EDEN-BP) mediates sequence-specific deadenylation of Eg5 mRNA. It binds specifically to the EDEN motif in the 3'-untranslated regions of maternal mRNAs and targets these mRNAs for deadenylation and translational repression. CELF-1 contains three highly conserved RNA recognition motifs (RRMs), also known as RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains): two consecutive RRMs (RRM1 and RRM2) situated in the N-terminal region followed by a linker region and the third RRM (RRM3) close to the C-terminus of the protein. The two N-terminal RRMs of EDEN-BP are necessary for the interaction with EDEN as well as a part of the linker region (between RRM2 and RRM3). Oligomerization of EDEN-BP is required for specific mRNA deadenylation and binding. CELF-2 is expressed in all tissues at some level, but highest in brain, heart, and thymus. It has been implicated in the regulation of nuclear and cytoplasmic RNA processing events, including alternative splicing, RNA editing, stability and translation. CELF-2 shares high sequence identity with CELF-1, but shows different binding specificity; it preferentially binds to sequences with UG repeats and UGUU motifs. It has been shown to bind to a Bruno response element, a cis-element involved in translational control of oskar mRNA in Drosophila, and share sequence similarity to Bruno, the Drosophila protein that mediates this process. It also binds to the 3'-UTR of cyclooxygenase-2 messages, affecting both translation and mRNA stability, and binds to apoB mRNA, regulating its C to U editing. CELF-2 also contains three highly conserved RRMs. It binds to RNA via the first two RRMs, which are also important for localization in the cytoplasm. The splicing activation or repression activity of CELF-2 on some specific substrates is mediated by RRM1/RRM2. Both, RRM1 and RRM2 of CELF-2, can activate cardiac troponin T (cTNT) exon 5 inclusion. In addition, CELF-2 possesses a typical arginine and lysine-rich nuclear localization signal (NLS) in the C-terminus, within RRM3.


:

Pssm-ID: 410042 [Multi-domain]  Cd Length: 81  Bit Score: 180.25  E-value: 3.31e-56
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2244986492 107 DRKLFIGMVSKKCNENDIRVMFSPFGQIEECRILRGPDGLSRGCAFVTFSTRAMAQNAIKAMHQSQTMEGCSSPIVVKFA 186
Cdd:cd12634     1 DRKLFIGMVSKKCNENDIRVMFSPFGQIEECRILRGPDGLSRGCAFVTFSTRAMAQNAIKAMHQSQTMEGCSSPIVVKFA 80

                  .
gi 2244986492 187 D 187
Cdd:cd12634    81 D 81
RRM_SF super family cl17169
RNA recognition motif (RRM) superfamily; RRM, also known as RBD (RNA binding domain) or RNP ...
401-441 3.45e-19

RNA recognition motif (RRM) superfamily; RRM, also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), is a highly abundant domain in eukaryotes found in proteins involved in post-transcriptional gene expression processes including mRNA and rRNA processing, RNA export, and RNA stability. This domain is 90 amino acids in length and consists of a four-stranded beta-sheet packed against two alpha-helices. RRM usually interacts with ssRNA, but is also known to interact with ssDNA as well as proteins. RRM binds a variable number of nucleotides, ranging from two to eight. The active site includes three aromatic side-chains located within the conserved RNP1 and RNP2 motifs of the domain. The RRM domain is found in a variety heterogeneous nuclear ribonucleoproteins (hnRNPs), proteins implicated in regulation of alternative splicing, and protein components of small nuclear ribonucleoproteins (snRNPs).


The actual alignment was detected with superfamily member cd12638:

Pssm-ID: 473069 [Multi-domain]  Cd Length: 92  Bit Score: 82.03  E-value: 3.45e-19
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|.
gi 2244986492 401 GFVSYDNPVSAQAAIQAMNGFQIGMKRLKVQLKRSKNDSKP 441
Cdd:cd12638    52 GFVSYDNPVSAQAAIQAMNGFQIGMKRLKVQLKRSKNDSKP 92
ELAV_HUD_SF super family cl36948
ELAV/HuD family splicing factor; This model describes the ELAV/HuD subfamily of splicing ...
18-437 2.18e-18

ELAV/HuD family splicing factor; This model describes the ELAV/HuD subfamily of splicing factors found in metazoa. HuD stands for the human paraneoplastic encephalomyelitis antigen D of which there are 4 variants in human. ELAV stnds for the Drosophila Embryonic lethal abnormal visual protein. ELAV-like splicing factors are also known in human as HuB (ELAV-like protein 2), HuC (ELAV-like protein 3, Paraneoplastic cerebellar degeneration-associated antigen) and HuR (ELAV-like protein 1). These genes are most closely related to the sex-lethal subfamily of splicing factors found in Dipteran insects (TIGR01659). These proteins contain 3 RNA-recognition motifs (rrm: pfam00076).


The actual alignment was detected with superfamily member TIGR01661:

Pssm-ID: 273741 [Multi-domain]  Cd Length: 352  Bit Score: 86.15  E-value: 2.18e-18
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2244986492  18 MFVGQIPRSWSEKELKELFEPYGAVYQINVLRDRSQNppQSKGCCFVTFYTRKAALEAQNALHNIKTlpgMHHPIQMKPA 97
Cdd:TIGR01661   6 LIVNYLPQTMTQEEIRSLFTSIGEIESCKLVRDKVTG--QSLGYGFVNYVRPEDAEKAVNSLNGLRL---QNKTIKVSYA 80
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2244986492  98 dSEKSNAVEDRKLFIGMVSKKCNENDIRVMFSPFGQIEECRILRGP-DGLSRGCAFVTFSTRAMAQNAIKAMHqSQTMEG 176
Cdd:TIGR01661  81 -RPSSDSIKGANLYVSGLPKTMTQHELESIFSPFGQIITSRILSDNvTGLSKGVGFIRFDKRDEADRAIKTLN-GTTPSG 158
                         170       180       190       200       210       220       230       240
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2244986492 177 CSSPIVVKFADTQKDKEQRrlqqqlaqqmqqlntatwgnltglgGLTPQYLALLQQATSSSNLGAFSGIQQMAGMNAlql 256
Cdd:TIGR01661 159 CTEPITVKFANNPSSSNSK-------------------------GLLSQLEAVQNPQTTRVPLSTILTAAGIGPMHH--- 210
                         250       260       270       280       290       300       310       320
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2244986492 257 qnlatlaaaaaaaqtSATSTNANPLSSTSSALGALTS-PVAASTPNSTAgaamnsltSLGTLQGLAgatvglnniNALAV 335
Cdd:TIGR01661 211 ---------------AAARFRPSAGDFTAVLAHQQQQhAVAQQHAAQRA--------SPPATDGQT---------AGLAA 258
                         330       340       350       360       370       380       390       400
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2244986492 336 AQMLSGMAALNGGLGATGLTNGTAGTmdALTQAYSgiqQYAAaalptLYSQSLLQQQSAAGSQKEGFVSYDNPVSAQAAI 415
Cdd:TIGR01661 259 GAQISASDGAGYCIFVYNLSPDTDET--VLWQLFG---PFGA-----VQNVKIIRDLTTNQCKGYGFVSMTNYDEAAMAI 328
                         410       420
                  ....*....|....*....|..
gi 2244986492 416 QAMNGFQIGMKRLKVQLKRSKN 437
Cdd:TIGR01661 329 LSLNGYTLGNRVLQVSFKTNKA 350
 
Name Accession Description Interval E-value
RRM1_CELF1_2_Bruno cd12631
RNA recognition motif 1 (RRM1) found in CUGBP Elav-like family member CELF-1, CELF-2, ...
15-98 8.68e-63

RNA recognition motif 1 (RRM1) found in CUGBP Elav-like family member CELF-1, CELF-2, Drosophila melanogaster Bruno protein and similar proteins; This subgroup corresponds to the RRM1 of CELF-1, CELF-2 and Bruno protein. CELF-1 (also termed BRUNOL-2, or CUG-BP1, or EDEN-BP) and CELF-2 (also termed BRUNOL-3, or ETR-3, or CUG-BP2, or NAPOR) belong to the CUGBP1 and ETR-3-like factors (CELF) or BRUNOL (Bruno-like) family of RNA-binding proteins that have been implicated in regulation of pre-mRNA splicing, and control of mRNA translation and deadenylation. CELF-1 is strongly expressed in all adult and fetal tissues tested. The human CELF-1 is a nuclear and cytoplasmic RNA-binding protein that regulates multiple aspects of nuclear and cytoplasmic mRNA processing, with implications for onset of type 1 myotonic dystrophy (DM1), a neuromuscular disease associated with an unstable CUG triplet expansion in the 3'-UTR (3'-untranslated region) of the DMPK (myotonic dystrophy protein kinase) gene; it preferentially targets UGU-rich mRNA elements. It has been shown to bind to a Bruno response element, a cis-element involved in translational control of oskar mRNA in Drosophila, and share sequence similarity to Bruno, the Drosophila protein that mediates this process. The Xenopus homolog embryo deadenylation element-binding protein (EDEN-BP) mediates sequence-specific deadenylation of Eg5 mRNA. It binds specifically to the EDEN motif in the 3'-untranslated regions of maternal mRNAs and targets these mRNAs for deadenylation and translational repression. CELF-1 contain three highly conserved RNA recognition motifs (RRMs), also known as RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains): two consecutive RRMs (RRM1 and RRM2) situated in the N-terminal region followed by a linker region and the third RRM (RRM3) close to the C-terminus of the protein. The two N-terminal RRMs of EDEN-BP are necessary for the interaction with EDEN as well as a part of the linker region (between RRM2 and RRM3). Oligomerization of EDEN-BP is required for specific mRNA deadenylation and binding. CELF-2 is expressed in all tissues at some level, but highest in brain, heart, and thymus. It has been implicated in the regulation of nuclear and cytoplasmic RNA processing events, including alternative splicing, RNA editing, stability and translation. CELF-2 shares high sequence identity with CELF-1, but shows different binding specificity; it binds preferentially to sequences with UG repeats and UGUU motifs. It has been shown to bind to a Bruno response element, a cis-element involved in translational control of oskar mRNA in Drosophila, and share sequence similarity to Bruno, the Drosophila protein that mediates this process. It also binds to the 3'-UTR of cyclooxygenase-2 messages, affecting both translation and mRNA stability, and binds to apoB mRNA, regulating its C to U editing. CELF-2 also contains three highly conserved RRMs. It binds to RNA via the first two RRMs, which are also important for localization in the cytoplasm. The splicing activation or repression activity of CELF-2 on some specific substrates is mediated by RRM1/RRM2. Both, RRM1 and RRM2 of CELF-2, can activate cardiac troponin T (cTNT) exon 5 inclusion. In addition, CELF-2 possesses a typical arginine and lysine-rich nuclear localization signal (NLS) in the C-terminus, within RRM3. This subgroup also includes Drosophila melanogaster Bruno protein, which plays a central role in regulation of Oskar (Osk) expression in flies. It mediates repression by binding to regulatory Bruno response elements (BREs) in the Osk mRNA 3' UTR. The full-length Bruno protein contains three RRMs, two located in the N-terminal half of the protein and the third near the C-terminus, separated by a linker region.


Pssm-ID: 410040 [Multi-domain]  Cd Length: 84  Bit Score: 197.35  E-value: 8.68e-63
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2244986492  15 AIKMFVGQIPRSWSEKELKELFEPYGAVYQINVLRDRSQNPPQSKGCCFVTFYTRKAALEAQNALHNIKTLPGMHHPIQM 94
Cdd:cd12631     1 AIKMFVGQIPRSWSEKELRELFEQYGAVYQINVLRDRSQNPPQSKGCCFVTFYTRKAALEAQNALHNIKTLPGMHHPIQM 80

                  ....
gi 2244986492  95 KPAD 98
Cdd:cd12631    81 KPAD 84
RRM2_CELF1_2 cd12634
RNA recognition motif 2 (RRM2) found in CUGBP Elav-like family member CELF-1, CELF-2 and ...
107-187 3.31e-56

RNA recognition motif 2 (RRM2) found in CUGBP Elav-like family member CELF-1, CELF-2 and similar proteins; This subgroup corresponds to the RRM2 of CELF-1 (also termed BRUNOL-2, or CUG-BP1, or EDEN-BP), CELF-2 (also termed BRUNOL-3, or ETR-3, or CUG-BP2, or NAPOR), both of which belong to the CUGBP1 and ETR-3-like factors (CELF) or BRUNOL (Bruno-like) family of RNA-binding proteins that have been implicated in the regulation of pre-mRNA splicing and in the control of mRNA translation and deadenylation. CELF-1 is strongly expressed in all adult and fetal tissues tested. Human CELF-1 is a nuclear and cytoplasmic RNA-binding protein that regulates multiple aspects of nuclear and cytoplasmic mRNA processing, with implications for onset of type 1 myotonic dystrophy (DM1), a neuromuscular disease associated with an unstable CUG triplet expansion in the 3'-UTR (3'-untranslated region) of the DMPK (myotonic dystrophy protein kinase) gene; it preferentially targets UGU-rich mRNA elements. It has been shown to bind to a Bruno response element, a cis-element involved in translational control of oskar mRNA in Drosophila, and share sequence similarity to Bruno, the Drosophila protein that mediates this process. The Xenopus homolog embryo deadenylation element-binding protein (EDEN-BP) mediates sequence-specific deadenylation of Eg5 mRNA. It binds specifically to the EDEN motif in the 3'-untranslated regions of maternal mRNAs and targets these mRNAs for deadenylation and translational repression. CELF-1 contains three highly conserved RNA recognition motifs (RRMs), also known as RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains): two consecutive RRMs (RRM1 and RRM2) situated in the N-terminal region followed by a linker region and the third RRM (RRM3) close to the C-terminus of the protein. The two N-terminal RRMs of EDEN-BP are necessary for the interaction with EDEN as well as a part of the linker region (between RRM2 and RRM3). Oligomerization of EDEN-BP is required for specific mRNA deadenylation and binding. CELF-2 is expressed in all tissues at some level, but highest in brain, heart, and thymus. It has been implicated in the regulation of nuclear and cytoplasmic RNA processing events, including alternative splicing, RNA editing, stability and translation. CELF-2 shares high sequence identity with CELF-1, but shows different binding specificity; it preferentially binds to sequences with UG repeats and UGUU motifs. It has been shown to bind to a Bruno response element, a cis-element involved in translational control of oskar mRNA in Drosophila, and share sequence similarity to Bruno, the Drosophila protein that mediates this process. It also binds to the 3'-UTR of cyclooxygenase-2 messages, affecting both translation and mRNA stability, and binds to apoB mRNA, regulating its C to U editing. CELF-2 also contains three highly conserved RRMs. It binds to RNA via the first two RRMs, which are also important for localization in the cytoplasm. The splicing activation or repression activity of CELF-2 on some specific substrates is mediated by RRM1/RRM2. Both, RRM1 and RRM2 of CELF-2, can activate cardiac troponin T (cTNT) exon 5 inclusion. In addition, CELF-2 possesses a typical arginine and lysine-rich nuclear localization signal (NLS) in the C-terminus, within RRM3.


Pssm-ID: 410042 [Multi-domain]  Cd Length: 81  Bit Score: 180.25  E-value: 3.31e-56
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2244986492 107 DRKLFIGMVSKKCNENDIRVMFSPFGQIEECRILRGPDGLSRGCAFVTFSTRAMAQNAIKAMHQSQTMEGCSSPIVVKFA 186
Cdd:cd12634     1 DRKLFIGMVSKKCNENDIRVMFSPFGQIEECRILRGPDGLSRGCAFVTFSTRAMAQNAIKAMHQSQTMEGCSSPIVVKFA 80

                  .
gi 2244986492 187 D 187
Cdd:cd12634    81 D 81
RRM3_CELF1_2 cd12638
RNA recognition motif 3 (RRM3) found in CUGBP Elav-like family member CELF-1, CELF-2 and ...
401-441 3.45e-19

RNA recognition motif 3 (RRM3) found in CUGBP Elav-like family member CELF-1, CELF-2 and similar proteins; This subgroup corresponds to the RRM3 of CELF-1 (also termed BRUNOL-2, or CUG-BP1, or EDEN-BP) and CELF-2 (also termed BRUNOL-3, or ETR-3, or CUG-BP2, or NAPOR), both of which belong to the CUGBP1 and ETR-3-like factors (CELF) or BRUNOL (Bruno-like) family of RNA-binding proteins that have been implicated in the regulation of pre-mRNA splicing and in the control of mRNA translation and deadenylation. CELF-1 is strongly expressed in all adult and fetal tissues tested. Human CELF-1 is a nuclear and cytoplasmic RNA-binding protein that regulates multiple aspects of nuclear and cytoplasmic mRNA processing, with implications for onset of type 1 myotonic dystrophy (DM1), a neuromuscular disease associated with an unstable CUG triplet expansion in the 3'-UTR (3'-untranslated region) of the DMPK (myotonic dystrophy protein kinase) gene; it preferentially targets UGU-rich mRNA elements. It has been shown to bind to a Bruno response element, a cis-element involved in translational control of oskar mRNA in Drosophila, and share sequence similarity to Bruno, the Drosophila protein that mediates this process. The Xenopus homolog embryo deadenylation element-binding protein (EDEN-BP) mediates sequence-specific deadenylation of Eg5 mRNA. It specifically binds to the EDEN motif in the 3'-untranslated regions of maternal mRNAs and targets these mRNAs for deadenylation and translational repression. CELF-1 contain three highly conserved RNA recognition motifs (RRMs), also known as RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains): two consecutive RRMs (RRM1 and RRM2) situated in the N-terminal region followed by a linker region and the third RRM (RRM3) close to the C-terminus of the protein. The two N-terminal RRMs of EDEN-BP are necessary for the interaction with EDEN as well as a part of the linker region (between RRM2 and RRM3). Oligomerization of EDEN-BP is required for specific mRNA deadenylation and binding. CELF-2 is expressed in all tissues at some level, but highest in brain, heart, and thymus. It has been implicated in the regulation of nuclear and cytoplasmic RNA processing events, including alternative splicing, RNA editing, stability and translation. CELF-2 shares high sequence identity with CELF-1, but shows different binding specificity; it binds preferentially to sequences with UG repeats and UGUU motifs. It has been shown to bind to a Bruno response element, a cis-element involved in translational control of oskar mRNA in Drosophila, and share sequence similarity to Bruno, the Drosophila protein that mediates this process. It also binds to the 3'-UTR of cyclooxygenase-2 messages, affecting both translation and mRNA stability, and binds to apoB mRNA, regulating its C to U editing. CELF-2 also contain three highly conserved RRMs. It binds to RNA via the first two RRMs, which are important for localization in the cytoplasm. The splicing activation or repression activity of CELF-2 on some specific substrates is mediated by RRM1/RRM2. Both, RRM1 and RRM2 of CELF-2, can activate cardiac troponin T (cTNT) exon 5 inclusion. In addition, CELF-2 possesses a typical arginine and lysine-rich nuclear localization signal (NLS) in the C-terminus, within RRM3.


Pssm-ID: 241082 [Multi-domain]  Cd Length: 92  Bit Score: 82.03  E-value: 3.45e-19
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|.
gi 2244986492 401 GFVSYDNPVSAQAAIQAMNGFQIGMKRLKVQLKRSKNDSKP 441
Cdd:cd12638    52 GFVSYDNPVSAQAAIQAMNGFQIGMKRLKVQLKRSKNDSKP 92
ELAV_HUD_SF TIGR01661
ELAV/HuD family splicing factor; This model describes the ELAV/HuD subfamily of splicing ...
18-437 2.18e-18

ELAV/HuD family splicing factor; This model describes the ELAV/HuD subfamily of splicing factors found in metazoa. HuD stands for the human paraneoplastic encephalomyelitis antigen D of which there are 4 variants in human. ELAV stnds for the Drosophila Embryonic lethal abnormal visual protein. ELAV-like splicing factors are also known in human as HuB (ELAV-like protein 2), HuC (ELAV-like protein 3, Paraneoplastic cerebellar degeneration-associated antigen) and HuR (ELAV-like protein 1). These genes are most closely related to the sex-lethal subfamily of splicing factors found in Dipteran insects (TIGR01659). These proteins contain 3 RNA-recognition motifs (rrm: pfam00076).


Pssm-ID: 273741 [Multi-domain]  Cd Length: 352  Bit Score: 86.15  E-value: 2.18e-18
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2244986492  18 MFVGQIPRSWSEKELKELFEPYGAVYQINVLRDRSQNppQSKGCCFVTFYTRKAALEAQNALHNIKTlpgMHHPIQMKPA 97
Cdd:TIGR01661   6 LIVNYLPQTMTQEEIRSLFTSIGEIESCKLVRDKVTG--QSLGYGFVNYVRPEDAEKAVNSLNGLRL---QNKTIKVSYA 80
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2244986492  98 dSEKSNAVEDRKLFIGMVSKKCNENDIRVMFSPFGQIEECRILRGP-DGLSRGCAFVTFSTRAMAQNAIKAMHqSQTMEG 176
Cdd:TIGR01661  81 -RPSSDSIKGANLYVSGLPKTMTQHELESIFSPFGQIITSRILSDNvTGLSKGVGFIRFDKRDEADRAIKTLN-GTTPSG 158
                         170       180       190       200       210       220       230       240
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2244986492 177 CSSPIVVKFADTQKDKEQRrlqqqlaqqmqqlntatwgnltglgGLTPQYLALLQQATSSSNLGAFSGIQQMAGMNAlql 256
Cdd:TIGR01661 159 CTEPITVKFANNPSSSNSK-------------------------GLLSQLEAVQNPQTTRVPLSTILTAAGIGPMHH--- 210
                         250       260       270       280       290       300       310       320
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2244986492 257 qnlatlaaaaaaaqtSATSTNANPLSSTSSALGALTS-PVAASTPNSTAgaamnsltSLGTLQGLAgatvglnniNALAV 335
Cdd:TIGR01661 211 ---------------AAARFRPSAGDFTAVLAHQQQQhAVAQQHAAQRA--------SPPATDGQT---------AGLAA 258
                         330       340       350       360       370       380       390       400
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2244986492 336 AQMLSGMAALNGGLGATGLTNGTAGTmdALTQAYSgiqQYAAaalptLYSQSLLQQQSAAGSQKEGFVSYDNPVSAQAAI 415
Cdd:TIGR01661 259 GAQISASDGAGYCIFVYNLSPDTDET--VLWQLFG---PFGA-----VQNVKIIRDLTTNQCKGYGFVSMTNYDEAAMAI 328
                         410       420
                  ....*....|....*....|..
gi 2244986492 416 QAMNGFQIGMKRLKVQLKRSKN 437
Cdd:TIGR01661 329 LSLNGYTLGNRVLQVSFKTNKA 350
RRM smart00360
RNA recognition motif;
109-183 5.12e-18

RNA recognition motif;


Pssm-ID: 214636 [Multi-domain]  Cd Length: 73  Bit Score: 78.02  E-value: 5.12e-18
                           10        20        30        40        50        60        70
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 2244986492  109 KLFIGMVSKKCNENDIRVMFSPFGQIEECRILRGPD-GLSRGCAFVTFSTRAMAQNAIKAMHqsqTMEGCSSPIVV 183
Cdd:smart00360   1 TLFVGNLPPDTTEEELRELFSKFGKVESVRLVRDKEtGKSKGFAFVEFESEEDAEKALEALN---GKELDGRPLKV 73
RRM smart00360
RNA recognition motif;
17-83 3.20e-16

RNA recognition motif;


Pssm-ID: 214636 [Multi-domain]  Cd Length: 73  Bit Score: 73.01  E-value: 3.20e-16
                           10        20        30        40        50        60
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 2244986492   17 KMFVGQIPRSWSEKELKELFEPYGAVYQINVLRDRsqNPPQSKGCCFVTFYTRKAALEAQNALHNIK 83
Cdd:smart00360   1 TLFVGNLPPDTTEEELRELFSKFGKVESVRLVRDK--ETGKSKGFAFVEFESEEDAEKALEALNGKE 65
RRM COG0724
RNA recognition motif (RRM) domain [Translation, ribosomal structure and biogenesis];
109-186 3.47e-15

RNA recognition motif (RRM) domain [Translation, ribosomal structure and biogenesis];


Pssm-ID: 440488 [Multi-domain]  Cd Length: 85  Bit Score: 70.51  E-value: 3.47e-15
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 2244986492 109 KLFIGMVSKKCNENDIRVMFSPFGQIEECRILRGPD-GLSRGCAFVTFSTRAMAQNAIKAMHQSQTMEgcsSPIVVKFA 186
Cdd:COG0724     3 KIYVGNLPYSVTEEDLRELFSEYGEVTSVKLITDREtGRSRGFGFVEMPDDEEAQAAIEALNGAELMG---RTLKVNEA 78
RRM_1 pfam00076
RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic ...
110-169 6.25e-14

RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic of an RNA binding protein. RRMs are found in a variety of RNA binding proteins, including various hnRNP proteins, proteins implicated in regulation of alternative splicing, and protein components of snRNPs. The motif also appears in a few single stranded DNA binding proteins. The RRM structure consists of four strands and two helices arranged in an alpha/beta sandwich, with a third helix present during RNA binding in some cases The C-terminal beta strand (4th strand) and final helix are hard to align and have been omitted in the SEED alignment The LA proteins have an N terminal rrm which is included in the seed. There is a second region towards the C terminus that has some features characteriztic of a rrm but does not appear to have the important structural core of a rrm. The LA proteins are one of the main autoantigens in Systemic lupus erythematosus (SLE), an autoimmune disease.


Pssm-ID: 425453 [Multi-domain]  Cd Length: 70  Bit Score: 66.49  E-value: 6.25e-14
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|
gi 2244986492 110 LFIGMVSKKCNENDIRVMFSPFGQIEECRILRGPDGLSRGCAFVTFSTRAMAQNAIKAMH 169
Cdd:pfam00076   1 LFVGNLPPDTTEEDLKDLFSKFGPIKSIRLVRDETGRSKGFAFVEFEDEEDAEKAIEALN 60
RRM COG0724
RNA recognition motif (RRM) domain [Translation, ribosomal structure and biogenesis];
15-81 1.34e-11

RNA recognition motif (RRM) domain [Translation, ribosomal structure and biogenesis];


Pssm-ID: 440488 [Multi-domain]  Cd Length: 85  Bit Score: 60.11  E-value: 1.34e-11
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 2244986492  15 AIKMFVGQIPRSWSEKELKELFEPYGAVYQINVLRDRSQNppQSKGCCFVTFYTRKAALEAQNALHN 81
Cdd:COG0724     1 SMKIYVGNLPYSVTEEDLRELFSEYGEVTSVKLITDRETG--RSRGFGFVEMPDDEEAQAAIEALNG 65
RRM_1 pfam00076
RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic ...
19-83 6.86e-11

RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic of an RNA binding protein. RRMs are found in a variety of RNA binding proteins, including various hnRNP proteins, proteins implicated in regulation of alternative splicing, and protein components of snRNPs. The motif also appears in a few single stranded DNA binding proteins. The RRM structure consists of four strands and two helices arranged in an alpha/beta sandwich, with a third helix present during RNA binding in some cases The C-terminal beta strand (4th strand) and final helix are hard to align and have been omitted in the SEED alignment The LA proteins have an N terminal rrm which is included in the seed. There is a second region towards the C terminus that has some features characteriztic of a rrm but does not appear to have the important structural core of a rrm. The LA proteins are one of the main autoantigens in Systemic lupus erythematosus (SLE), an autoimmune disease.


Pssm-ID: 425453 [Multi-domain]  Cd Length: 70  Bit Score: 57.63  E-value: 6.86e-11
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 2244986492  19 FVGQIPRSWSEKELKELFEPYGAVYQINVLRDRSQnppQSKGCCFVTFYTRKAALEAQNALHNIK 83
Cdd:pfam00076   2 FVGNLPPDTTEEDLKDLFSKFGPIKSIRLVRDETG---RSKGFAFVEFEDEEDAEKAIEALNGKE 63
PABP-1234 TIGR01628
polyadenylate binding protein, human types 1, 2, 3, 4 family; These eukaryotic proteins ...
18-168 8.59e-09

polyadenylate binding protein, human types 1, 2, 3, 4 family; These eukaryotic proteins recognize the poly-A of mRNA and consists of four tandem RNA recognition domains at the N-terminus (rrm: pfam00076) followed by a PABP-specific domain (pfam00658) at the C-terminus. The protein is involved in the transport of mRNA's from the nucleus to the cytoplasm. There are four paralogs in Homo sapiens which are expressed in testis, platelets, broadly expressed and of unknown tissue range.


Pssm-ID: 130689 [Multi-domain]  Cd Length: 562  Bit Score: 57.51  E-value: 8.59e-09
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2244986492  18 MFVGQIPRSWSEKELKELFEPYGAVYQINVLRDrsQNPPQSKGCCFVTFYTRKAALEAQNALhNIKTLPGMHHPIQMKPA 97
Cdd:TIGR01628   3 LYVGDLDPDVTEAKLYDLFKPFGPVLSVRVCRD--SVTRRSLGYGYVNFQNPADAERALETM-NFKRLGGKPIRIMWSQR 79
                          90       100       110       120       130       140       150
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 2244986492  98 D-SEKSNAVEDrkLFIGMVSKKCNENDIRVMFSPFGQIEECRILRGPDGLSRGCAFVTFSTRAMAQNAIKAM 168
Cdd:TIGR01628  80 DpSLRRSGVGN--IFVKNLDKSVDNKALFDTFSKFGNILSCKVATDENGKSRGYGFVHFEKEESAKAAIQKV 149
RRM smart00360
RNA recognition motif;
401-430 2.60e-05

RNA recognition motif;


Pssm-ID: 214636 [Multi-domain]  Cd Length: 73  Bit Score: 42.20  E-value: 2.60e-05
                           10        20        30
                   ....*....|....*....|....*....|
gi 2244986492  401 GFVSYDNPVSAQAAIQAMNGFQIGMKRLKV 430
Cdd:smart00360  44 AFVEFESEEDAEKALEALNGKELDGRPLKV 73
RRM_1 pfam00076
RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic ...
397-429 4.82e-05

RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic of an RNA binding protein. RRMs are found in a variety of RNA binding proteins, including various hnRNP proteins, proteins implicated in regulation of alternative splicing, and protein components of snRNPs. The motif also appears in a few single stranded DNA binding proteins. The RRM structure consists of four strands and two helices arranged in an alpha/beta sandwich, with a third helix present during RNA binding in some cases The C-terminal beta strand (4th strand) and final helix are hard to align and have been omitted in the SEED alignment The LA proteins have an N terminal rrm which is included in the seed. There is a second region towards the C terminus that has some features characteriztic of a rrm but does not appear to have the important structural core of a rrm. The LA proteins are one of the main autoantigens in Systemic lupus erythematosus (SLE), an autoimmune disease.


Pssm-ID: 425453 [Multi-domain]  Cd Length: 70  Bit Score: 41.06  E-value: 4.82e-05
                          10        20        30
                  ....*....|....*....|....*....|...
gi 2244986492 397 SQKEGFVSYDNPVSAQAAIQAMNGFQIGMKRLK 429
Cdd:pfam00076  38 SKGFAFVEFEDEEDAEKAIEALNGKELGGRELK 70
PLN03134 PLN03134
glycine-rich RNA-binding protein 4; Provisional
109-168 2.69e-04

glycine-rich RNA-binding protein 4; Provisional


Pssm-ID: 178680 [Multi-domain]  Cd Length: 144  Bit Score: 41.18  E-value: 2.69e-04
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|.
gi 2244986492 109 KLFIGMVSKKCNENDIRVMFSPFGQIEECRILRGPD-GLSRGCAFVTFSTRAMAQNAIKAM 168
Cdd:PLN03134   36 KLFIGGLSWGTDDASLRDAFAHFGDVVDAKVIVDREtGRSRGFGFVNFNDEGAATAAISEM 96
RRM COG0724
RNA recognition motif (RRM) domain [Translation, ribosomal structure and biogenesis];
401-439 9.83e-04

RNA recognition motif (RRM) domain [Translation, ribosomal structure and biogenesis];


Pssm-ID: 440488 [Multi-domain]  Cd Length: 85  Bit Score: 37.77  E-value: 9.83e-04
                          10        20        30
                  ....*....|....*....|....*....|....*....
gi 2244986492 401 GFVSYDNPVSAQAAIQAMNGFQIGMKRLKVQLKRSKNDS 439
Cdd:COG0724    46 GFVEMPDDEEAQAAIEALNGAELMGRTLKVNEARPREER 84
 
Name Accession Description Interval E-value
RRM1_CELF1_2_Bruno cd12631
RNA recognition motif 1 (RRM1) found in CUGBP Elav-like family member CELF-1, CELF-2, ...
15-98 8.68e-63

RNA recognition motif 1 (RRM1) found in CUGBP Elav-like family member CELF-1, CELF-2, Drosophila melanogaster Bruno protein and similar proteins; This subgroup corresponds to the RRM1 of CELF-1, CELF-2 and Bruno protein. CELF-1 (also termed BRUNOL-2, or CUG-BP1, or EDEN-BP) and CELF-2 (also termed BRUNOL-3, or ETR-3, or CUG-BP2, or NAPOR) belong to the CUGBP1 and ETR-3-like factors (CELF) or BRUNOL (Bruno-like) family of RNA-binding proteins that have been implicated in regulation of pre-mRNA splicing, and control of mRNA translation and deadenylation. CELF-1 is strongly expressed in all adult and fetal tissues tested. The human CELF-1 is a nuclear and cytoplasmic RNA-binding protein that regulates multiple aspects of nuclear and cytoplasmic mRNA processing, with implications for onset of type 1 myotonic dystrophy (DM1), a neuromuscular disease associated with an unstable CUG triplet expansion in the 3'-UTR (3'-untranslated region) of the DMPK (myotonic dystrophy protein kinase) gene; it preferentially targets UGU-rich mRNA elements. It has been shown to bind to a Bruno response element, a cis-element involved in translational control of oskar mRNA in Drosophila, and share sequence similarity to Bruno, the Drosophila protein that mediates this process. The Xenopus homolog embryo deadenylation element-binding protein (EDEN-BP) mediates sequence-specific deadenylation of Eg5 mRNA. It binds specifically to the EDEN motif in the 3'-untranslated regions of maternal mRNAs and targets these mRNAs for deadenylation and translational repression. CELF-1 contain three highly conserved RNA recognition motifs (RRMs), also known as RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains): two consecutive RRMs (RRM1 and RRM2) situated in the N-terminal region followed by a linker region and the third RRM (RRM3) close to the C-terminus of the protein. The two N-terminal RRMs of EDEN-BP are necessary for the interaction with EDEN as well as a part of the linker region (between RRM2 and RRM3). Oligomerization of EDEN-BP is required for specific mRNA deadenylation and binding. CELF-2 is expressed in all tissues at some level, but highest in brain, heart, and thymus. It has been implicated in the regulation of nuclear and cytoplasmic RNA processing events, including alternative splicing, RNA editing, stability and translation. CELF-2 shares high sequence identity with CELF-1, but shows different binding specificity; it binds preferentially to sequences with UG repeats and UGUU motifs. It has been shown to bind to a Bruno response element, a cis-element involved in translational control of oskar mRNA in Drosophila, and share sequence similarity to Bruno, the Drosophila protein that mediates this process. It also binds to the 3'-UTR of cyclooxygenase-2 messages, affecting both translation and mRNA stability, and binds to apoB mRNA, regulating its C to U editing. CELF-2 also contains three highly conserved RRMs. It binds to RNA via the first two RRMs, which are also important for localization in the cytoplasm. The splicing activation or repression activity of CELF-2 on some specific substrates is mediated by RRM1/RRM2. Both, RRM1 and RRM2 of CELF-2, can activate cardiac troponin T (cTNT) exon 5 inclusion. In addition, CELF-2 possesses a typical arginine and lysine-rich nuclear localization signal (NLS) in the C-terminus, within RRM3. This subgroup also includes Drosophila melanogaster Bruno protein, which plays a central role in regulation of Oskar (Osk) expression in flies. It mediates repression by binding to regulatory Bruno response elements (BREs) in the Osk mRNA 3' UTR. The full-length Bruno protein contains three RRMs, two located in the N-terminal half of the protein and the third near the C-terminus, separated by a linker region.


Pssm-ID: 410040 [Multi-domain]  Cd Length: 84  Bit Score: 197.35  E-value: 8.68e-63
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2244986492  15 AIKMFVGQIPRSWSEKELKELFEPYGAVYQINVLRDRSQNPPQSKGCCFVTFYTRKAALEAQNALHNIKTLPGMHHPIQM 94
Cdd:cd12631     1 AIKMFVGQIPRSWSEKELRELFEQYGAVYQINVLRDRSQNPPQSKGCCFVTFYTRKAALEAQNALHNIKTLPGMHHPIQM 80

                  ....
gi 2244986492  95 KPAD 98
Cdd:cd12631    81 KPAD 84
RRM2_CELF1_2 cd12634
RNA recognition motif 2 (RRM2) found in CUGBP Elav-like family member CELF-1, CELF-2 and ...
107-187 3.31e-56

RNA recognition motif 2 (RRM2) found in CUGBP Elav-like family member CELF-1, CELF-2 and similar proteins; This subgroup corresponds to the RRM2 of CELF-1 (also termed BRUNOL-2, or CUG-BP1, or EDEN-BP), CELF-2 (also termed BRUNOL-3, or ETR-3, or CUG-BP2, or NAPOR), both of which belong to the CUGBP1 and ETR-3-like factors (CELF) or BRUNOL (Bruno-like) family of RNA-binding proteins that have been implicated in the regulation of pre-mRNA splicing and in the control of mRNA translation and deadenylation. CELF-1 is strongly expressed in all adult and fetal tissues tested. Human CELF-1 is a nuclear and cytoplasmic RNA-binding protein that regulates multiple aspects of nuclear and cytoplasmic mRNA processing, with implications for onset of type 1 myotonic dystrophy (DM1), a neuromuscular disease associated with an unstable CUG triplet expansion in the 3'-UTR (3'-untranslated region) of the DMPK (myotonic dystrophy protein kinase) gene; it preferentially targets UGU-rich mRNA elements. It has been shown to bind to a Bruno response element, a cis-element involved in translational control of oskar mRNA in Drosophila, and share sequence similarity to Bruno, the Drosophila protein that mediates this process. The Xenopus homolog embryo deadenylation element-binding protein (EDEN-BP) mediates sequence-specific deadenylation of Eg5 mRNA. It binds specifically to the EDEN motif in the 3'-untranslated regions of maternal mRNAs and targets these mRNAs for deadenylation and translational repression. CELF-1 contains three highly conserved RNA recognition motifs (RRMs), also known as RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains): two consecutive RRMs (RRM1 and RRM2) situated in the N-terminal region followed by a linker region and the third RRM (RRM3) close to the C-terminus of the protein. The two N-terminal RRMs of EDEN-BP are necessary for the interaction with EDEN as well as a part of the linker region (between RRM2 and RRM3). Oligomerization of EDEN-BP is required for specific mRNA deadenylation and binding. CELF-2 is expressed in all tissues at some level, but highest in brain, heart, and thymus. It has been implicated in the regulation of nuclear and cytoplasmic RNA processing events, including alternative splicing, RNA editing, stability and translation. CELF-2 shares high sequence identity with CELF-1, but shows different binding specificity; it preferentially binds to sequences with UG repeats and UGUU motifs. It has been shown to bind to a Bruno response element, a cis-element involved in translational control of oskar mRNA in Drosophila, and share sequence similarity to Bruno, the Drosophila protein that mediates this process. It also binds to the 3'-UTR of cyclooxygenase-2 messages, affecting both translation and mRNA stability, and binds to apoB mRNA, regulating its C to U editing. CELF-2 also contains three highly conserved RRMs. It binds to RNA via the first two RRMs, which are also important for localization in the cytoplasm. The splicing activation or repression activity of CELF-2 on some specific substrates is mediated by RRM1/RRM2. Both, RRM1 and RRM2 of CELF-2, can activate cardiac troponin T (cTNT) exon 5 inclusion. In addition, CELF-2 possesses a typical arginine and lysine-rich nuclear localization signal (NLS) in the C-terminus, within RRM3.


Pssm-ID: 410042 [Multi-domain]  Cd Length: 81  Bit Score: 180.25  E-value: 3.31e-56
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2244986492 107 DRKLFIGMVSKKCNENDIRVMFSPFGQIEECRILRGPDGLSRGCAFVTFSTRAMAQNAIKAMHQSQTMEGCSSPIVVKFA 186
Cdd:cd12634     1 DRKLFIGMVSKKCNENDIRVMFSPFGQIEECRILRGPDGLSRGCAFVTFSTRAMAQNAIKAMHQSQTMEGCSSPIVVKFA 80

                  .
gi 2244986492 187 D 187
Cdd:cd12634    81 D 81
RRM2_Bruno_like cd12636
RNA recognition motif 2 (RRM2) found in Drosophila melanogaster Bruno protein and similar ...
107-187 2.23e-48

RNA recognition motif 2 (RRM2) found in Drosophila melanogaster Bruno protein and similar proteins; This subgroup corresponds to the RRM2 of Bruno, a Drosophila RNA recognition motif (RRM)-containing protein that plays a central role in regulation of Oskar (Osk) expression. It mediates repression by binding to regulatory Bruno response elements (BREs) in the Osk mRNA 3' UTR. The full-length Bruno protein contains three RRMs, two located in the N-terminal half of the protein and the third near the C-terminus, separated by a linker region.


Pssm-ID: 410044 [Multi-domain]  Cd Length: 81  Bit Score: 160.04  E-value: 2.23e-48
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2244986492 107 DRKLFIGMVSKKCNENDIRVMFSPFGQIEECRILRGPDGLSRGCAFVTFSTRAMAQNAIKAMHQSQTMEGCSSPIVVKFA 186
Cdd:cd12636     1 ERKLFVGMLSKKCNESDVRIMFSPYGSIEECTVLRDQNGKSRGCAFVTFTSRQCAVNAIKAMHHSQTMEGCSSPLVVKFA 80

                  .
gi 2244986492 187 D 187
Cdd:cd12636    81 D 81
RRM2_CELF3_4_5_6 cd12635
RNA recognition motif 2 (RRM2) found in CUGBP Elav-like family member CELF-3, CELF-4, CELF-5, ...
107-187 3.51e-43

RNA recognition motif 2 (RRM2) found in CUGBP Elav-like family member CELF-3, CELF-4, CELF-5, CELF-6 and similar proteins; This subgroup corresponds to the RRM2 of CELF-3, CELF-4, CELF-5, and CELF-6, all of which belong to the CUGBP1 and ETR-3-like factors (CELF) or BRUNOL (Bruno-like) family of RNA-binding proteins that display dual nuclear and cytoplasmic localizations and have been implicated in the regulation of pre-mRNA splicing and in the control of mRNA translation and deadenylation. CELF-3, expressed in brain and testis only, is also known as bruno-like protein 1 (BRUNOL-1), or CAG repeat protein 4, or CUG-BP- and ETR-3-like factor 3, or embryonic lethal abnormal vision (ELAV)-type RNA-binding protein 1 (ETR-1), or expanded repeat domain protein CAG/CTG 4, or trinucleotide repeat-containing gene 4 protein (TNRC4). It plays an important role in the pathogenesis of tauopathies. CELF-3 contains three highly conserved RNA recognition motifs (RRMs), also known as RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains): two consecutive RRMs (RRM1 and RRM2) situated in the N-terminal region followed by a linker region and the third RRM (RRM3) close to the C-terminus of the protein. The effect of CELF-3 on tau splicing is mediated mainly by the RNA-binding activity of RRM2. The divergent linker region might mediate the interaction of CELF-3 with other proteins regulating its activity or involved in target recognition. CELF-4, being highly expressed throughout the brain and in glandular tissues, moderately expressed in heart, skeletal muscle, and liver, is also known as bruno-like protein 4 (BRUNOL-4), or CUG-BP- and ETR-3-like factor 4. Like CELF-3, CELF-4 also contain three highly conserved RRMs. The splicing activation or repression activity of CELF-4 on some specific substrates is mediated by its RRM1/RRM2. On the other hand, both RRM1 and RRM2 of CELF-4 can activate cardiac troponin T (cTNT) exon 5 inclusion. CELF-5, expressed in brain, is also known as bruno-like protein 5 (BRUNOL-5), or CUG-BP- and ETR-3-like factor 5. Although its biological role remains unclear, CELF-5 shares same domain architecture with CELF-3. CELF-6, being strongly expressed in kidney, brain, and testis, is also known as bruno-like protein 6 (BRUNOL-6), or CUG-BP- and ETR-3-like factor 6. It activates exon inclusion of a cardiac troponin T minigene in transient transfection assays in a muscle-specific splicing enhancer (MSE)-dependent manner and can activate inclusion via multiple copies of a single element, MSE2. CELF-6 also promotes skipping of exon 11 of insulin receptor, a known target of CELF activity that is expressed in kidney. In addition to three highly conserved RRMs, CELF-6 also possesses numerous potential phosphorylation sites, a potential nuclear localization signal (NLS) at the C terminus, and an alanine-rich region within the divergent linker region.


Pssm-ID: 410043 [Multi-domain]  Cd Length: 81  Bit Score: 146.40  E-value: 3.51e-43
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2244986492 107 DRKLFIGMVSKKCNENDIRVMFSPFGQIEECRILRGPDGLSRGCAFVTFSTRAMAQNAIKAMHQSQTMEGCSSPIVVKFA 186
Cdd:cd12635     1 DRKLFVGMLGKQQSEDDVRRLFEPFGSIEECTILRGPDGNSKGCAFVKFSSHAEAQAAINALHGSQTMPGASSSLVVKFA 80

                  .
gi 2244986492 187 D 187
Cdd:cd12635    81 D 81
RRM1_2_CELF1-6_like cd12361
RNA recognition motif 1 (RRM1) and 2 (RRM2) found in CELF/Bruno-like family of RNA binding ...
109-184 1.93e-41

RNA recognition motif 1 (RRM1) and 2 (RRM2) found in CELF/Bruno-like family of RNA binding proteins and plant flowering time control protein FCA; This subfamily corresponds to the RRM1 and RRM2 domains of the CUGBP1 and ETR-3-like factors (CELF) as well as plant flowering time control protein FCA. CELF, also termed BRUNOL (Bruno-like) proteins, is a family of structurally related RNA-binding proteins involved in regulation of pre-mRNA splicing in the nucleus, and control of mRNA translation and deadenylation in the cytoplasm. The family contains six members: CELF-1 (also known as BRUNOL-2, CUG-BP1, NAPOR, EDEN-BP), CELF-2 (also known as BRUNOL-3, ETR-3, CUG-BP2, NAPOR-2), CELF-3 (also known as BRUNOL-1, TNRC4, ETR-1, CAGH4, ER DA4), CELF-4 (BRUNOL-4), CELF-5 (BRUNOL-5) and CELF-6 (BRUNOL-6). They all contain three highly conserved RNA recognition motifs (RRMs), also known as RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains): two consecutive RRMs (RRM1 and RRM2) situated in the N-terminal region followed by a linker region and the third RRM (RRM3) close to the C-terminus of the protein. The low sequence conservation of the linker region is highly suggestive of a large variety in the co-factors that associate with the various CELF family members. Based on both, sequence similarity and function, the CELF family can be divided into two subfamilies, the first containing CELFs 1 and 2, and the second containing CELFs 3, 4, 5, and 6. The different CELF proteins may act through different sites on at least some substrates. Furthermore, CELF proteins may interact with each other in varying combinations to influence alternative splicing in different contexts. This subfamily also includes plant flowering time control protein FCA that functions in the posttranscriptional regulation of transcripts involved in the flowering process. FCA contains two RRMs, and a WW protein interaction domain.


Pssm-ID: 409796 [Multi-domain]  Cd Length: 77  Bit Score: 141.61  E-value: 1.93e-41
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 2244986492 109 KLFIGMVSKKCNENDIRVMFSPFGQIEECRILRGPD-GLSRGCAFVTFSTRAMAQNAIKAMHQSQTMEGCSSPIVVK 184
Cdd:cd12361     1 KLFVGMIPKTASEEDVRPLFEQFGNIEEVQILRDKQtGQSKGCAFVTFSTREEALRAIEALHNKKTMPGCSSPLQVK 77
RRM1_CELF3_4_5_6 cd12632
RNA recognition motif 1 (RRM1) found in CUGBP Elav-like family member CELF-3, CELF-4, CELF-5, ...
12-99 1.05e-39

RNA recognition motif 1 (RRM1) found in CUGBP Elav-like family member CELF-3, CELF-4, CELF-5, CELF-6 and similar proteins; This subfamily corresponds to the RRM1 of CELF-3, CELF-4, CELF-5, CELF-6, all of which belong to the CUGBP1 and ETR-3-like factors (CELF) or BRUNOL (Bruno-like) family of RNA-binding proteins that display dual nuclear and cytoplasmic localizations and have been implicated in the regulation of pre-mRNA splicing and in the control of mRNA translation and deadenylation. CELF-3, expressed in brain and testis only, is also known as bruno-like protein 1 (BRUNOL-1), or CAG repeat protein 4, or CUG-BP- and ETR-3-like factor 3, or embryonic lethal abnormal vision (ELAV)-type RNA-binding protein 1 (ETR-1), or expanded repeat domain protein CAG/CTG 4, or trinucleotide repeat-containing gene 4 protein (TNRC4). It plays an important role in the pathogenesis of tauopathies. CELF-3 contains three highly conserved RNA recognition motifs (RRMs), also known as RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains): two consecutive RRMs (RRM1 and RRM2) situated in the N-terminal region followed by a linker region and the third RRM (RRM3) close to the C-terminus of the protein.The effect of CELF-3 on tau splicing is mediated mainly by the RNA-binding activity of RRM2. The divergent linker region might mediate the interaction of CELF-3 with other proteins regulating its activity or involved in target recognition. CELF-4, highly expressed throughout the brain and in glandular tissues, moderately expressed in heart, skeletal muscle, and liver, is also known as bruno-like protein 4 (BRUNOL-4), or CUG-BP- and ETR-3-like factor 4. Like CELF-3, CELF-4 also contain three highly conserved RRMs. The splicing activation or repression activity of CELF-4 on some specific substrates is mediated by its RRM1/RRM2. On the other hand, both RRM1 and RRM2 of CELF-4 can activate cardiac troponin T (cTNT) exon 5 inclusion. CELF-5, expressed in brain, is also known as bruno-like protein 5 (BRUNOL-5), or CUG-BP- and ETR-3-like factor 5. Although its biological role remains unclear, CELF-5 shares same domain architecture with CELF-3. CELF-6, strongly expressed in kidney, brain, and testis, is also known as bruno-like protein 6 (BRUNOL-6), or CUG-BP- and ETR-3-like factor 6. It activates exon inclusion of a cardiac troponin T minigene in transient transfection assays in an muscle-specific splicing enhancer (MSE)-dependent manner and can activate inclusion via multiple copies of a single element, MSE2. CELF-6 also promotes skipping of exon 11 of insulin receptor, a known target of CELF activity that is expressed in kidney. In additiona to three highly conserved RRMs, CELF-6 also possesses numerous potential phosphorylation sites, a potential nuclear localization signal (NLS) at the C terminus, and an alanine-rich region within the divergent linker region.


Pssm-ID: 410041 [Multi-domain]  Cd Length: 87  Bit Score: 137.55  E-value: 1.05e-39
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2244986492  12 DPDAIKMFVGQIPRSWSEKELKELFEPYGAVYQINVLRDRSQNppQSKGCCFVTFYTRKAALEAQNALHNIKTLPGMHHP 91
Cdd:cd12632     2 DHDAIKLFIGQIPRNLEEKDLRPLFEQFGKIYELTVLKDKYTG--MHKGCAFLTYCARESALKAQSALHEQKTLPGMNRP 79

                  ....*...
gi 2244986492  92 IQMKPADS 99
Cdd:cd12632    80 IQVKPADS 87
RRM1_2_CELF1-6_like cd12361
RNA recognition motif 1 (RRM1) and 2 (RRM2) found in CELF/Bruno-like family of RNA binding ...
17-95 1.58e-39

RNA recognition motif 1 (RRM1) and 2 (RRM2) found in CELF/Bruno-like family of RNA binding proteins and plant flowering time control protein FCA; This subfamily corresponds to the RRM1 and RRM2 domains of the CUGBP1 and ETR-3-like factors (CELF) as well as plant flowering time control protein FCA. CELF, also termed BRUNOL (Bruno-like) proteins, is a family of structurally related RNA-binding proteins involved in regulation of pre-mRNA splicing in the nucleus, and control of mRNA translation and deadenylation in the cytoplasm. The family contains six members: CELF-1 (also known as BRUNOL-2, CUG-BP1, NAPOR, EDEN-BP), CELF-2 (also known as BRUNOL-3, ETR-3, CUG-BP2, NAPOR-2), CELF-3 (also known as BRUNOL-1, TNRC4, ETR-1, CAGH4, ER DA4), CELF-4 (BRUNOL-4), CELF-5 (BRUNOL-5) and CELF-6 (BRUNOL-6). They all contain three highly conserved RNA recognition motifs (RRMs), also known as RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains): two consecutive RRMs (RRM1 and RRM2) situated in the N-terminal region followed by a linker region and the third RRM (RRM3) close to the C-terminus of the protein. The low sequence conservation of the linker region is highly suggestive of a large variety in the co-factors that associate with the various CELF family members. Based on both, sequence similarity and function, the CELF family can be divided into two subfamilies, the first containing CELFs 1 and 2, and the second containing CELFs 3, 4, 5, and 6. The different CELF proteins may act through different sites on at least some substrates. Furthermore, CELF proteins may interact with each other in varying combinations to influence alternative splicing in different contexts. This subfamily also includes plant flowering time control protein FCA that functions in the posttranscriptional regulation of transcripts involved in the flowering process. FCA contains two RRMs, and a WW protein interaction domain.


Pssm-ID: 409796 [Multi-domain]  Cd Length: 77  Bit Score: 136.60  E-value: 1.58e-39
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 2244986492  17 KMFVGQIPRSWSEKELKELFEPYGAVYQINVLRDRSQNppQSKGCCFVTFYTRKAALEAQNALHNIKTLPGMHHPIQMK 95
Cdd:cd12361     1 KLFVGMIPKTASEEDVRPLFEQFGNIEEVQILRDKQTG--QSKGCAFVTFSTREEALRAIEALHNKKTMPGCSSPLQVK 77
RRM2_FCA cd12637
RNA recognition motif 2 (RRM2) found in plant flowering time control protein FCA and similar ...
109-187 2.56e-20

RNA recognition motif 2 (RRM2) found in plant flowering time control protein FCA and similar proteins; This subgroup corresponds to the RRM2 of FCA, a gene controlling flowering time in Arabidopsis, which encodes a flowering time control protein that functions in the posttranscriptional regulation of transcripts involved in the flowering process. The flowering time control protein FCA contains two RNA recognition motifs (RRMs), also known as RBDs (RNA binding domains) or RNP (ribonucleoprotein domains), and a WW protein interaction domain.


Pssm-ID: 410045 [Multi-domain]  Cd Length: 81  Bit Score: 84.74  E-value: 2.56e-20
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2244986492 109 KLFIGMVSKKCNENDIRVMFSPFGQIEECRILRGPDG-LSRGCAFVTFSTRAMAQNAIKAMHQSQTMEGCSSPIVVKFAD 187
Cdd:cd12637     1 KLFVGSLPKTATEQEVRDLFEAYGEVEEVYLMKDPVTqQGTGCAFVKFAYKEEALAAIRSLNGTVTFDGCSRPVEVRFAE 80
RRM1_FCA cd12633
RNA recognition motif 1 (RRM1) found in plant flowering time control protein FCA and similar ...
17-98 4.04e-20

RNA recognition motif 1 (RRM1) found in plant flowering time control protein FCA and similar proteins; This subgroup corresponds to the RRM1 of FCA, a gene controlling flowering time in Arabidopsis, encoding a flowering time control protein that functions in the posttranscriptional regulation of transcripts involved in the flowering process. FCA contains two RNA recognition motifs (RRMs), also known as RBDs (RNA binding domains) or RNP (ribonucleoprotein domains), and a WW protein interaction domain.


Pssm-ID: 241077 [Multi-domain]  Cd Length: 80  Bit Score: 84.25  E-value: 4.04e-20
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2244986492  17 KMFVGQIPRSWSEKELKELFEPYGAVYQINVLRDRSQNppQSKGCCFVTFYTRKAALEAQNALHNIKTLPGMHHPIQMKP 96
Cdd:cd12633     1 KLFVGSVPRTITEQEVRPMFEEHGNVLEVAIIKDKRTG--HQQGCCFVKYSTRDEADRAIRALHNQRTLPGGASPVQVRY 78

                  ..
gi 2244986492  97 AD 98
Cdd:cd12633    79 AD 80
RRM1_CELF3_4_5_6 cd12632
RNA recognition motif 1 (RRM1) found in CUGBP Elav-like family member CELF-3, CELF-4, CELF-5, ...
109-188 1.71e-19

RNA recognition motif 1 (RRM1) found in CUGBP Elav-like family member CELF-3, CELF-4, CELF-5, CELF-6 and similar proteins; This subfamily corresponds to the RRM1 of CELF-3, CELF-4, CELF-5, CELF-6, all of which belong to the CUGBP1 and ETR-3-like factors (CELF) or BRUNOL (Bruno-like) family of RNA-binding proteins that display dual nuclear and cytoplasmic localizations and have been implicated in the regulation of pre-mRNA splicing and in the control of mRNA translation and deadenylation. CELF-3, expressed in brain and testis only, is also known as bruno-like protein 1 (BRUNOL-1), or CAG repeat protein 4, or CUG-BP- and ETR-3-like factor 3, or embryonic lethal abnormal vision (ELAV)-type RNA-binding protein 1 (ETR-1), or expanded repeat domain protein CAG/CTG 4, or trinucleotide repeat-containing gene 4 protein (TNRC4). It plays an important role in the pathogenesis of tauopathies. CELF-3 contains three highly conserved RNA recognition motifs (RRMs), also known as RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains): two consecutive RRMs (RRM1 and RRM2) situated in the N-terminal region followed by a linker region and the third RRM (RRM3) close to the C-terminus of the protein.The effect of CELF-3 on tau splicing is mediated mainly by the RNA-binding activity of RRM2. The divergent linker region might mediate the interaction of CELF-3 with other proteins regulating its activity or involved in target recognition. CELF-4, highly expressed throughout the brain and in glandular tissues, moderately expressed in heart, skeletal muscle, and liver, is also known as bruno-like protein 4 (BRUNOL-4), or CUG-BP- and ETR-3-like factor 4. Like CELF-3, CELF-4 also contain three highly conserved RRMs. The splicing activation or repression activity of CELF-4 on some specific substrates is mediated by its RRM1/RRM2. On the other hand, both RRM1 and RRM2 of CELF-4 can activate cardiac troponin T (cTNT) exon 5 inclusion. CELF-5, expressed in brain, is also known as bruno-like protein 5 (BRUNOL-5), or CUG-BP- and ETR-3-like factor 5. Although its biological role remains unclear, CELF-5 shares same domain architecture with CELF-3. CELF-6, strongly expressed in kidney, brain, and testis, is also known as bruno-like protein 6 (BRUNOL-6), or CUG-BP- and ETR-3-like factor 6. It activates exon inclusion of a cardiac troponin T minigene in transient transfection assays in an muscle-specific splicing enhancer (MSE)-dependent manner and can activate inclusion via multiple copies of a single element, MSE2. CELF-6 also promotes skipping of exon 11 of insulin receptor, a known target of CELF activity that is expressed in kidney. In additiona to three highly conserved RRMs, CELF-6 also possesses numerous potential phosphorylation sites, a potential nuclear localization signal (NLS) at the C terminus, and an alanine-rich region within the divergent linker region.


Pssm-ID: 410041 [Multi-domain]  Cd Length: 87  Bit Score: 82.85  E-value: 1.71e-19
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2244986492 109 KLFIGMVSKKCNENDIRVMFSPFGQIEECRILRGP-DGLSRGCAFVTFSTRAMAQNAIKAMHQSQTMEGCSSPIVVKFAD 187
Cdd:cd12632     7 KLFIGQIPRNLEEKDLRPLFEQFGKIYELTVLKDKyTGMHKGCAFLTYCARESALKAQSALHEQKTLPGMNRPIQVKPAD 86

                  .
gi 2244986492 188 T 188
Cdd:cd12632    87 S 87
RRM3_CELF1_2 cd12638
RNA recognition motif 3 (RRM3) found in CUGBP Elav-like family member CELF-1, CELF-2 and ...
401-441 3.45e-19

RNA recognition motif 3 (RRM3) found in CUGBP Elav-like family member CELF-1, CELF-2 and similar proteins; This subgroup corresponds to the RRM3 of CELF-1 (also termed BRUNOL-2, or CUG-BP1, or EDEN-BP) and CELF-2 (also termed BRUNOL-3, or ETR-3, or CUG-BP2, or NAPOR), both of which belong to the CUGBP1 and ETR-3-like factors (CELF) or BRUNOL (Bruno-like) family of RNA-binding proteins that have been implicated in the regulation of pre-mRNA splicing and in the control of mRNA translation and deadenylation. CELF-1 is strongly expressed in all adult and fetal tissues tested. Human CELF-1 is a nuclear and cytoplasmic RNA-binding protein that regulates multiple aspects of nuclear and cytoplasmic mRNA processing, with implications for onset of type 1 myotonic dystrophy (DM1), a neuromuscular disease associated with an unstable CUG triplet expansion in the 3'-UTR (3'-untranslated region) of the DMPK (myotonic dystrophy protein kinase) gene; it preferentially targets UGU-rich mRNA elements. It has been shown to bind to a Bruno response element, a cis-element involved in translational control of oskar mRNA in Drosophila, and share sequence similarity to Bruno, the Drosophila protein that mediates this process. The Xenopus homolog embryo deadenylation element-binding protein (EDEN-BP) mediates sequence-specific deadenylation of Eg5 mRNA. It specifically binds to the EDEN motif in the 3'-untranslated regions of maternal mRNAs and targets these mRNAs for deadenylation and translational repression. CELF-1 contain three highly conserved RNA recognition motifs (RRMs), also known as RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains): two consecutive RRMs (RRM1 and RRM2) situated in the N-terminal region followed by a linker region and the third RRM (RRM3) close to the C-terminus of the protein. The two N-terminal RRMs of EDEN-BP are necessary for the interaction with EDEN as well as a part of the linker region (between RRM2 and RRM3). Oligomerization of EDEN-BP is required for specific mRNA deadenylation and binding. CELF-2 is expressed in all tissues at some level, but highest in brain, heart, and thymus. It has been implicated in the regulation of nuclear and cytoplasmic RNA processing events, including alternative splicing, RNA editing, stability and translation. CELF-2 shares high sequence identity with CELF-1, but shows different binding specificity; it binds preferentially to sequences with UG repeats and UGUU motifs. It has been shown to bind to a Bruno response element, a cis-element involved in translational control of oskar mRNA in Drosophila, and share sequence similarity to Bruno, the Drosophila protein that mediates this process. It also binds to the 3'-UTR of cyclooxygenase-2 messages, affecting both translation and mRNA stability, and binds to apoB mRNA, regulating its C to U editing. CELF-2 also contain three highly conserved RRMs. It binds to RNA via the first two RRMs, which are important for localization in the cytoplasm. The splicing activation or repression activity of CELF-2 on some specific substrates is mediated by RRM1/RRM2. Both, RRM1 and RRM2 of CELF-2, can activate cardiac troponin T (cTNT) exon 5 inclusion. In addition, CELF-2 possesses a typical arginine and lysine-rich nuclear localization signal (NLS) in the C-terminus, within RRM3.


Pssm-ID: 241082 [Multi-domain]  Cd Length: 92  Bit Score: 82.03  E-value: 3.45e-19
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|.
gi 2244986492 401 GFVSYDNPVSAQAAIQAMNGFQIGMKRLKVQLKRSKNDSKP 441
Cdd:cd12638    52 GFVSYDNPVSAQAAIQAMNGFQIGMKRLKVQLKRSKNDSKP 92
RRM_SF cd00590
RNA recognition motif (RRM) superfamily; RRM, also known as RBD (RNA binding domain) or RNP ...
110-184 7.53e-19

RNA recognition motif (RRM) superfamily; RRM, also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), is a highly abundant domain in eukaryotes found in proteins involved in post-transcriptional gene expression processes including mRNA and rRNA processing, RNA export, and RNA stability. This domain is 90 amino acids in length and consists of a four-stranded beta-sheet packed against two alpha-helices. RRM usually interacts with ssRNA, but is also known to interact with ssDNA as well as proteins. RRM binds a variable number of nucleotides, ranging from two to eight. The active site includes three aromatic side-chains located within the conserved RNP1 and RNP2 motifs of the domain. The RRM domain is found in a variety heterogeneous nuclear ribonucleoproteins (hnRNPs), proteins implicated in regulation of alternative splicing, and protein components of small nuclear ribonucleoproteins (snRNPs).


Pssm-ID: 409669 [Multi-domain]  Cd Length: 72  Bit Score: 80.40  E-value: 7.53e-19
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 2244986492 110 LFIGMVSKKCNENDIRVMFSPFGQIEECRILRGPDGLSRGCAFVTFSTRAMAQNAIKAMHqsqTMEGCSSPIVVK 184
Cdd:cd00590     1 LFVGNLPPDTTEEDLRELFSKFGEVVSVRIVRDRDGKSKGFAFVEFESPEDAEKALEALN---GTELGGRPLKVS 72
ELAV_HUD_SF TIGR01661
ELAV/HuD family splicing factor; This model describes the ELAV/HuD subfamily of splicing ...
18-437 2.18e-18

ELAV/HuD family splicing factor; This model describes the ELAV/HuD subfamily of splicing factors found in metazoa. HuD stands for the human paraneoplastic encephalomyelitis antigen D of which there are 4 variants in human. ELAV stnds for the Drosophila Embryonic lethal abnormal visual protein. ELAV-like splicing factors are also known in human as HuB (ELAV-like protein 2), HuC (ELAV-like protein 3, Paraneoplastic cerebellar degeneration-associated antigen) and HuR (ELAV-like protein 1). These genes are most closely related to the sex-lethal subfamily of splicing factors found in Dipteran insects (TIGR01659). These proteins contain 3 RNA-recognition motifs (rrm: pfam00076).


Pssm-ID: 273741 [Multi-domain]  Cd Length: 352  Bit Score: 86.15  E-value: 2.18e-18
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2244986492  18 MFVGQIPRSWSEKELKELFEPYGAVYQINVLRDRSQNppQSKGCCFVTFYTRKAALEAQNALHNIKTlpgMHHPIQMKPA 97
Cdd:TIGR01661   6 LIVNYLPQTMTQEEIRSLFTSIGEIESCKLVRDKVTG--QSLGYGFVNYVRPEDAEKAVNSLNGLRL---QNKTIKVSYA 80
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2244986492  98 dSEKSNAVEDRKLFIGMVSKKCNENDIRVMFSPFGQIEECRILRGP-DGLSRGCAFVTFSTRAMAQNAIKAMHqSQTMEG 176
Cdd:TIGR01661  81 -RPSSDSIKGANLYVSGLPKTMTQHELESIFSPFGQIITSRILSDNvTGLSKGVGFIRFDKRDEADRAIKTLN-GTTPSG 158
                         170       180       190       200       210       220       230       240
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2244986492 177 CSSPIVVKFADTQKDKEQRrlqqqlaqqmqqlntatwgnltglgGLTPQYLALLQQATSSSNLGAFSGIQQMAGMNAlql 256
Cdd:TIGR01661 159 CTEPITVKFANNPSSSNSK-------------------------GLLSQLEAVQNPQTTRVPLSTILTAAGIGPMHH--- 210
                         250       260       270       280       290       300       310       320
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2244986492 257 qnlatlaaaaaaaqtSATSTNANPLSSTSSALGALTS-PVAASTPNSTAgaamnsltSLGTLQGLAgatvglnniNALAV 335
Cdd:TIGR01661 211 ---------------AAARFRPSAGDFTAVLAHQQQQhAVAQQHAAQRA--------SPPATDGQT---------AGLAA 258
                         330       340       350       360       370       380       390       400
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2244986492 336 AQMLSGMAALNGGLGATGLTNGTAGTmdALTQAYSgiqQYAAaalptLYSQSLLQQQSAAGSQKEGFVSYDNPVSAQAAI 415
Cdd:TIGR01661 259 GAQISASDGAGYCIFVYNLSPDTDET--VLWQLFG---PFGA-----VQNVKIIRDLTTNQCKGYGFVSMTNYDEAAMAI 328
                         410       420
                  ....*....|....*....|..
gi 2244986492 416 QAMNGFQIGMKRLKVQLKRSKN 437
Cdd:TIGR01661 329 LSLNGYTLGNRVLQVSFKTNKA 350
RRM smart00360
RNA recognition motif;
109-183 5.12e-18

RNA recognition motif;


Pssm-ID: 214636 [Multi-domain]  Cd Length: 73  Bit Score: 78.02  E-value: 5.12e-18
                           10        20        30        40        50        60        70
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 2244986492  109 KLFIGMVSKKCNENDIRVMFSPFGQIEECRILRGPD-GLSRGCAFVTFSTRAMAQNAIKAMHqsqTMEGCSSPIVV 183
Cdd:smart00360   1 TLFVGNLPPDTTEEELRELFSKFGKVESVRLVRDKEtGKSKGFAFVEFESEEDAEKALEALN---GKELDGRPLKV 73
SF-CC1 TIGR01622
splicing factor, CC1-like family; This model represents a subfamily of RNA splicing factors ...
10-186 5.68e-18

splicing factor, CC1-like family; This model represents a subfamily of RNA splicing factors including the Pad-1 protein (N. crassa), CAPER (M. musculus) and CC1.3 (H.sapiens). These proteins are characterized by an N-terminal arginine-rich, low complexity domain followed by three (or in the case of 4 H. sapiens paralogs, two) RNA recognition domains (rrm: pfam00706). These splicing factors are closely related to the U2AF splicing factor family (TIGR01642). A homologous gene from Plasmodium falciparum was identified in the course of the analysis of that genome at TIGR and was included in the seed.


Pssm-ID: 273721 [Multi-domain]  Cd Length: 494  Bit Score: 86.13  E-value: 5.68e-18
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2244986492  10 QPDPDAIKMFVGQIPRSWSEKELKELFEPYGAVYQINVLRDRSQNppQSKGCCFVTFYTRKAALEAQnALHNIKTLpgmH 89
Cdd:TIGR01622 109 EDERDRRTVFVQQLAARARERDLYEFFSKVGKVRDVQIIKDRNSR--RSKGVGYVEFYDVDSVQAAL-ALTGQKLL---G 182
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2244986492  90 HPIQMKPADSEKSNAVE--------------DRKLFIGMVSKKCNENDIRVMFSPFGQIEECRILRGPD-GLSRGCAFVT 154
Cdd:TIGR01622 183 IPVIVQLSEAEKNRAARaatetsghhpnsipFHRLYVGNLHFNITEQDLRQIFEPFGEIEFVQLQKDPEtGRSKGYGFIQ 262
                         170       180       190
                  ....*....|....*....|....*....|..
gi 2244986492 155 FSTramAQNAIKAMHQSQTMEGCSSPIVVKFA 186
Cdd:TIGR01622 263 FRD---AEQAKEALEKMNGFELAGRPIKVGLG 291
RRM2_FCA cd12637
RNA recognition motif 2 (RRM2) found in plant flowering time control protein FCA and similar ...
17-99 6.67e-18

RNA recognition motif 2 (RRM2) found in plant flowering time control protein FCA and similar proteins; This subgroup corresponds to the RRM2 of FCA, a gene controlling flowering time in Arabidopsis, which encodes a flowering time control protein that functions in the posttranscriptional regulation of transcripts involved in the flowering process. The flowering time control protein FCA contains two RNA recognition motifs (RRMs), also known as RBDs (RNA binding domains) or RNP (ribonucleoprotein domains), and a WW protein interaction domain.


Pssm-ID: 410045 [Multi-domain]  Cd Length: 81  Bit Score: 78.19  E-value: 6.67e-18
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2244986492  17 KMFVGQIPRSWSEKELKELFEPYGAVYQINVLRDRSQNppQSKGCCFVTFYTRKAALEAQNALHNIKTLPGMHHPIQMKP 96
Cdd:cd12637     1 KLFVGSLPKTATEQEVRDLFEAYGEVEEVYLMKDPVTQ--QGTGCAFVKFAYKEEALAAIRSLNGTVTFDGCSRPVEVRF 78

                  ...
gi 2244986492  97 ADS 99
Cdd:cd12637    79 AES 81
PABP-1234 TIGR01628
polyadenylate binding protein, human types 1, 2, 3, 4 family; These eukaryotic proteins ...
1-192 5.27e-17

polyadenylate binding protein, human types 1, 2, 3, 4 family; These eukaryotic proteins recognize the poly-A of mRNA and consists of four tandem RNA recognition domains at the N-terminus (rrm: pfam00076) followed by a PABP-specific domain (pfam00658) at the C-terminus. The protein is involved in the transport of mRNA's from the nucleus to the cytoplasm. There are four paralogs in Homo sapiens which are expressed in testis, platelets, broadly expressed and of unknown tissue range.


Pssm-ID: 130689 [Multi-domain]  Cd Length: 562  Bit Score: 83.32  E-value: 5.27e-17
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2244986492   1 MNGALDHSDQ---------------PDPDAIKMFVGQIPRSWSEKELKELFEPYGAVYQINVLRDRSQnppQSKGCCFVT 65
Cdd:TIGR01628 149 VNGMLLNDKEvyvgrfikkhereaaPLKKFTNLYVKNLDPSVNEDKLRELFAKFGEITSAAVMKDGSG---RSRGFAFVN 225
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2244986492  66 FYTRKAALEAQNALHNIKtLPGMHHP--IQMKPADSEKSNAVEDRKLF------IGMVSKKCN-----------ENDIRV 126
Cdd:TIGR01628 226 FEKHEDAAKAVEEMNGKK-IGLAKEGkkLYVGRAQKRAEREAELRRKFeelqqeRKMKAQGVNlyvknlddtvtDEKLRE 304
                         170       180       190       200       210       220
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 2244986492 127 MFSPFGQIEECRILRGPDGLSRGCAFVTFSTRAMAQNAIKAMHqsQTMEGcSSPIVVKFADTQKDK 192
Cdd:TIGR01628 305 LFSECGEITSAKVMLDEKGVSRGFGFVCFSNPEEANRAVTEMH--GRMLG-GKPLYVALAQRKEQR 367
RRM2_RBM28_like cd12414
RNA recognition motif 2 (RRM2) found in RNA-binding protein 28 (RBM28) and similar proteins; ...
118-186 2.31e-16

RNA recognition motif 2 (RRM2) found in RNA-binding protein 28 (RBM28) and similar proteins; This subfamily corresponds to the RRM2 of RBM28 and Nop4p. RBM28 is a specific nucleolar component of the spliceosomal small nuclear ribonucleoproteins (snRNPs), possibly coordinating their transition through the nucleolus. It specifically associates with U1, U2, U4, U5, and U6 small nuclear RNAs (snRNAs), and may play a role in the maturation of both small nuclear and ribosomal RNAs. RBM28 has four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and an extremely acidic region between RRM2 and RRM3. The family also includes nucleolar protein 4 (Nop4p or Nop77p) encoded by YPL043W from Saccharomyces cerevisiae. It is an essential nucleolar protein involved in processing and maturation of 27S pre-rRNA and biogenesis of 60S ribosomal subunits. Nop4p also contains four RRMs.


Pssm-ID: 409848 [Multi-domain]  Cd Length: 76  Bit Score: 73.35  E-value: 2.31e-16
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 2244986492 118 KCNENDIRVMFSPFGQIEECRILRGPDGLSRGCAFVTFSTRAMAQNAIKAMHQSQTMEgcsSPIVVKFA 186
Cdd:cd12414    10 KCTEDDLKKLFSKFGKVLEVTIPKKPDGKLRGFAFVQFTNVADAAKAIKGMNGKKIKG---RPVAVDWA 75
RRM smart00360
RNA recognition motif;
17-83 3.20e-16

RNA recognition motif;


Pssm-ID: 214636 [Multi-domain]  Cd Length: 73  Bit Score: 73.01  E-value: 3.20e-16
                           10        20        30        40        50        60
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 2244986492   17 KMFVGQIPRSWSEKELKELFEPYGAVYQINVLRDRsqNPPQSKGCCFVTFYTRKAALEAQNALHNIK 83
Cdd:smart00360   1 TLFVGNLPPDTTEEELRELFSKFGKVESVRLVRDK--ETGKSKGFAFVEFESEEDAEKALEALNGKE 65
RRM2_CELF3_4_5_6 cd12635
RNA recognition motif 2 (RRM2) found in CUGBP Elav-like family member CELF-3, CELF-4, CELF-5, ...
17-98 7.11e-16

RNA recognition motif 2 (RRM2) found in CUGBP Elav-like family member CELF-3, CELF-4, CELF-5, CELF-6 and similar proteins; This subgroup corresponds to the RRM2 of CELF-3, CELF-4, CELF-5, and CELF-6, all of which belong to the CUGBP1 and ETR-3-like factors (CELF) or BRUNOL (Bruno-like) family of RNA-binding proteins that display dual nuclear and cytoplasmic localizations and have been implicated in the regulation of pre-mRNA splicing and in the control of mRNA translation and deadenylation. CELF-3, expressed in brain and testis only, is also known as bruno-like protein 1 (BRUNOL-1), or CAG repeat protein 4, or CUG-BP- and ETR-3-like factor 3, or embryonic lethal abnormal vision (ELAV)-type RNA-binding protein 1 (ETR-1), or expanded repeat domain protein CAG/CTG 4, or trinucleotide repeat-containing gene 4 protein (TNRC4). It plays an important role in the pathogenesis of tauopathies. CELF-3 contains three highly conserved RNA recognition motifs (RRMs), also known as RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains): two consecutive RRMs (RRM1 and RRM2) situated in the N-terminal region followed by a linker region and the third RRM (RRM3) close to the C-terminus of the protein. The effect of CELF-3 on tau splicing is mediated mainly by the RNA-binding activity of RRM2. The divergent linker region might mediate the interaction of CELF-3 with other proteins regulating its activity or involved in target recognition. CELF-4, being highly expressed throughout the brain and in glandular tissues, moderately expressed in heart, skeletal muscle, and liver, is also known as bruno-like protein 4 (BRUNOL-4), or CUG-BP- and ETR-3-like factor 4. Like CELF-3, CELF-4 also contain three highly conserved RRMs. The splicing activation or repression activity of CELF-4 on some specific substrates is mediated by its RRM1/RRM2. On the other hand, both RRM1 and RRM2 of CELF-4 can activate cardiac troponin T (cTNT) exon 5 inclusion. CELF-5, expressed in brain, is also known as bruno-like protein 5 (BRUNOL-5), or CUG-BP- and ETR-3-like factor 5. Although its biological role remains unclear, CELF-5 shares same domain architecture with CELF-3. CELF-6, being strongly expressed in kidney, brain, and testis, is also known as bruno-like protein 6 (BRUNOL-6), or CUG-BP- and ETR-3-like factor 6. It activates exon inclusion of a cardiac troponin T minigene in transient transfection assays in a muscle-specific splicing enhancer (MSE)-dependent manner and can activate inclusion via multiple copies of a single element, MSE2. CELF-6 also promotes skipping of exon 11 of insulin receptor, a known target of CELF activity that is expressed in kidney. In addition to three highly conserved RRMs, CELF-6 also possesses numerous potential phosphorylation sites, a potential nuclear localization signal (NLS) at the C terminus, and an alanine-rich region within the divergent linker region.


Pssm-ID: 410043 [Multi-domain]  Cd Length: 81  Bit Score: 72.45  E-value: 7.11e-16
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2244986492  17 KMFVGQIPRSWSEKELKELFEPYGAVYQINVLRDRSQNppqSKGCCFVTFYTRKAALEAQNALHNIKTLPGMHHPIQMKP 96
Cdd:cd12635     3 KLFVGMLGKQQSEDDVRRLFEPFGSIEECTILRGPDGN---SKGCAFVKFSSHAEAQAAINALHGSQTMPGASSSLVVKF 79

                  ..
gi 2244986492  97 AD 98
Cdd:cd12635    80 AD 81
RRM2_Hu cd12652
RNA recognition motif 2 (RRM2) found in the Hu proteins family; This subfamily corresponds to ...
110-186 3.24e-15

RNA recognition motif 2 (RRM2) found in the Hu proteins family; This subfamily corresponds to the RRM2 of Hu proteins family which represents a group of RNA-binding proteins involved in diverse biological processes. Since the Hu proteins share high homology with the Drosophila embryonic lethal abnormal vision (ELAV) protein, the Hu family is sometimes referred to as the ELAV family. Drosophila ELAV is exclusively expressed in neurons and is required for the correct differentiation and survival of neurons in flies. The neuronal members of the Hu family include Hu-antigen B (HuB or ELAV-2 or Hel-N1), Hu-antigen C (HuC or ELAV-3 or PLE21), and Hu-antigen D (HuD or ELAV-4), which play important roles in neuronal differentiation, plasticity and memory. HuB is also expressed in gonads. Hu-antigen R (HuR or ELAV-1 or HuA) is the ubiquitously expressed Hu family member. It has a variety of biological functions mostly related to the regulation of cellular response to DNA damage and other types of stress. Moreover, HuR has an anti-apoptotic function during early cell stress response. It binds to mRNAs and enhances the expression of several anti-apoptotic proteins, such as p21waf1, p53, and prothymosin alpha. HuR also has pro-apoptotic function by promoting apoptosis when cell death is unavoidable. Furthermore, HuR may be important in muscle differentiation, adipogenesis, suppression of inflammatory response and modulation of gene expression in response to chronic ethanol exposure and amino acid starvation. Hu proteins perform their cytoplasmic and nuclear molecular functions by coordinately regulating functionally related mRNAs. In the cytoplasm, Hu proteins recognize and bind to AU-rich RNA elements (AREs) in the 3' untranslated regions (UTRs) of certain target mRNAs, such as GAP-43, vascular epithelial growth factor (VEGF), the glucose transporter GLUT1, eotaxin and c-fos, and stabilize those ARE-containing mRNAs. They also bind and regulate the translation of some target mRNAs, such as neurofilament M, GLUT1, and p27. In the nucleus, Hu proteins function as regulators of polyadenylation and alternative splicing. Each Hu protein contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an ARE. RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions.


Pssm-ID: 410055 [Multi-domain]  Cd Length: 79  Bit Score: 70.43  E-value: 3.24e-15
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 2244986492 110 LFIGMVSKKCNENDIRVMFSPFGQIEECRILRGP-DGLSRGCAFVTFSTRAMAQNAIKAMHqSQTMEGCSSPIVVKFA 186
Cdd:cd12652     3 LYVSGLPKTMTQKELEQLFSQFGRIITSRILCDNvTGLSRGVGFIRFDKRVEAERAIKALN-GTIPPGATEPITVKFA 79
RRM COG0724
RNA recognition motif (RRM) domain [Translation, ribosomal structure and biogenesis];
109-186 3.47e-15

RNA recognition motif (RRM) domain [Translation, ribosomal structure and biogenesis];


Pssm-ID: 440488 [Multi-domain]  Cd Length: 85  Bit Score: 70.51  E-value: 3.47e-15
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 2244986492 109 KLFIGMVSKKCNENDIRVMFSPFGQIEECRILRGPD-GLSRGCAFVTFSTRAMAQNAIKAMHQSQTMEgcsSPIVVKFA 186
Cdd:COG0724     3 KIYVGNLPYSVTEEDLRELFSEYGEVTSVKLITDREtGRSRGFGFVEMPDDEEAQAAIEALNGAELMG---RTLKVNEA 78
RRM3_CELF1-6 cd12362
RNA recognition motif 3 (RRM3) found in CELF/Bruno-like family of RNA binding proteins CELF1, ...
401-431 4.07e-15

RNA recognition motif 3 (RRM3) found in CELF/Bruno-like family of RNA binding proteins CELF1, CELF2, CELF3, CELF4, CELF5, CELF6 and similar proteins; This subgroup corresponds to the RRM3 of the CUGBP1 and ETR-3-like factors (CELF) or BRUNOL (Bruno-like) proteins, a family of structurally related RNA-binding proteins involved in the regulation of pre-mRNA splicing in the nucleus and in the control of mRNA translation and deadenylation in the cytoplasm. The family contains six members: CELF-1 (also termed BRUNOL-2, or CUG-BP1, or NAPOR, or EDEN-BP), CELF-2 (also termed BRUNOL-3, or ETR-3, or CUG-BP2, or NAPOR-2), CELF-3 (also termed BRUNOL-1, or TNRC4, or ETR-1, or CAGH4, or ER DA4), CELF-4 (also termed BRUNOL-4), CELF-5 (also termed BRUNOL-5), CELF-6 (also termed BRUNOL-6). They all contain three highly conserved RNA recognition motifs (RRMs), also known as RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains): two consecutive RRMs (RRM1 and RRM2) situated in the N-terminal region followed by a linker region and the third RRM (RRM3) close to the C-terminus of the protein. The low sequence conservation of the linker region is highly suggestive of a large variety in the co-factors that associate with the various CELF family members. Based on both sequence similarity and function, the CELF family can be divided into two subfamilies, the first containing CELFs 1 and 2, and the second containing CELFs 3, 4, 5, and 6. The different CELF proteins may act through different sites on at least some substrates. Furthermore, CELF proteins may interact with each other in varying combinations to influence alternative splicing in different contexts.


Pssm-ID: 409797 [Multi-domain]  Cd Length: 73  Bit Score: 69.95  E-value: 4.07e-15
                          10        20        30
                  ....*....|....*....|....*....|.
gi 2244986492 401 GFVSYDNPVSAQAAIQAMNGFQIGMKRLKVQ 431
Cdd:cd12362    43 GFVSYDNPLSAQAAIKAMNGFQVGGKRLKVQ 73
RRM_SF cd00590
RNA recognition motif (RRM) superfamily; RRM, also known as RBD (RNA binding domain) or RNP ...
19-81 4.52e-15

RNA recognition motif (RRM) superfamily; RRM, also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), is a highly abundant domain in eukaryotes found in proteins involved in post-transcriptional gene expression processes including mRNA and rRNA processing, RNA export, and RNA stability. This domain is 90 amino acids in length and consists of a four-stranded beta-sheet packed against two alpha-helices. RRM usually interacts with ssRNA, but is also known to interact with ssDNA as well as proteins. RRM binds a variable number of nucleotides, ranging from two to eight. The active site includes three aromatic side-chains located within the conserved RNP1 and RNP2 motifs of the domain. The RRM domain is found in a variety heterogeneous nuclear ribonucleoproteins (hnRNPs), proteins implicated in regulation of alternative splicing, and protein components of small nuclear ribonucleoproteins (snRNPs).


Pssm-ID: 409669 [Multi-domain]  Cd Length: 72  Bit Score: 69.62  E-value: 4.52e-15
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|...
gi 2244986492  19 FVGQIPRSWSEKELKELFEPYGAVYQINVLRDRSQnppQSKGCCFVTFYTRKAALEAQNALHN 81
Cdd:cd00590     2 FVGNLPPDTTEEDLRELFSKFGEVVSVRIVRDRDG---KSKGFAFVEFESPEDAEKALEALNG 61
RRM1_FCA cd12633
RNA recognition motif 1 (RRM1) found in plant flowering time control protein FCA and similar ...
109-187 5.25e-15

RNA recognition motif 1 (RRM1) found in plant flowering time control protein FCA and similar proteins; This subgroup corresponds to the RRM1 of FCA, a gene controlling flowering time in Arabidopsis, encoding a flowering time control protein that functions in the posttranscriptional regulation of transcripts involved in the flowering process. FCA contains two RNA recognition motifs (RRMs), also known as RBDs (RNA binding domains) or RNP (ribonucleoprotein domains), and a WW protein interaction domain.


Pssm-ID: 241077 [Multi-domain]  Cd Length: 80  Bit Score: 69.99  E-value: 5.25e-15
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2244986492 109 KLFIGMVSKKCNENDIRVMFSPFGQIEECRILRGP-DGLSRGCAFVTFSTRAMAQNAIKAMHQSQTMEGCSSPIVVKFAD 187
Cdd:cd12633     1 KLFVGSVPRTITEQEVRPMFEEHGNVLEVAIIKDKrTGHQQGCCFVKYSTRDEADRAIRALHNQRTLPGGASPVQVRYAD 80
RRM3_CELF3_4_5_6 cd12639
RNA recognition motif 2 (RRM2) found in CUGBP Elav-like family member CELF-3, CELF-4, CELF-5, ...
401-431 1.06e-14

RNA recognition motif 2 (RRM2) found in CUGBP Elav-like family member CELF-3, CELF-4, CELF-5, CELF-6 and similar proteins; This subgroup corresponds to the RRM3 of CELF-3, CELF-4, CELF-5, and CELF-6, all of which belong to the CUGBP1 and ETR-3-like factors (CELF) or BRUNOL (Bruno-like) family of RNA-binding proteins that display dual nuclear and cytoplasmic localizations and have been implicated in the regulation of pre-mRNA splicing and in the control of mRNA translation and deadenylation. CELF-3, expressed in brain and testis only, is also known as bruno-like protein 1 (BRUNOL-1), or CAG repeat protein 4, or CUG-BP- and ETR-3-like factor 3, or embryonic lethal abnormal vision (ELAV)-type RNA-binding protein 1 (ETR-1), or expanded repeat domain protein CAG/CTG 4, or trinucleotide repeat-containing gene 4 protein (TNRC4). It plays an important role in the pathogenesis of tauopathies. CELF-3 contains three highly conserved RNA recognition motifs (RRMs), also known as RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains): two consecutive RRMs (RRM1 and RRM2) situated in the N-terminal region followed by a linker region and the third RRM (RRM3) close to the C-terminus of the protein.The effect of CELF-3 on tau splicing is mediated mainly by the RNA-binding activity of RRM2. The divergent linker region might mediate the interaction of CELF-3 with other proteins regulating its activity or involved in target recognition. CELF-4, highly expressed throughout the brain and in glandular tissues, moderately expressed in heart, skeletal muscle, and liver, is also known as bruno-like protein 4 (BRUNOL-4), or CUG-BP- and ETR-3-like factor 4. Like CELF-3, CELF-4 also contains three highly conserved RRMs. The splicing activation or repression activity of CELF-4 on some specific substrates is mediated by its RRM1/RRM2. Both, RRM1 and RRM2 of CELF-4, can activate cardiac troponin T (cTNT) exon 5 inclusion. CELF-5, expressed in brain, is also known as bruno-like protein 5 (BRUNOL-5), or CUG-BP- and ETR-3-like factor 5. Although its biological role remains unclear, CELF-5 shares same domain architecture with CELF-3. CELF-6, strongly expressed in kidney, brain, and testis, is also known as bruno-like protein 6 (BRUNOL-6), or CUG-BP- and ETR-3-like factor 6. It activates exon inclusion of a cardiac troponin T minigene in transient transfection assays in an muscle-specific splicing enhancer (MSE)-dependent manner and can activate inclusion via multiple copies of a single element, MSE2. CELF-6 also promotes skipping of exon 11 of insulin receptor, a known target of CELF activity that is expressed in kidney. In addition to three highly conserved RRMs, CELF-6 also possesses numerous potential phosphorylation sites, a potential nuclear localization signal (NLS) at the C terminus, and an alanine-rich region within the divergent linker region.


Pssm-ID: 241083 [Multi-domain]  Cd Length: 79  Bit Score: 69.11  E-value: 1.06e-14
                          10        20        30
                  ....*....|....*....|....*....|.
gi 2244986492 401 GFVSYDNPVSAQAAIQAMNGFQIGMKRLKVQ 431
Cdd:cd12639    49 GFVSFDNPASAQAAIQAMNGFQIGMKRLKVQ 79
RRM2_NsCP33_like cd21608
RNA recognition motif 2 (RRM2) found in Nicotiana sylvestris chloroplastic 33 kDa ...
109-186 3.89e-14

RNA recognition motif 2 (RRM2) found in Nicotiana sylvestris chloroplastic 33 kDa ribonucleoprotein (NsCP33) and similar proteins; The family includes NsCP33, Arabidopsis thaliana chloroplastic 31 kDa ribonucleoprotein (CP31A) and mitochondrial glycine-rich RNA-binding protein 2 (AtGR-RBP2). NsCP33 may be involved in splicing and/or processing of chloroplast RNA's. AtCP31A, also called RNA-binding protein 1/2/3 (AtRBP33), or RNA-binding protein CP31A, or RNA-binding protein RNP-T, or RNA-binding protein cp31, is required for specific RNA editing events in chloroplasts and stabilizes specific chloroplast mRNAs, as well as for normal chloroplast development under cold stress conditions by stabilizing transcripts of numerous mRNAs under these conditions. CP31A may modulate telomere replication through RNA binding domains. AtGR-RBP2, also called AtRBG2, or glycine-rich protein 2 (AtGRP2), or mitochondrial RNA-binding protein 1a (At-mRBP1a), plays a role in RNA transcription or processing during stress. It binds RNAs and DNAs sequence with a preference to single-stranded nucleic acids. AtGR-RBP2 displays strong affinity to poly(U) sequence. It exerts cold and freezing tolerance, probably by exhibiting an RNA chaperone activity during the cold and freezing adaptation process. Some members in this family contain two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The model corresponds to the second RRM motif.


Pssm-ID: 410187 [Multi-domain]  Cd Length: 76  Bit Score: 67.19  E-value: 3.89e-14
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 2244986492 109 KLFIGMVSKKCNENDIRVMFSPFGQIEECRILRGPD-GLSRGCAFVTFSTRAMAQNAIKAMHQSQtMEGcsSPIVVKFA 186
Cdd:cd21608     1 KLYVGNLSWDTTEDDLRDLFSEFGEVESAKVITDREtGRSRGFGFVTFSTAEAAEAAIDALNGKE-LDG--RSIVVNEA 76
RRM2_MSSP cd12244
RNA recognition motif 2 (RRM2) found in the c-myc gene single-strand binding proteins (MSSP) ...
110-187 5.57e-14

RNA recognition motif 2 (RRM2) found in the c-myc gene single-strand binding proteins (MSSP) family; This subfamily corresponds to the RRM2 of c-myc gene single-strand binding proteins (MSSP) family, including single-stranded DNA-binding protein MSSP-1 (also termed RBMS1 or SCR2) and MSSP-2 (also termed RBMS2 or SCR3). All MSSP family members contain two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), both of which are responsible for the specific DNA binding activity. Both, MSSP-1 and -2, have been identified as protein factors binding to a putative DNA replication origin/transcriptional enhancer sequence present upstream from the human c-myc gene in both single- and double-stranded forms. Thus they have been implied in regulating DNA replication, transcription, apoptosis induction, and cell-cycle movement, via the interaction with C-MYC, the product of protooncogene c-myc. Moreover, they family includes a new member termed RNA-binding motif, single-stranded-interacting protein 3 (RBMS3), which is not a transcriptional regulator. RBMS3 binds with high affinity to A/U-rich stretches of RNA, and to A/T-rich DNA sequences, and functions as a regulator of cytoplasmic activity. In addition, a putative meiosis-specific RNA-binding protein termed sporulation-specific protein 5 (SPO5, or meiotic RNA-binding protein 1, or meiotically up-regulated gene 12 protein), encoded by Schizosaccharomyces pombe Spo5/Mug12 gene, is also included in this family. SPO5 is a novel meiosis I regulator that may function in the vicinity of the Mei2 dot.


Pssm-ID: 409690 [Multi-domain]  Cd Length: 82  Bit Score: 67.02  E-value: 5.57e-14
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2244986492 110 LFIGMVSKKCNENDIRVMFSPFGQIEECRILRGPDGLSRGCAFVTFSTRAMAQNAIKAMHQS--QTMEGCSSPIVVKFAD 187
Cdd:cd12244     3 LYISNLPLDMDEQDLENMLKPFGQVISTRILRDSKGQSRGVGFARMESREKCEDVISKFNGKvlKTPSASGEPLLVKFAD 82
RRM_1 pfam00076
RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic ...
110-169 6.25e-14

RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic of an RNA binding protein. RRMs are found in a variety of RNA binding proteins, including various hnRNP proteins, proteins implicated in regulation of alternative splicing, and protein components of snRNPs. The motif also appears in a few single stranded DNA binding proteins. The RRM structure consists of four strands and two helices arranged in an alpha/beta sandwich, with a third helix present during RNA binding in some cases The C-terminal beta strand (4th strand) and final helix are hard to align and have been omitted in the SEED alignment The LA proteins have an N terminal rrm which is included in the seed. There is a second region towards the C terminus that has some features characteriztic of a rrm but does not appear to have the important structural core of a rrm. The LA proteins are one of the main autoantigens in Systemic lupus erythematosus (SLE), an autoimmune disease.


Pssm-ID: 425453 [Multi-domain]  Cd Length: 70  Bit Score: 66.49  E-value: 6.25e-14
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|
gi 2244986492 110 LFIGMVSKKCNENDIRVMFSPFGQIEECRILRGPDGLSRGCAFVTFSTRAMAQNAIKAMH 169
Cdd:pfam00076   1 LFVGNLPPDTTEEDLKDLFSKFGPIKSIRLVRDETGRSKGFAFVEFEDEEDAEKAIEALN 60
RRM3_Bruno_like cd12640
RNA recognition motif 3 (RRM3) found in Drosophila melanogaster Bruno protein and similar ...
401-431 2.65e-13

RNA recognition motif 3 (RRM3) found in Drosophila melanogaster Bruno protein and similar proteins; This subgroup corresponds to the RRM3 of Bruno protein, a Drosophila RNA recognition motif (RRM)-containing protein that plays a central role in regulation of Oskar (Osk) expression. It mediates repression by binding to regulatory Bruno response elements (BREs) in the Osk mRNA 3' UTR. The full-length Bruno protein contains three RRMs, two located in the N-terminal half of the protein and the third near the C-terminus, separated by a linker region.


Pssm-ID: 241084 [Multi-domain]  Cd Length: 79  Bit Score: 65.02  E-value: 2.65e-13
                          10        20        30
                  ....*....|....*....|....*....|.
gi 2244986492 401 GFVSYDNPVSAQAAIQAMNGFQIGMKRLKVQ 431
Cdd:cd12640    49 GFVSYDNPDSAQAAIQAMNGFQIGTKRLKVQ 79
RRM_DAZL_BOULE cd12412
RNA recognition motif (RRM) found in AZoospermia (DAZ) autosomal homologs, DAZL (DAZ-like) and ...
109-166 1.60e-12

RNA recognition motif (RRM) found in AZoospermia (DAZ) autosomal homologs, DAZL (DAZ-like) and BOULE; This subfamily corresponds to the RRM domain of two Deleted in AZoospermia (DAZ) autosomal homologs, DAZL (DAZ-like) and BOULE. BOULE is the founder member of the family and DAZL arose from BOULE in an ancestor of vertebrates. The DAZ gene subsequently originated from a duplication transposition of the DAZL gene. Invertebrates contain a single DAZ homolog, BOULE, while vertebrates, other than catarrhine primates, possess both BOULE and DAZL genes. The catarrhine primates possess BOULE, DAZL, and DAZ genes. The family members encode closely related RNA-binding proteins that are required for fertility in numerous organisms. These proteins contain an RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a varying number of copies of a DAZ motif, believed to mediate protein-protein interactions. DAZL and BOULE contain a single copy of the DAZ motif, while DAZ proteins can contain 8-24 copies of this repeat. Although their specific biochemical functions remain to be investigated, DAZL proteins may interact with poly(A)-binding proteins (PABPs), and act as translational activators of specific mRNAs during gametogenesis.


Pssm-ID: 409846 [Multi-domain]  Cd Length: 81  Bit Score: 62.63  E-value: 1.60e-12
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....*...
gi 2244986492 109 KLFIGMVSKKCNENDIRVMFSPFGQIEECRILRGPDGLSRGCAFVTFSTRAMAQNAIK 166
Cdd:cd12412     4 RIFVGGIDWDTTEEELREFFSKFGKVKDVKIIKDRAGVSKGYGFVTFETQEDAEKIQK 61
RRM2_SXL cd12651
RNA recognition motif 2 (RRM2) found in Drosophila sex-lethal (SXL) and similar proteins; This ...
18-97 1.31e-11

RNA recognition motif 2 (RRM2) found in Drosophila sex-lethal (SXL) and similar proteins; This subfamily corresponds to the RRM2 of the sex-lethal protein (SXL) which governs sexual differentiation and X chromosome dosage compensation in Drosophila melanogaster. It induces female-specific alternative splicing of the transformer (tra) pre-mRNA by binding to the tra uridine-rich polypyrimidine tract at the non-sex-specific 3' splice site during the sex-determination process. SXL binds also to its own pre-mRNA and promotes female-specific alternative splicing. SXL contains an N-terminal Gly/Asn-rich domain that may be responsible for the protein-protein interaction, and tandem RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), that show high preference to bind single-stranded, uridine-rich target RNA transcripts.


Pssm-ID: 410054 [Multi-domain]  Cd Length: 81  Bit Score: 60.29  E-value: 1.31e-11
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2244986492  18 MFVGQIPRSWSEKELKELFEPYGAVYQINVLRDRSQNPPqsKGCCFVTFYTRKAALEAQNALHNIkTLPGMHHPIQMKPA 97
Cdd:cd12651     5 LYVTNLPRTITEDELDTIFGAYGNIVQKNLLRDKLTGRP--RGVAFVRYDKREEAQAAISALNGT-IPEGGTQPLSVRLA 81
RRM COG0724
RNA recognition motif (RRM) domain [Translation, ribosomal structure and biogenesis];
15-81 1.34e-11

RNA recognition motif (RRM) domain [Translation, ribosomal structure and biogenesis];


Pssm-ID: 440488 [Multi-domain]  Cd Length: 85  Bit Score: 60.11  E-value: 1.34e-11
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 2244986492  15 AIKMFVGQIPRSWSEKELKELFEPYGAVYQINVLRDRSQNppQSKGCCFVTFYTRKAALEAQNALHN 81
Cdd:COG0724     1 SMKIYVGNLPYSVTEEDLRELFSEYGEVTSVKLITDRETG--RSRGFGFVEMPDDEEAQAAIEALNG 65
RRM1_hnRNPR_like cd12249
RNA recognition motif 1 (RRM1) found in heterogeneous nuclear ribonucleoprotein R (hnRNP R) ...
19-89 2.46e-11

RNA recognition motif 1 (RRM1) found in heterogeneous nuclear ribonucleoprotein R (hnRNP R) and similar proteins; This subfamily corresponds to the RRM1 in hnRNP R, hnRNP Q, APOBEC-1 complementation factor (ACF), and dead end protein homolog 1 (DND1). hnRNP R is a ubiquitously expressed nuclear RNA-binding protein that specifically binds mRNAs with a preference for poly(U) stretches. It has been implicated in mRNA processing and mRNA transport, and also acts as a regulator to modify binding to ribosomes and RNA translation. hnRNP Q is also a ubiquitously expressed nuclear RNA-binding protein. It has been identified as a component of the spliceosome complex, as well as a component of the apobec-1 editosome, and has been implicated in the regulation of specific mRNA transport. ACF is an RNA-binding subunit of a core complex that interacts with apoB mRNA to facilitate C to U RNA editing. It may also act as an apoB mRNA recognition factor and chaperone, and play a key role in cell growth and differentiation. DND1 is essential for maintaining viable germ cells in vertebrates. It interacts with the 3'-untranslated region (3'-UTR) of multiple messenger RNAs (mRNAs) and prevents micro-RNA (miRNA) mediated repression of mRNA. This family also includes two functionally unknown RNA-binding proteins, RBM46 and RBM47. All members in this family, except for DND1, contain three conserved RNA recognition motifs (RRMs); DND1 harbors only two RRMs.


Pssm-ID: 409695 [Multi-domain]  Cd Length: 78  Bit Score: 59.14  E-value: 2.46e-11
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 2244986492  19 FVGQIPRSWSEKELKELFEPYGAVYQINVLRDRSQNppqSKGCCFVTFYTRKAALEAQNALHNIKTLPGMH 89
Cdd:cd12249     5 FVGKIPRDVFEDELVPLFEKCGKIYELRLMMDFSGL---NRGYAFVTYTNKEAAQRAVKTLNNYEIRPGKL 72
RRM_1 pfam00076
RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic ...
19-83 6.86e-11

RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic of an RNA binding protein. RRMs are found in a variety of RNA binding proteins, including various hnRNP proteins, proteins implicated in regulation of alternative splicing, and protein components of snRNPs. The motif also appears in a few single stranded DNA binding proteins. The RRM structure consists of four strands and two helices arranged in an alpha/beta sandwich, with a third helix present during RNA binding in some cases The C-terminal beta strand (4th strand) and final helix are hard to align and have been omitted in the SEED alignment The LA proteins have an N terminal rrm which is included in the seed. There is a second region towards the C terminus that has some features characteriztic of a rrm but does not appear to have the important structural core of a rrm. The LA proteins are one of the main autoantigens in Systemic lupus erythematosus (SLE), an autoimmune disease.


Pssm-ID: 425453 [Multi-domain]  Cd Length: 70  Bit Score: 57.63  E-value: 6.86e-11
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 2244986492  19 FVGQIPRSWSEKELKELFEPYGAVYQINVLRDRSQnppQSKGCCFVTFYTRKAALEAQNALHNIK 83
Cdd:pfam00076   2 FVGNLPPDTTEEDLKDLFSKFGPIKSIRLVRDETG---RSKGFAFVEFEDEEDAEKAIEALNGKE 63
RRM3_RBM28_like cd12415
RNA recognition motif 3 (RRM3) found in RNA-binding protein 28 (RBM28) and similar proteins; ...
108-176 9.26e-11

RNA recognition motif 3 (RRM3) found in RNA-binding protein 28 (RBM28) and similar proteins; This subfamily corresponds to the RRM3 of RBM28 and Nop4p. RBM28 is a specific nucleolar component of the spliceosomal small nuclear ribonucleoproteins (snRNPs), possibly coordinating their transition through the nucleolus. It specifically associates with U1, U2, U4, U5, and U6 small nuclear RNAs (snRNAs), and may play a role in the maturation of both small nuclear and ribosomal RNAs. RBM28 has four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and an extremely acidic region between RRM2 and RRM3. The family also includes nucleolar protein 4 (Nop4p or Nop77p) encoded by YPL043W from Saccharomyces cerevisiae. It is an essential nucleolar protein involved in processing and maturation of 27S pre-rRNA and biogenesis of 60S ribosomal subunits. Nop4p also contains four RRMs.


Pssm-ID: 409849 [Multi-domain]  Cd Length: 83  Bit Score: 58.00  E-value: 9.26e-11
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2244986492 108 RKLFIGMVSKKCNENDIRVMFSPFGQIEECRILRGPD-GLSRGCAFVTFSTRAMAQNAIKAMHQSQTMEG 176
Cdd:cd12415     1 KTVFIRNLSFDTTEEDLKEFFSKFGEVKYARIVLDKDtGHSKGTAFVQFKTKESADKCIEAANDESEDGG 70
RRM6_RBM19_RRM5_MRD1 cd12320
RNA recognition motif 6 (RRM6) found in RNA-binding protein 19 (RBM19 or RBD-1) and RNA ...
109-168 9.93e-11

RNA recognition motif 6 (RRM6) found in RNA-binding protein 19 (RBM19 or RBD-1) and RNA recognition motif 5 (RRM5) found in multiple RNA-binding domain-containing protein 1 (MRD1); This subfamily corresponds to the RRM6 of RBM19 and RRM5 of MRD1. RBM19, also termed RNA-binding domain-1 (RBD-1), is a nucleolar protein conserved in eukaryotes. It is involved in ribosome biogenesis by processing rRNA and is essential for preimplantation development. It has a unique domain organization containing 6 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). MRD1 is encoded by a novel yeast gene MRD1 (multiple RNA-binding domain). It is well-conserved in yeast and its homologs exist in all eukaryotes. MRD1 is present in the nucleolus and the nucleoplasm. It interacts with the 35 S precursor rRNA (pre-rRNA) and U3 small nucleolar RNAs (snoRNAs). It is essential for the initial processing at the A0-A2 cleavage sites in the 35 S pre-rRNA. MRD1 contains 5 conserved RRMs, which may play an important structural role in organizing specific rRNA processing events.


Pssm-ID: 409759 [Multi-domain]  Cd Length: 76  Bit Score: 57.63  E-value: 9.93e-11
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|
gi 2244986492 109 KLFIGMVSKKCNENDIRVMFSPFGQIEECRILRGPDGLSRGCAFVTFSTRAMAQNAIKAM 168
Cdd:cd12320     2 KLIVKNVPFEATRKEIRELFSPFGQLKSVRLPKKFDGSHRGFAFVEFVTKQEAQNAMEAL 61
RRM2_TIA1_like cd12353
RNA recognition motif 2 (RRM2) found in granule-associated RNA binding proteins p40-TIA-1 and ...
109-168 1.20e-10

RNA recognition motif 2 (RRM2) found in granule-associated RNA binding proteins p40-TIA-1 and TIAR; This subfamily corresponds to the RRM2 of nucleolysin TIA-1 isoform p40 (p40-TIA-1 or TIA-1) and nucleolysin TIA-1-related protein (TIAR), both of which are granule-associated RNA binding proteins involved in inducing apoptosis in cytotoxic lymphocyte (CTL) target cells. TIA-1 and TIAR share high sequence similarity. They are expressed in a wide variety of cell types. TIA-1 can be phosphorylated by a serine/threonine kinase that is activated during Fas-mediated apoptosis. TIAR is mainly localized in the nucleus of hematopoietic and nonhematopoietic cells. It is translocated from the nucleus to the cytoplasm in response to exogenous triggers of apoptosis. Both, TIA-1 and TIAR, bind specifically to poly(A) but not to poly(C) homopolymers. They are composed of three N-terminal highly homologous RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a glutamine-rich C-terminal auxiliary domain containing a lysosome-targeting motif. TIA-1 and TIAR interact with RNAs containing short stretches of uridylates and their RRM2 can mediate the specific binding to uridylate-rich RNAs. The C-terminal auxiliary domain may be responsible for interacting with other proteins. In addition, TIA-1 and TIAR share a potential serine protease-cleavage site (Phe-Val-Arg) localized at the junction between their RNA binding domains and their C-terminal auxiliary domains.


Pssm-ID: 409789 [Multi-domain]  Cd Length: 75  Bit Score: 57.40  E-value: 1.20e-10
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|.
gi 2244986492 109 KLFIGMVSKKCNENDIRVMFSPFGQIEECRILRGPD-GLSRGCAFVTFSTRAMAQNAIKAM 168
Cdd:cd12353     1 HIFVGDLSPEIETEDLKEAFAPFGEISDARVVKDTQtGKSKGYGFVSFVKKEDAENAIQGM 61
RRM2_HuR cd12773
RNA recognition motif 2 (RRM2) found in vertebrate Hu-antigen R (HuR); This subgroup ...
110-186 1.42e-10

RNA recognition motif 2 (RRM2) found in vertebrate Hu-antigen R (HuR); This subgroup corresponds to the RRM2 of HuR, also termed ELAV-like protein 1 (ELAV-1), the ubiquitously expressed Hu family member. It has a variety of biological functions mostly related to the regulation of cellular response to DNA damage and other types of stress. HuR has an anti-apoptotic function during early cell stress response. It binds to mRNAs and enhances the expression of several anti-apoptotic proteins, such as p21waf1, p53, and prothymosin alpha. HuR also has pro-apoptotic function by promoting apoptosis when cell death is unavoidable. Furthermore, HuR may be important in muscle differentiation, adipogenesis, suppression of inflammatory response and modulation of gene expression in response to chronic ethanol exposure and amino acid starvation. Like other Hu proteins, HuR contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an AU-rich RNA element (ARE). RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions.


Pssm-ID: 410166 [Multi-domain]  Cd Length: 84  Bit Score: 57.23  E-value: 1.42e-10
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 2244986492 110 LFIGMVSKKCNENDIRVMFSPFGQIEECRIL-RGPDGLSRGCAFVTFSTRAMAQNAIKAMHqSQTMEGCSSPIVVKFA 186
Cdd:cd12773     3 LYISGLPRTMTQKDVEDMFSRFGRIINSRVLvDQATGLSRGVAFIRFDKRSEAEEAITNFN-GHKPPGSSEPITVKFA 79
RRM2_HuC cd12776
RNA recognition motif 2 (RRM2) found in vertebrate Hu-antigen C (HuC); This subgroup ...
107-187 2.43e-10

RNA recognition motif 2 (RRM2) found in vertebrate Hu-antigen C (HuC); This subgroup corresponds to the RRM2 of HuC, also termed ELAV-like protein 3 (ELAV-3), or paraneoplastic cerebellar degeneration-associated antigen, or paraneoplastic limbic encephalitis antigen 21 (PLE21), one of the neuronal members of the Hu family. The neuronal Hu proteins play important roles in neuronal differentiation, plasticity and memory. Like other Hu proteins, HuC contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an AU-rich RNA element (ARE). The AU-rich element binding of HuC can be inhibited by flavonoids. RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions.


Pssm-ID: 241220 [Multi-domain]  Cd Length: 81  Bit Score: 56.55  E-value: 2.43e-10
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2244986492 107 DRKLFIGMVSKKCNENDIRVMFSPFGQIEECRILRGP-DGLSRGCAFVTFSTRAMAQNAIKAMHQSQTMeGCSSPIVVKF 185
Cdd:cd12776     1 DANLYVSGLPKTMSQKEMEQLFSQYGRIITSRILVDQvTGVSRGVGFIRFDKRIEAEEAIKGLNGQKPL-GAAEPITVKF 79

                  ..
gi 2244986492 186 AD 187
Cdd:cd12776    80 AN 81
sex-lethal TIGR01659
sex-lethal family splicing factor; This model describes the sex-lethal family of splicing ...
8-187 2.85e-10

sex-lethal family splicing factor; This model describes the sex-lethal family of splicing factors found in Dipteran insects. The sex-lethal phenotype, however, may be limited to the Melanogasters and closely related species. In Drosophila the protein acts as an inhibitor of splicing. This subfamily is most closely related to the ELAV/HUD subfamily of splicing factors (TIGR01661).


Pssm-ID: 273740 [Multi-domain]  Cd Length: 346  Bit Score: 61.57  E-value: 2.85e-10
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2244986492   8 SDQPDPDA--IKMFVGQIPRSWSEKELKELFEPYGAVYQINVLRDRSQNppQSKGCCFVTFYTRKAALEAQNALHNIKTL 85
Cdd:TIGR01659  98 SDDNDTNNsgTNLIVNYLPQDMTDRELYALFRTIGPINTCRIMRDYKTG--YSFGYAFVDFGSEADSQRAIKNLNGITVR 175
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2244986492  86 PGMHHPIQMKPAdsekSNAVEDRKLFIGMVSKKCNENDIRVMFSPFGQIEECRILRGP-DGLSRGCAFVTFSTRAMAQNA 164
Cdd:TIGR01659 176 NKRLKVSYARPG----GESIKDTNLYVTNLPRTITDDQLDTIFGKYGQIVQKNILRDKlTGTPRGVAFVRFNKREEAQEA 251
                         170       180
                  ....*....|....*....|...
gi 2244986492 165 IKAMHqSQTMEGCSSPIVVKFAD 187
Cdd:TIGR01659 252 ISALN-NVIPEGGSQPLTVRLAE 273
RRM1_MRD1 cd12565
RNA recognition motif 1 (RRM1) found in yeast multiple RNA-binding domain-containing protein 1 ...
109-186 3.15e-10

RNA recognition motif 1 (RRM1) found in yeast multiple RNA-binding domain-containing protein 1 (MRD1) and similar proteins; This subgroup corresponds to the RRM1 of MRD1 which is encoded by a novel yeast gene MRD1 (multiple RNA-binding domain). It is well-conserved in yeast and its homologs exist in all eukaryotes. MRD1 is present in the nucleolus and the nucleoplasm. It interacts with the 35 S precursor rRNA (pre-rRNA) and U3 small nucleolar RNAs (snoRNAs). MRD1 is essential for the initial processing at the A0-A2 cleavage sites in the 35 S pre-rRNA. It contains 5 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), which may play an important structural role in organizing specific rRNA processing events.


Pssm-ID: 409981 [Multi-domain]  Cd Length: 76  Bit Score: 56.03  E-value: 3.15e-10
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2244986492 109 KLFIGMVSKKCNENDIRVMFSPFGQIEECRILRGPDGLSRGCAFVTFSTRAMAQNAIKAMHQS--QTmegcsSPIVVKFA 186
Cdd:cd12565     2 RIIVKNLPKYVTEKRLKEHFSKKGEITDVKVMRTKDGKSRRFGFIGFKSEEEAQKAVKYFNKTfiDT-----SKISVEFA 76
RRM2_Hu_like cd12376
RNA recognition motif 2 (RRM2) found in the Hu proteins family, Drosophila sex-lethal (SXL), ...
110-186 3.86e-10

RNA recognition motif 2 (RRM2) found in the Hu proteins family, Drosophila sex-lethal (SXL), and similar proteins; This subfamily corresponds to the RRM2 of Hu proteins and SXL. The Hu proteins family represents a group of RNA-binding proteins involved in diverse biological processes. Since the Hu proteins share high homology with the Drosophila embryonic lethal abnormal vision (ELAV) protein, the Hu family is sometimes referred to as the ELAV family. Drosophila ELAV is exclusively expressed in neurons and is required for the correct differentiation and survival of neurons in flies. The neuronal members of the Hu family include Hu-antigen B (HuB or ELAV-2 or Hel-N1), Hu-antigen C (HuC or ELAV-3 or PLE21), and Hu-antigen D (HuD or ELAV-4), which play important roles in neuronal differentiation, plasticity and memory. HuB is also expressed in gonads. Hu-antigen R (HuR or ELAV-1 or HuA) is the ubiquitously expressed Hu family member. It has a variety of biological functions mostly related to the regulation of cellular response to DNA damage and other types of stress. Hu proteins perform their cytoplasmic and nuclear molecular functions by coordinately regulating functionally related mRNAs. In the cytoplasm, Hu proteins recognize and bind to AU-rich RNA elements (AREs) in the 3' untranslated regions (UTRs) of certain target mRNAs, such as GAP-43, vascular epithelial growth factor (VEGF), the glucose transporter GLUT1, eotaxin and c-fos, and stabilize those ARE-containing mRNAs. They also bind and regulate the translation of some target mRNAs, such as neurofilament M, GLUT1, and p27. In the nucleus, Hu proteins function as regulators of polyadenylation and alternative splicing. Each Hu protein contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an ARE. RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions. Also included in this subfamily is the sex-lethal protein (SXL) from Drosophila melanogaster. SXL governs sexual differentiation and X chromosome dosage compensation in flies. It induces female-specific alternative splicing of the transformer (tra) pre-mRNA by binding to the tra uridine-rich polypyrimidine tract at the non-sex-specific 3' splice site during the sex-determination process. SXL binds also to its own pre-mRNA and promotes female-specific alternative splicing. SXL contains an N-terminal Gly/Asn-rich domain that may be responsible for the protein-protein interaction, and tandem RRMs that show high preference to bind single-stranded, uridine-rich target RNA transcripts.


Pssm-ID: 240822 [Multi-domain]  Cd Length: 79  Bit Score: 56.10  E-value: 3.86e-10
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 2244986492 110 LFIGMVSKKCNENDIRVMFSPFGQIEECRILRGP-DGLSRGCAFVTFSTRAMAQNAIKAMHqSQTMEGCSSPIVVKFA 186
Cdd:cd12376     3 LYVSGLPKTMTQKELEQLFSQYGRIITSRILRDQlTGVSRGVGFIRFDKRIEAEEAIKGLN-GQKPEGASEPITVKFA 79
RRM3_TIA1_like cd12354
RNA recognition motif 2 (RRM2) found in granule-associated RNA binding proteins (p40-TIA-1 and ...
111-177 5.79e-10

RNA recognition motif 2 (RRM2) found in granule-associated RNA binding proteins (p40-TIA-1 and TIAR), and yeast nuclear and cytoplasmic polyadenylated RNA-binding protein PUB1; This subfamily corresponds to the RRM3 of TIA-1, TIAR, and PUB1. Nucleolysin TIA-1 isoform p40 (p40-TIA-1 or TIA-1) and nucleolysin TIA-1-related protein (TIAR) are granule-associated RNA binding proteins involved in inducing apoptosis in cytotoxic lymphocyte (CTL) target cells. They share high sequence similarity and are expressed in a wide variety of cell types. TIA-1 can be phosphorylated by a serine/threonine kinase that is activated during Fas-mediated apoptosis.TIAR is mainly localized in the nucleus of hematopoietic and nonhematopoietic cells. It is translocated from the nucleus to the cytoplasm in response to exogenous triggers of apoptosis. Both TIA-1 and TIAR bind specifically to poly(A) but not to poly(C) homopolymers. They are composed of three N-terminal highly homologous RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a glutamine-rich C-terminal auxiliary domain containing a lysosome-targeting motif. TIA-1 and TIAR interact with RNAs containing short stretches of uridylates and their RRM2 can mediate the specific binding to uridylate-rich RNAs. The C-terminal auxiliary domain may be responsible for interacting with other proteins. In addition, TIA-1 and TIAR share a potential serine protease-cleavage site (Phe-Val-Arg) localized at the junction between their RNA binding domains and their C-terminal auxiliary domains. This subfamily also includes a yeast nuclear and cytoplasmic polyadenylated RNA-binding protein PUB1, termed ARS consensus-binding protein ACBP-60, or poly uridylate-binding protein, or poly(U)-binding protein, which has been identified as both a heterogeneous nuclear RNA-binding protein (hnRNP) and a cytoplasmic mRNA-binding protein (mRNP). It may be stably bound to a translationally inactive subpopulation of mRNAs within the cytoplasm. PUB1 is distributed in both, the nucleus and the cytoplasm, and binds to poly(A)+ RNA (mRNA or pre-mRNA). Although it is one of the major cellular proteins cross-linked by UV light to polyadenylated RNAs in vivo, PUB1 is nonessential for cell growth in yeast. PUB1 also binds to T-rich single stranded DNA (ssDNA); however, there is no strong evidence implicating PUB1 in the mechanism of DNA replication. PUB1 contains three RRMs, and a GAR motif (glycine and arginine rich stretch) that is located between RRM2 and RRM3.


Pssm-ID: 409790 [Multi-domain]  Cd Length: 71  Bit Score: 55.37  E-value: 5.79e-10
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 2244986492 111 FIGMVSKKCNENDIRVMFSPFGQIEECRILrgPDGlsrGCAFVTFSTRAMAQNAIKAMHqSQTMEGC 177
Cdd:cd12354     4 YVGNITKGLTEALLQQTFSPFGQILEVRVF--PDK---GYAFIRFDSHEAATHAIVSVN-GTIINGQ 64
RRM1_2_CoAA_like cd12343
RNA recognition motif 1 (RRM1) and 2 (RRM2) found in RRM-containing coactivator activator ...
109-174 7.30e-10

RNA recognition motif 1 (RRM1) and 2 (RRM2) found in RRM-containing coactivator activator/modulator (CoAA) and similar proteins; This subfamily corresponds to the RRM in CoAA (also known as RBM14 or PSP2) and RNA-binding protein 4 (RBM4). CoAA is a heterogeneous nuclear ribonucleoprotein (hnRNP)-like protein identified as a nuclear receptor coactivator. It mediates transcriptional coactivation and RNA splicing effects in a promoter-preferential manner, and is enhanced by thyroid hormone receptor-binding protein (TRBP). CoAA contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a TRBP-interacting domain. RBM4 is a ubiquitously expressed splicing factor with two isoforms, RBM4A (also known as Lark homolog) and RBM4B (also known as RBM30), which are very similar in structure and sequence. RBM4 may also function as a translational regulator of stress-associated mRNAs as well as play a role in micro-RNA-mediated gene regulation. RBM4 contains two N-terminal RRMs, a CCHC-type zinc finger, and three alanine-rich regions within their C-terminal regions. This family also includes Drosophila RNA-binding protein lark (Dlark), a homolog of human RBM4. It plays an important role in embryonic development and in the circadian regulation of adult eclosion. Dlark shares high sequence similarity with RBM4 at the N-terminal region. However, Dlark has three proline-rich segments instead of three alanine-rich segments within the C-terminal region.


Pssm-ID: 409779 [Multi-domain]  Cd Length: 66  Bit Score: 54.93  E-value: 7.30e-10
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 2244986492 109 KLFIGMVSKKCNENDIRVMFSPFGQIEECRILrgpdglsRGCAFVTFSTRAMAQNAIKAMHQSQTM 174
Cdd:cd12343     1 KIFVGNLPDAATSEELRALFEKYGKVTECDIV-------KNYAFVHMEKEEDAEDAIKALNGYEFM 59
RRM2_SXL cd12651
RNA recognition motif 2 (RRM2) found in Drosophila sex-lethal (SXL) and similar proteins; This ...
106-186 8.21e-10

RNA recognition motif 2 (RRM2) found in Drosophila sex-lethal (SXL) and similar proteins; This subfamily corresponds to the RRM2 of the sex-lethal protein (SXL) which governs sexual differentiation and X chromosome dosage compensation in Drosophila melanogaster. It induces female-specific alternative splicing of the transformer (tra) pre-mRNA by binding to the tra uridine-rich polypyrimidine tract at the non-sex-specific 3' splice site during the sex-determination process. SXL binds also to its own pre-mRNA and promotes female-specific alternative splicing. SXL contains an N-terminal Gly/Asn-rich domain that may be responsible for the protein-protein interaction, and tandem RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), that show high preference to bind single-stranded, uridine-rich target RNA transcripts.


Pssm-ID: 410054 [Multi-domain]  Cd Length: 81  Bit Score: 55.28  E-value: 8.21e-10
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2244986492 106 EDRKLFIGMVSKKCNENDIRVMFSPFGQIEECRILRGP-DGLSRGCAFVTFSTRAMAQNAIKAMHQSqTMEGCSSPIVVK 184
Cdd:cd12651     1 KDTNLYVTNLPRTITEDELDTIFGAYGNIVQKNLLRDKlTGRPRGVAFVRYDKREEAQAAISALNGT-IPEGGTQPLSVR 79

                  ..
gi 2244986492 185 FA 186
Cdd:cd12651    80 LA 81
RRM_RBM18 cd12355
RNA recognition motif (RRM) found in eukaryotic RNA-binding protein 18 and similar proteins; ...
109-186 1.02e-09

RNA recognition motif (RRM) found in eukaryotic RNA-binding protein 18 and similar proteins; This subfamily corresponds to the RRM of RBM18, a putative RNA-binding protein containing a well-conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). The biological role of RBM18 remains unclear.


Pssm-ID: 409791 [Multi-domain]  Cd Length: 80  Bit Score: 54.61  E-value: 1.02e-09
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2244986492 109 KLFIGMVSKKCNENDIRVMFSPFGQIEECRIL---RGP-DGLSRGCAFVTFSTRAMAQNAIKAMHQSQTMegcSSPIVVK 184
Cdd:cd12355     1 RLWIGNLDPRLTEYHLLKLLSKYGKIKKFDFLfhkTGPlKGQPRGYCFVTFETKEEAEKAIECLNGKLAL---GKKLVVR 77

                  ..
gi 2244986492 185 FA 186
Cdd:cd12355    78 WA 79
RRM1_RBM45 cd12366
RNA recognition motif 1 (RRM1) found in RNA-binding protein 45 (RBM45) and similar proteins; ...
109-186 1.17e-09

RNA recognition motif 1 (RRM1) found in RNA-binding protein 45 (RBM45) and similar proteins; This subfamily corresponds to the RRM1 of RBM45, also termed developmentally-regulated RNA-binding protein 1 (DRB1), a new member of RNA recognition motif (RRM)-type neural RNA-binding proteins, which expresses under spatiotemporal control. It is encoded by gene drb1 that is expressed in neurons, not in glial cells. RBM45 predominantly localizes in cytoplasm of cultured cells and specifically binds to poly(C) RNA. It could play an important role during neurogenesis. RBM45 carries four RRMs, also known as RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409801 [Multi-domain]  Cd Length: 81  Bit Score: 54.63  E-value: 1.17e-09
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 2244986492 109 KLFIgMVSKKCNENDIRVMFSPFGQIEECRILRGPD-GLSRGCAFVTFSTRAMAQNAIKAMHqSQTMEGCSSPIVVKFA 186
Cdd:cd12366     5 RLFV-VCSKSVTEDDLREAFSPFGEIQDIWVVKDKQtKESKGIAYVKFAKSSQAARAMEEMH-GKCLGDDTKPIKVLIA 81
RRM2_RAVER cd12389
RNA recognition motif 2 (RRM2) found in ribonucleoprotein PTB-binding raver-1, raver-2 and ...
18-81 1.36e-09

RNA recognition motif 2 (RRM2) found in ribonucleoprotein PTB-binding raver-1, raver-2 and similar proteins; This subfamily corresponds to the RRM2 of raver-1 and raver-2. Raver-1 is a ubiquitously expressed heterogeneous nuclear ribonucleoprotein (hnRNP) that serves as a co-repressor of the nucleoplasmic splicing repressor polypyrimidine tract-binding protein (PTB)-directed splicing of select mRNAs. It shuttles between the cytoplasm and the nucleus and can accumulate in the perinucleolar compartment, a dynamic nuclear substructure that harbors PTB. Raver-1 also modulates focal adhesion assembly by binding to the cytoskeletal proteins, including alpha-actinin, vinculin, and metavinculin (an alternatively spliced isoform of vinculin) at adhesion complexes, particularly in differentiated muscle tissue. Raver-2 is a novel member of the heterogeneous nuclear ribonucleoprotein (hnRNP) family. It shows high sequence homology to raver-1. Raver-2 exerts a spatio-temporal expression pattern during embryogenesis and is mainly limited to differentiated neurons and glia cells. Although it displays nucleo-cytoplasmic shuttling in heterokaryons, raver2 localizes to the nucleus in glia cells and neurons. Raver-2 can interact with PTB and may participate in PTB-mediated RNA-processing. However, there is no evidence indicating that raver-2 can bind to cytoplasmic proteins. Both, raver-1 and raver-2, contain three N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), two putative nuclear localization signals (NLS) at the N- and C-termini, a central leucine-rich region, and a C-terminal region harboring two [SG][IL]LGxxP motifs. They binds to RNA through the RRMs. In addition, the two [SG][IL]LGxxP motifs serve as the PTB-binding motifs in raver1. However, raver-2 interacts with PTB through the SLLGEPP motif only.


Pssm-ID: 409823 [Multi-domain]  Cd Length: 77  Bit Score: 54.24  E-value: 1.36e-09
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....
gi 2244986492  18 MFVGQIPRSWSEKELKELFEPYGAVYQINVLrdRSQNPPQSKGCCFVTFYTRKAALEAQNALHN 81
Cdd:cd12389     2 LCVTNLPLSFTEEQFEELVRPYGNVERCFLV--YSEVTGESKGYGFVEYTSKESAIRAKNQLHG 63
RRM_DAZL_BOULE cd12412
RNA recognition motif (RRM) found in AZoospermia (DAZ) autosomal homologs, DAZL (DAZ-like) and ...
17-76 1.37e-09

RNA recognition motif (RRM) found in AZoospermia (DAZ) autosomal homologs, DAZL (DAZ-like) and BOULE; This subfamily corresponds to the RRM domain of two Deleted in AZoospermia (DAZ) autosomal homologs, DAZL (DAZ-like) and BOULE. BOULE is the founder member of the family and DAZL arose from BOULE in an ancestor of vertebrates. The DAZ gene subsequently originated from a duplication transposition of the DAZL gene. Invertebrates contain a single DAZ homolog, BOULE, while vertebrates, other than catarrhine primates, possess both BOULE and DAZL genes. The catarrhine primates possess BOULE, DAZL, and DAZ genes. The family members encode closely related RNA-binding proteins that are required for fertility in numerous organisms. These proteins contain an RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a varying number of copies of a DAZ motif, believed to mediate protein-protein interactions. DAZL and BOULE contain a single copy of the DAZ motif, while DAZ proteins can contain 8-24 copies of this repeat. Although their specific biochemical functions remain to be investigated, DAZL proteins may interact with poly(A)-binding proteins (PABPs), and act as translational activators of specific mRNAs during gametogenesis.


Pssm-ID: 409846 [Multi-domain]  Cd Length: 81  Bit Score: 54.54  E-value: 1.37e-09
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|
gi 2244986492  17 KMFVGQIPRSWSEKELKELFEPYGAVYQINVLRDRSQNppqSKGCCFVTFYTRKAALEAQ 76
Cdd:cd12412     4 RIFVGGIDWDTTEEELREFFSKFGKVKDVKIIKDRAGV---SKGYGFVTFETQEDAEKIQ 60
RRM2_Hu_like cd12376
RNA recognition motif 2 (RRM2) found in the Hu proteins family, Drosophila sex-lethal (SXL), ...
18-97 1.64e-09

RNA recognition motif 2 (RRM2) found in the Hu proteins family, Drosophila sex-lethal (SXL), and similar proteins; This subfamily corresponds to the RRM2 of Hu proteins and SXL. The Hu proteins family represents a group of RNA-binding proteins involved in diverse biological processes. Since the Hu proteins share high homology with the Drosophila embryonic lethal abnormal vision (ELAV) protein, the Hu family is sometimes referred to as the ELAV family. Drosophila ELAV is exclusively expressed in neurons and is required for the correct differentiation and survival of neurons in flies. The neuronal members of the Hu family include Hu-antigen B (HuB or ELAV-2 or Hel-N1), Hu-antigen C (HuC or ELAV-3 or PLE21), and Hu-antigen D (HuD or ELAV-4), which play important roles in neuronal differentiation, plasticity and memory. HuB is also expressed in gonads. Hu-antigen R (HuR or ELAV-1 or HuA) is the ubiquitously expressed Hu family member. It has a variety of biological functions mostly related to the regulation of cellular response to DNA damage and other types of stress. Hu proteins perform their cytoplasmic and nuclear molecular functions by coordinately regulating functionally related mRNAs. In the cytoplasm, Hu proteins recognize and bind to AU-rich RNA elements (AREs) in the 3' untranslated regions (UTRs) of certain target mRNAs, such as GAP-43, vascular epithelial growth factor (VEGF), the glucose transporter GLUT1, eotaxin and c-fos, and stabilize those ARE-containing mRNAs. They also bind and regulate the translation of some target mRNAs, such as neurofilament M, GLUT1, and p27. In the nucleus, Hu proteins function as regulators of polyadenylation and alternative splicing. Each Hu protein contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an ARE. RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions. Also included in this subfamily is the sex-lethal protein (SXL) from Drosophila melanogaster. SXL governs sexual differentiation and X chromosome dosage compensation in flies. It induces female-specific alternative splicing of the transformer (tra) pre-mRNA by binding to the tra uridine-rich polypyrimidine tract at the non-sex-specific 3' splice site during the sex-determination process. SXL binds also to its own pre-mRNA and promotes female-specific alternative splicing. SXL contains an N-terminal Gly/Asn-rich domain that may be responsible for the protein-protein interaction, and tandem RRMs that show high preference to bind single-stranded, uridine-rich target RNA transcripts.


Pssm-ID: 240822 [Multi-domain]  Cd Length: 79  Bit Score: 54.17  E-value: 1.64e-09
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2244986492  18 MFVGQIPRSWSEKELKELFEPYGAVYQINVLRDRSQNPPqsKGCCFVTFYTRKAALEAQNALHNIKTLpGMHHPIQMKPA 97
Cdd:cd12376     3 LYVSGLPKTMTQKELEQLFSQYGRIITSRILRDQLTGVS--RGVGFIRFDKRIEAEEAIKGLNGQKPE-GASEPITVKFA 79
RRM4_RBM28_like cd12416
RNA recognition motif 4 (RRM4) found in RNA-binding protein 28 (RBM28) and similar proteins; ...
23-81 2.00e-09

RNA recognition motif 4 (RRM4) found in RNA-binding protein 28 (RBM28) and similar proteins; This subfamily corresponds to the RRM4 of RBM28 and Nop4p. RBM28 is a specific nucleolar component of the spliceosomal small nuclear ribonucleoproteins (snRNPs), possibly coordinating their transition through the nucleolus. It specifically associates with U1, U2, U4, U5, and U6 small nuclear RNAs (snRNAs), and may play a role in the maturation of both small nuclear and ribosomal RNAs. RBM28 has four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and an extremely acidic region between RRM2 and RRM3. The family also includes nucleolar protein 4 (Nop4p or Nop77p) encoded by YPL043W from Saccharomyces cerevisiae. It is an essential nucleolar protein involved in processing and maturation of 27S pre-rRNA and biogenesis of 60S ribosomal subunits. Nop4p also contains four RRMs.


Pssm-ID: 409850 [Multi-domain]  Cd Length: 98  Bit Score: 54.53  E-value: 2.00e-09
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 2244986492  23 IPRSWSEKELKELF---------EPYGAVYQINVLRDR----SQNPPQSKGCCFVTFYTRKAALEAQNALHN 81
Cdd:cd12416     8 LPKSVDDKKLKKLFlkavkerakKKGVKIKEVKVMRDKkrlnSDGKGRSKGYGFVEFTEHEHALKALRALNN 79
RRM2_Hu cd12652
RNA recognition motif 2 (RRM2) found in the Hu proteins family; This subfamily corresponds to ...
18-97 2.21e-09

RNA recognition motif 2 (RRM2) found in the Hu proteins family; This subfamily corresponds to the RRM2 of Hu proteins family which represents a group of RNA-binding proteins involved in diverse biological processes. Since the Hu proteins share high homology with the Drosophila embryonic lethal abnormal vision (ELAV) protein, the Hu family is sometimes referred to as the ELAV family. Drosophila ELAV is exclusively expressed in neurons and is required for the correct differentiation and survival of neurons in flies. The neuronal members of the Hu family include Hu-antigen B (HuB or ELAV-2 or Hel-N1), Hu-antigen C (HuC or ELAV-3 or PLE21), and Hu-antigen D (HuD or ELAV-4), which play important roles in neuronal differentiation, plasticity and memory. HuB is also expressed in gonads. Hu-antigen R (HuR or ELAV-1 or HuA) is the ubiquitously expressed Hu family member. It has a variety of biological functions mostly related to the regulation of cellular response to DNA damage and other types of stress. Moreover, HuR has an anti-apoptotic function during early cell stress response. It binds to mRNAs and enhances the expression of several anti-apoptotic proteins, such as p21waf1, p53, and prothymosin alpha. HuR also has pro-apoptotic function by promoting apoptosis when cell death is unavoidable. Furthermore, HuR may be important in muscle differentiation, adipogenesis, suppression of inflammatory response and modulation of gene expression in response to chronic ethanol exposure and amino acid starvation. Hu proteins perform their cytoplasmic and nuclear molecular functions by coordinately regulating functionally related mRNAs. In the cytoplasm, Hu proteins recognize and bind to AU-rich RNA elements (AREs) in the 3' untranslated regions (UTRs) of certain target mRNAs, such as GAP-43, vascular epithelial growth factor (VEGF), the glucose transporter GLUT1, eotaxin and c-fos, and stabilize those ARE-containing mRNAs. They also bind and regulate the translation of some target mRNAs, such as neurofilament M, GLUT1, and p27. In the nucleus, Hu proteins function as regulators of polyadenylation and alternative splicing. Each Hu protein contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an ARE. RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions.


Pssm-ID: 410055 [Multi-domain]  Cd Length: 79  Bit Score: 53.87  E-value: 2.21e-09
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2244986492  18 MFVGQIPRSWSEKELKELFEPYGAVYQINVLRDrsQNPPQSKGCCFVTFYTRKAALEAQNALHNiKTLPGMHHPIQMKPA 97
Cdd:cd12652     3 LYVSGLPKTMTQKELEQLFSQFGRIITSRILCD--NVTGLSRGVGFIRFDKRVEAERAIKALNG-TIPPGATEPITVKFA 79
RRM_CIRBP_RBM3 cd12449
RNA recognition motif (RRM) found in cold inducible RNA binding protein (CIRBP), RNA binding ...
108-176 2.22e-09

RNA recognition motif (RRM) found in cold inducible RNA binding protein (CIRBP), RNA binding motif protein 3 (RBM3) and similar proteins; This subfamily corresponds to the RRM domain of two structurally related heterogenous nuclear ribonucleoproteins, CIRBP (also termed CIRP or A18 hnRNP) and RBM3 (also termed RNPL), both of which belong to a highly conserved cold shock proteins family. The cold shock proteins can be induced after exposure to a moderate cold-shock and other cellular stresses such as UV radiation and hypoxia. CIRBP and RBM3 may function in posttranscriptional regulation of gene expression by binding to different transcripts, thus allowing the cell to response rapidly to environmental signals. However, the kinetics and degree of cold induction are different between CIRBP and RBM3. Tissue distribution of their expression is different. CIRBP and RBM3 may be differentially regulated under physiological and stress conditions and may play distinct roles in cold responses of cells. CIRBP, also termed glycine-rich RNA-binding protein CIRP, is localized in the nucleus and mediates the cold-induced suppression of cell cycle progression. CIRBP also binds DNA and possibly serves as a chaperone that assists in the folding/unfolding, assembly/disassembly and transport of various proteins. RBM3 may enhance global protein synthesis and the formation of active polysomes while reducing the levels of ribonucleoprotein complexes containing microRNAs. RBM3 may also serve to prevent the loss of muscle mass by its ability to decrease cell death. Furthermore, RBM3 may be essential for cell proliferation and mitosis. Both, CIRBP and RBM3, contain an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), that is involved in RNA binding, and C-terminal glycine-rich domain (RGG motif) that probably enhances RNA-binding via protein-protein and/or protein-RNA interactions. Like CIRBP, RBM3 can also bind to both RNA and DNA via its RRM domain.


Pssm-ID: 409883 [Multi-domain]  Cd Length: 80  Bit Score: 54.02  E-value: 2.22e-09
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2244986492 108 RKLFIGMVSKKCNENDIRVMFSPFGQIEECRILRGPD-GLSRGCAFVTFSTRAMAQNAIKAMHqSQTMEG 176
Cdd:cd12449     1 GKLFVGGLSFDTNEQSLEEVFSKYGQISEVVVVKDREtQRSRGFGFVTFENPDDAKDAMMAMN-GKSLDG 69
RRM2_HuB cd12775
RNA recognition motif 2 (RRM2) found in vertebrate Hu-antigen B (HuB); This subgroup ...
104-186 2.54e-09

RNA recognition motif 2 (RRM2) found in vertebrate Hu-antigen B (HuB); This subgroup corresponds to the RRM2 of HuB, also termed ELAV-like protein 2 (ELAV-2), or ELAV-like neuronal protein 1, or nervous system-specific RNA-binding protein Hel-N1 (Hel-N1), one of the neuronal members of the Hu family. The neuronal Hu proteins play important roles in neuronal differentiation, plasticity and memory. HuB is also expressed in gonads. It is up-regulated during neuronal differentiation of embryonic carcinoma P19 cells. Like other Hu proteins, HuB contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an AU-rich RNA element (ARE). RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions.


Pssm-ID: 410168 [Multi-domain]  Cd Length: 84  Bit Score: 53.96  E-value: 2.54e-09
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2244986492 104 AVEDRKLFIGMVSKKCNENDIRVMFSPFGQIEECRILRGP-DGLSRGCAFVTFSTRAMAQNAIKAMHqSQTMEGCSSPIV 182
Cdd:cd12775     2 SIRDANLYVSGLPKTMTQKELEQLFSQYGRIITSRILVDQvTGVSRGVGFIRFDKRIEAEEAIKGLN-GQKPPGATEPIT 80

                  ....
gi 2244986492 183 VKFA 186
Cdd:cd12775    81 VKFA 84
RRM3_Prp24 cd12298
RNA recognition motif 3 in fungal pre-messenger RNA splicing protein 24 (Prp24) and similar ...
108-167 4.33e-09

RNA recognition motif 3 in fungal pre-messenger RNA splicing protein 24 (Prp24) and similar proteins; This subfamily corresponds to the RRM3 of Prp24, also termed U4/U6 snRNA-associated-splicing factor PRP24 (U4/U6 snRNP), an RNA-binding protein with four well conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). It facilitates U6 RNA base-pairing with U4 RNA during spliceosome assembly. Prp24 specifically binds free U6 RNA primarily with RRMs 1 and 2 and facilitates pairing of U6 RNA bases with U4 RNA bases. Additionally, it may also be involved in dissociation of the U4/U6 complex during spliceosome activation.


Pssm-ID: 409739 [Multi-domain]  Cd Length: 78  Bit Score: 53.03  E-value: 4.33e-09
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....
gi 2244986492 108 RKLFIGMVSKKCNENDIRVMFSPFGQIEECRILRGPDG----LSRGCAFVTFSTRAMAQNAIKA 167
Cdd:cd12298     1 REIRVRNLDFELDEEALRGIFEKFGEIESINIPKKQKNrkgrHNNGFAFVTFEDADSAESALQL 64
RRM3_NGR1_NAM8_like cd12346
RNA recognition motif 3 (RRM3) found in yeast negative growth regulatory protein NGR1 (RBP1), ...
110-169 4.97e-09

RNA recognition motif 3 (RRM3) found in yeast negative growth regulatory protein NGR1 (RBP1), yeast protein NAM8 and similar proteins; This subfamily corresponds to the RRM3 of NGR1 and NAM8. NGR1, also termed RNA-binding protein RBP1, is a putative glucose-repressible protein that binds both RNA and single-stranded DNA (ssDNA) in yeast. It may function in regulating cell growth in early log phase, possibly through its participation in RNA metabolism. NGR1 contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), followed by a glutamine-rich stretch that may be involved in transcriptional activity. In addition, NGR1 has an asparagine-rich region near the carboxyl terminus which also harbors a methionine-rich region. The family also includes protein NAM8, which is a putative RNA-binding protein that acts as a suppressor of mitochondrial splicing deficiencies when overexpressed in yeast. It may be a non-essential component of the mitochondrial splicing machinery. Like NGR1, NAM8 contains two RRMs.


Pssm-ID: 409782 [Multi-domain]  Cd Length: 72  Bit Score: 52.71  E-value: 4.97e-09
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|
gi 2244986492 110 LFIGMVSKKCNENDIRVMFSPFGQIEECRIlrgPDGlsRGCAFVTFSTRAMAQNAIKAMH 169
Cdd:cd12346     4 VFVGGLDPNVTEEDLRVLFGPFGEIVYVKI---PPG--KGCGFVQFVNRASAEAAIQKLQ 58
RRM2_HuD cd12774
RNA recognition motif 2 (RRM2) found in vertebrate Hu-antigen D (HuD); This subgroup ...
104-186 5.33e-09

RNA recognition motif 2 (RRM2) found in vertebrate Hu-antigen D (HuD); This subgroup corresponds to the RRM2 of HuD, also termed ELAV-like protein 4 (ELAV-4), or paraneoplastic encephalomyelitis antigen HuD, one of the neuronal members of the Hu family. The neuronal Hu proteins play important roles in neuronal differentiation, plasticity and memory. HuD has been implicated in various aspects of neuronal function, such as the commitment and differentiation of neuronal precursors as well as synaptic remodeling in mature neurons. HuD also functions as an important regulator of mRNA expression in neurons by interacting with AU-rich RNA element (ARE) and stabilizing multiple transcripts. Moreover, HuD regulates the nuclear processing/stability of N-myc pre-mRNA in neuroblastoma cells and also regulates the neurite elongation and morphological differentiation. HuD specifically binds poly(A) RNA. Like other Hu proteins, HuD contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an ARE. RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions.


Pssm-ID: 410167 [Multi-domain]  Cd Length: 84  Bit Score: 52.80  E-value: 5.33e-09
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2244986492 104 AVEDRKLFIGMVSKKCNENDIRVMFSPFGQIEECRILRGP-DGLSRGCAFVTFSTRAMAQNAIKAMHqSQTMEGCSSPIV 182
Cdd:cd12774     2 SIRDANLYVSGLPKTMTQKELEQLFSQYGRIITSRILVDQvTGVSRGVGFIRFDKRIEAEEAIKGLN-GQKPSGATEPIT 80

                  ....
gi 2244986492 183 VKFA 186
Cdd:cd12774    81 VKFA 84
RRM1_hnRNPR_like cd12249
RNA recognition motif 1 (RRM1) found in heterogeneous nuclear ribonucleoprotein R (hnRNP R) ...
110-169 5.75e-09

RNA recognition motif 1 (RRM1) found in heterogeneous nuclear ribonucleoprotein R (hnRNP R) and similar proteins; This subfamily corresponds to the RRM1 in hnRNP R, hnRNP Q, APOBEC-1 complementation factor (ACF), and dead end protein homolog 1 (DND1). hnRNP R is a ubiquitously expressed nuclear RNA-binding protein that specifically binds mRNAs with a preference for poly(U) stretches. It has been implicated in mRNA processing and mRNA transport, and also acts as a regulator to modify binding to ribosomes and RNA translation. hnRNP Q is also a ubiquitously expressed nuclear RNA-binding protein. It has been identified as a component of the spliceosome complex, as well as a component of the apobec-1 editosome, and has been implicated in the regulation of specific mRNA transport. ACF is an RNA-binding subunit of a core complex that interacts with apoB mRNA to facilitate C to U RNA editing. It may also act as an apoB mRNA recognition factor and chaperone, and play a key role in cell growth and differentiation. DND1 is essential for maintaining viable germ cells in vertebrates. It interacts with the 3'-untranslated region (3'-UTR) of multiple messenger RNAs (mRNAs) and prevents micro-RNA (miRNA) mediated repression of mRNA. This family also includes two functionally unknown RNA-binding proteins, RBM46 and RBM47. All members in this family, except for DND1, contain three conserved RNA recognition motifs (RRMs); DND1 harbors only two RRMs.


Pssm-ID: 409695 [Multi-domain]  Cd Length: 78  Bit Score: 52.59  E-value: 5.75e-09
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|
gi 2244986492 110 LFIGMVSKKCNENDIRVMFSPFGQIEECRILRGPDGLSRGCAFVTFSTRAMAQNAIKAMH 169
Cdd:cd12249     4 VFVGKIPRDVFEDELVPLFEKCGKIYELRLMMDFSGLNRGYAFVTYTNKEAAQRAVKTLN 63
RRM_eIF3G_like cd12408
RNA recognition motif (RRM) found in eukaryotic translation initiation factor 3 subunit G ...
115-169 6.31e-09

RNA recognition motif (RRM) found in eukaryotic translation initiation factor 3 subunit G (eIF-3G) and similar proteins; This subfamily corresponds to the RRM of eIF-3G and similar proteins. eIF-3G, also termed eIF-3 subunit 4, or eIF-3-delta, or eIF3-p42, or eIF3-p44, is the RNA-binding subunit of eIF3, a large multisubunit complex that plays a central role in the initiation of translation by binding to the 40 S ribosomal subunit and promoting the binding of methionyl-tRNAi and mRNA. eIF-3G binds 18 S rRNA and beta-globin mRNA, and therefore appears to be a nonspecific RNA-binding protein. eIF-3G is one of the cytosolic targets and interacts with mature apoptosis-inducing factor (AIF). eIF-3G contains one RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). This family also includes yeast eIF3-p33, a homolog of vertebrate eIF-3G, plays an important role in the initiation phase of protein synthesis in yeast. It binds both, mRNA and rRNA, fragments due to an RRM near its C-terminus.


Pssm-ID: 409842 [Multi-domain]  Cd Length: 76  Bit Score: 52.51  E-value: 6.31e-09
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....*.
gi 2244986492 115 VSKKCNENDIRVMFSPFGQIEECRILRGPD-GLSRGCAFVTFSTRAMAQNAIKAMH 169
Cdd:cd12408     7 LSEDATEEDLRELFRPFGPISRVYLAKDKEtGQSKGFAFVTFETREDAERAIEKLN 62
RRM1_hnRNPR cd12482
RNA recognition motif 1 (RRM1) found in vertebrate heterogeneous nuclear ribonucleoprotein R ...
17-89 6.45e-09

RNA recognition motif 1 (RRM1) found in vertebrate heterogeneous nuclear ribonucleoprotein R (hnRNP R); This subgroup corresponds to the RRM1 of hnRNP R, which is a ubiquitously expressed nuclear RNA-binding protein that specifically binds mRNAs with a preference for poly(U) stretches. Upon binding of RNA, hnRNP R forms oligomers, most probably dimers. hnRNP R has been implicated in mRNA processing and mRNA transport, and also acts as a regulator to modify binding to ribosomes and RNA translation. It is predominantly located in axons of motor neurons and to a much lower degree in sensory axons. In axons of motor neurons, it also functions as a cytosolic protein and interacts with wild type of survival motor neuron (SMN) proteins directly, further providing a molecular link between SMN and the spliceosome. Moreover, hnRNP R plays an important role in neural differentiation and development, and in retinal development and light-elicited cellular activities. hnRNP R contains an acidic auxiliary N-terminal region, followed by two well defined and one degenerated RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a C-terminal RGG motif; it binds RNA through its RRM domains.


Pssm-ID: 409909 [Multi-domain]  Cd Length: 79  Bit Score: 52.67  E-value: 6.45e-09
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 2244986492  17 KMFVGQIPRSWSEKELKELFEPYGAVYQINVLRDRSQNppQSKGCCFVTFYTRKAALEAQNALHNIKTLPGMH 89
Cdd:cd12482     3 EVFVGKIPRDLYEDELVPLFEKAGPIWDLRLMMDPLSG--QNRGYAFITFCNKEAAQEAVKLCDNYEIRPGKH 73
RRM_Nop6 cd12400
RNA recognition motif (RRM) found in Saccharomyces cerevisiae nucleolar protein 6 (Nop6) and ...
19-90 6.62e-09

RNA recognition motif (RRM) found in Saccharomyces cerevisiae nucleolar protein 6 (Nop6) and similar proteins; This subfamily corresponds to the RRM of Nop6, also known as Ydl213c, a component of 90S pre-ribosomal particles in yeast S. cerevisiae. It is enriched in the nucleolus and is required for 40S ribosomal subunit biogenesis. Nop6 is a non-essential putative RNA-binding protein with two N-terminal putative nuclear localisation sequences (NLS-1 and NLS-2) and an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). It binds to the pre-rRNA early during transcription and plays an essential role in pre-rRNA processing.


Pssm-ID: 409834 [Multi-domain]  Cd Length: 74  Bit Score: 52.22  E-value: 6.62e-09
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 2244986492  19 FVGQIPRSWSEKELKELFEPYGAVYQINVLRDRSQNppQSKGCCFVTFYTRKAaleAQNALHniktlpgMHH 90
Cdd:cd12400     4 FVGNLPYDTTAEDLKEHFKKAGEPPSVRLLTDKKTG--KSKGCAFVEFDNQKA---LQKALK-------LHH 63
RRM3_RBM19_RRM2_MRD1 cd12316
RNA recognition motif 3 (RRM3) found in RNA-binding protein 19 (RBM19) and RNA recognition ...
17-82 8.31e-09

RNA recognition motif 3 (RRM3) found in RNA-binding protein 19 (RBM19) and RNA recognition motif 2 found in multiple RNA-binding domain-containing protein 1 (MRD1); This subfamily corresponds to the RRM3 of RBM19 and RRM2 of MRD1. RBM19, also termed RNA-binding domain-1 (RBD-1), is a nucleolar protein conserved in eukaryotes involved in ribosome biogenesis by processing rRNA and is essential for preimplantation development. It has a unique domain organization containing 6 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). MRD1 is encoded by a novel yeast gene MRD1 (multiple RNA-binding domain). It is well conserved in yeast and its homologs exist in all eukaryotes. MRD1 is present in the nucleolus and the nucleoplasm. It interacts with the 35 S precursor rRNA (pre-rRNA) and U3 small nucleolar RNAs (snoRNAs). It is essential for the initial processing at the A0-A2 cleavage sites in the 35 S pre-rRNA. MRD1 contains 5 conserved RRMs, which may play an important structural role in organizing specific rRNA processing events.


Pssm-ID: 409755 [Multi-domain]  Cd Length: 74  Bit Score: 51.96  E-value: 8.31e-09
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 2244986492  17 KMFVGQIPRSWSEKELKELFEPYGAVYQINVLRDRSQNppQSKGCCFVTFYTRKAALEAQNALHNI 82
Cdd:cd12316     1 RLFVRNLPFTATEDELRELFEAFGKISEVHIPLDKQTK--RSKGFAFVLFVIPEDAVKAYQELDGS 64
PABP-1234 TIGR01628
polyadenylate binding protein, human types 1, 2, 3, 4 family; These eukaryotic proteins ...
18-168 8.59e-09

polyadenylate binding protein, human types 1, 2, 3, 4 family; These eukaryotic proteins recognize the poly-A of mRNA and consists of four tandem RNA recognition domains at the N-terminus (rrm: pfam00076) followed by a PABP-specific domain (pfam00658) at the C-terminus. The protein is involved in the transport of mRNA's from the nucleus to the cytoplasm. There are four paralogs in Homo sapiens which are expressed in testis, platelets, broadly expressed and of unknown tissue range.


Pssm-ID: 130689 [Multi-domain]  Cd Length: 562  Bit Score: 57.51  E-value: 8.59e-09
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2244986492  18 MFVGQIPRSWSEKELKELFEPYGAVYQINVLRDrsQNPPQSKGCCFVTFYTRKAALEAQNALhNIKTLPGMHHPIQMKPA 97
Cdd:TIGR01628   3 LYVGDLDPDVTEAKLYDLFKPFGPVLSVRVCRD--SVTRRSLGYGYVNFQNPADAERALETM-NFKRLGGKPIRIMWSQR 79
                          90       100       110       120       130       140       150
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 2244986492  98 D-SEKSNAVEDrkLFIGMVSKKCNENDIRVMFSPFGQIEECRILRGPDGLSRGCAFVTFSTRAMAQNAIKAM 168
Cdd:TIGR01628  80 DpSLRRSGVGN--IFVKNLDKSVDNKALFDTFSKFGNILSCKVATDENGKSRGYGFVHFEKEESAKAAIQKV 149
RRM2_4_MRN1 cd12262
RNA recognition motif 2 (RRM2) and 4 (RRM4) found in RNA-binding protein MRN1 and similar ...
19-89 1.34e-08

RNA recognition motif 2 (RRM2) and 4 (RRM4) found in RNA-binding protein MRN1 and similar proteins; This subgroup corresponds to the RRM2 and RRM4 of MRN1, also termed multicopy suppressor of RSC-NHP6 synthetic lethality protein 1, or post-transcriptional regulator of 69 kDa, and is an RNA-binding protein found in yeast. Although its specific biological role remains unclear, MRN1 might be involved in translational regulation. Members in this family contain four copies of conserved RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 409706 [Multi-domain]  Cd Length: 78  Bit Score: 51.63  E-value: 1.34e-08
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 2244986492  19 FVGQIPRSWSEKELKELFEPYGAVYQINVLRDrsqnppqsKGCCFVTFytrkaaLEAQNALHNIKTLPGMH 89
Cdd:cd12262     7 YVGNLDDSLTEEEIRGILEKYGEIESIKILKE--------KNCAFVNY------LNIANAIKAVQELPIKN 63
RRM1_hnRNPA_like cd12578
RNA recognition motif 1 (RRM1) found in heterogeneous nuclear ribonucleoprotein A subfamily; ...
109-167 1.40e-08

RNA recognition motif 1 (RRM1) found in heterogeneous nuclear ribonucleoprotein A subfamily; This subfamily corresponds to the RRM1 in hnRNP A0, hnRNP A1, hnRNP A2/B1, hnRNP A3 and similar proteins. hnRNP A0 is a low abundance hnRNP protein that has been implicated in mRNA stability in mammalian cells. It has been identified as the substrate for MAPKAP-K2 and may be involved in the lipopolysaccharide (LPS)-induced post-transcriptional regulation of tumor necrosis factor-alpha (TNF-alpha), cyclooxygenase 2 (COX-2) and macrophage inflammatory protein 2 (MIP-2). hnRNP A1 is an abundant eukaryotic nuclear RNA-binding protein that may modulate splice site selection in pre-mRNA splicing. hnRNP A2/B1 is an RNA trafficking response element-binding protein that interacts with the hnRNP A2 response element (A2RE). Many mRNAs, such as myelin basic protein (MBP), myelin-associated oligodendrocytic basic protein (MOBP), carboxyanhydrase II (CAII), microtubule-associated protein tau, and amyloid precursor protein (APP) are trafficked by hnRNP A2/B1. hnRNP A3 is also a RNA trafficking response element-binding protein that participates in the trafficking of A2RE-containing RNA. The hnRNP A subfamily is characterized by two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), followed by a long glycine-rich region at the C-terminus.


Pssm-ID: 409992 [Multi-domain]  Cd Length: 78  Bit Score: 51.67  E-value: 1.40e-08
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|
gi 2244986492 109 KLFIGMVSKKCNENDIRVMFSPFGQIEECRILRGPDG-LSRGCAFVTFSTRAMAQNAIKA 167
Cdd:cd12578     1 KLFIGGLSYETTDDSLRNHFEQWGEITDVVVMKDPATkRSRGFGFVTYSSASEVDAAMNA 60
RRM2_NsCP33_like cd21608
RNA recognition motif 2 (RRM2) found in Nicotiana sylvestris chloroplastic 33 kDa ...
17-77 1.85e-08

RNA recognition motif 2 (RRM2) found in Nicotiana sylvestris chloroplastic 33 kDa ribonucleoprotein (NsCP33) and similar proteins; The family includes NsCP33, Arabidopsis thaliana chloroplastic 31 kDa ribonucleoprotein (CP31A) and mitochondrial glycine-rich RNA-binding protein 2 (AtGR-RBP2). NsCP33 may be involved in splicing and/or processing of chloroplast RNA's. AtCP31A, also called RNA-binding protein 1/2/3 (AtRBP33), or RNA-binding protein CP31A, or RNA-binding protein RNP-T, or RNA-binding protein cp31, is required for specific RNA editing events in chloroplasts and stabilizes specific chloroplast mRNAs, as well as for normal chloroplast development under cold stress conditions by stabilizing transcripts of numerous mRNAs under these conditions. CP31A may modulate telomere replication through RNA binding domains. AtGR-RBP2, also called AtRBG2, or glycine-rich protein 2 (AtGRP2), or mitochondrial RNA-binding protein 1a (At-mRBP1a), plays a role in RNA transcription or processing during stress. It binds RNAs and DNAs sequence with a preference to single-stranded nucleic acids. AtGR-RBP2 displays strong affinity to poly(U) sequence. It exerts cold and freezing tolerance, probably by exhibiting an RNA chaperone activity during the cold and freezing adaptation process. Some members in this family contain two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The model corresponds to the second RRM motif.


Pssm-ID: 410187 [Multi-domain]  Cd Length: 76  Bit Score: 51.02  E-value: 1.85e-08
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....
gi 2244986492  17 KMFVGQIPRSWSEKELKELFEPYGAVYQINVLRDRSQNppQSKGCCFVTFYT---RKAALEAQN 77
Cdd:cd21608     1 KLYVGNLSWDTTEDDLRDLFSEFGEVESAKVITDRETG--RSRGFGFVTFSTaeaAEAAIDALN 62
RRM3_RBM19_RRM2_MRD1 cd12316
RNA recognition motif 3 (RRM3) found in RNA-binding protein 19 (RBM19) and RNA recognition ...
109-171 2.41e-08

RNA recognition motif 3 (RRM3) found in RNA-binding protein 19 (RBM19) and RNA recognition motif 2 found in multiple RNA-binding domain-containing protein 1 (MRD1); This subfamily corresponds to the RRM3 of RBM19 and RRM2 of MRD1. RBM19, also termed RNA-binding domain-1 (RBD-1), is a nucleolar protein conserved in eukaryotes involved in ribosome biogenesis by processing rRNA and is essential for preimplantation development. It has a unique domain organization containing 6 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). MRD1 is encoded by a novel yeast gene MRD1 (multiple RNA-binding domain). It is well conserved in yeast and its homologs exist in all eukaryotes. MRD1 is present in the nucleolus and the nucleoplasm. It interacts with the 35 S precursor rRNA (pre-rRNA) and U3 small nucleolar RNAs (snoRNAs). It is essential for the initial processing at the A0-A2 cleavage sites in the 35 S pre-rRNA. MRD1 contains 5 conserved RRMs, which may play an important structural role in organizing specific rRNA processing events.


Pssm-ID: 409755 [Multi-domain]  Cd Length: 74  Bit Score: 50.80  E-value: 2.41e-08
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....
gi 2244986492 109 KLFIGMVSKKCNENDIRVMFSPFGQIEECRI-LRGPDGLSRGCAFVTFSTRAMAQNAIKAMHQS 171
Cdd:cd12316     1 RLFVRNLPFTATEDELRELFEAFGKISEVHIpLDKQTKRSKGFAFVLFVIPEDAVKAYQELDGS 64
RRM_BOULE cd12673
RNA recognition motif (RRM) found in protein BOULE; This subgroup corresponds to the RRM of ...
109-174 2.53e-08

RNA recognition motif (RRM) found in protein BOULE; This subgroup corresponds to the RRM of BOULE, the founder member of the human DAZ gene family. Invertebrates contain a single BOULE, while vertebrates, other than catarrhine primates, possess both BOULE and DAZL genes. The catarrhine primates possess BOULE, DAZL, and DAZ genes. BOULE encodes an RNA-binding protein containing an RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a single copy of the DAZ motif. Although its specific biochemical functions remains to be investigated, BOULE protein may interact with poly(A)-binding proteins (PABPs), and act as translational activators of specific mRNAs during gametogenesis.


Pssm-ID: 410074 [Multi-domain]  Cd Length: 81  Bit Score: 51.04  E-value: 2.53e-08
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 2244986492 109 KLFIGMVSKKCNENDIRVMFSPFGQIEECRILRGPDGLSRGCAFVTFSTRAMAQnaiKAMHQSQTM 174
Cdd:cd12673     4 RIFVGGIDFKTNENDLRKFFAQYGSVKEVKIVNDRAGVSKGYGFITFETQEDAQ---KILQEAEKL 66
half-pint TIGR01645
poly-U binding splicing factor, half-pint family; The proteins represented by this model ...
17-169 2.94e-08

poly-U binding splicing factor, half-pint family; The proteins represented by this model contain three RNA recognition motifs (rrm: pfam00076) and have been characterized as poly-pyrimidine tract binding proteins associated with RNA splicing factors. In the case of PUF60 (GP|6176532), in complex with p54, and in the presence of U2AF, facilitates association of U2 snRNP with pre-mRNA.


Pssm-ID: 130706 [Multi-domain]  Cd Length: 612  Bit Score: 55.85  E-value: 2.94e-08
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2244986492  17 KMFVGQIPRSWSEKELKELFEPYGAVYQINVLRDRSQNppQSKGCCFVTFYTRKAALEAQNALH-------NIKT----- 84
Cdd:TIGR01645 109 RVYVGSISFELREDTIRRAFDPFGPIKSINMSWDPATG--KHKGFAFVEYEVPEAAQLALEQMNgqmlggrNIKVgrpsn 186
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2244986492  85 LPGMHHPIQMKPADSEKSNavedrKLFIGMVSKKCNENDIRVMFSPFGQIEECRILRGPDGLS-RGCAFVTFSTRAMAQN 163
Cdd:TIGR01645 187 MPQAQPIIDMVQEEAKKFN-----RIYVASVHPDLSETDIKSVFEAFGEIVKCQLARAPTGRGhKGYGFIEYNNLQSQSE 261

                  ....*.
gi 2244986492 164 AIKAMH 169
Cdd:TIGR01645 262 AIASMN 267
RRM_RBM22 cd12224
RNA recognition motif (RRM) found in Pre-mRNA-splicing factor RBM22 and similar proteins; This ...
110-176 3.24e-08

RNA recognition motif (RRM) found in Pre-mRNA-splicing factor RBM22 and similar proteins; This subgroup corresponds to the RRM of RBM22 (also known as RNA-binding motif protein 22, or Zinc finger CCCH domain-containing protein 16), a newly discovered RNA-binding motif protein which belongs to the SLT11 gene family. SLT11 gene encoding protein (Slt11p) is a splicing factor in yeast, which is required for spliceosome assembly. Slt11p has two distinct biochemical properties: RNA-annealing and RNA-binding activities. RBM22 is the homolog of SLT11 in vertebrate. It has been reported to be involved in pre-splicesome assembly and to interact with the Ca2+-signaling protein ALG-2. It also plays an important role in embryogenesis. RBM22 contains a conserved RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), a zinc finger of the unusual type C-x8-C-x5-C-x3-H, and a C-terminus that is unusually rich in the amino acids Gly and Pro, including sequences of tetraprolines.


Pssm-ID: 409671 [Multi-domain]  Cd Length: 74  Bit Score: 50.36  E-value: 3.24e-08
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 2244986492 110 LFIGMVSKKCNENDIRVMFSPFGQIEECRILRgpdglSRGCAFVTFSTRAMAQNAIKAMHQSQTMEG 176
Cdd:cd12224     4 LYVGGLGDKITEKDLRDHFYQFGEIRSITVVA-----RQQCAFVQFTTRQAAERAAERTFNKLIIKG 65
RRM_eIF3G_like cd12408
RNA recognition motif (RRM) found in eukaryotic translation initiation factor 3 subunit G ...
20-80 3.36e-08

RNA recognition motif (RRM) found in eukaryotic translation initiation factor 3 subunit G (eIF-3G) and similar proteins; This subfamily corresponds to the RRM of eIF-3G and similar proteins. eIF-3G, also termed eIF-3 subunit 4, or eIF-3-delta, or eIF3-p42, or eIF3-p44, is the RNA-binding subunit of eIF3, a large multisubunit complex that plays a central role in the initiation of translation by binding to the 40 S ribosomal subunit and promoting the binding of methionyl-tRNAi and mRNA. eIF-3G binds 18 S rRNA and beta-globin mRNA, and therefore appears to be a nonspecific RNA-binding protein. eIF-3G is one of the cytosolic targets and interacts with mature apoptosis-inducing factor (AIF). eIF-3G contains one RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). This family also includes yeast eIF3-p33, a homolog of vertebrate eIF-3G, plays an important role in the initiation phase of protein synthesis in yeast. It binds both, mRNA and rRNA, fragments due to an RRM near its C-terminus.


Pssm-ID: 409842 [Multi-domain]  Cd Length: 76  Bit Score: 50.20  E-value: 3.36e-08
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|.
gi 2244986492  20 VGQIPRSWSEKELKELFEPYGAVYQINVLRDRSQNppQSKGCCFVTFYTRKAALEAQNALH 80
Cdd:cd12408     4 VTNLSEDATEEDLRELFRPFGPISRVYLAKDKETG--QSKGFAFVTFETREDAERAIEKLN 62
RRM4_I_PABPs cd12381
RNA recognition motif 4 (RRM4) found in type I polyadenylate-binding proteins; This subfamily ...
120-186 3.37e-08

RNA recognition motif 4 (RRM4) found in type I polyadenylate-binding proteins; This subfamily corresponds to the RRM4 of type I poly(A)-binding proteins (PABPs), highly conserved proteins that bind to the poly(A) tail present at the 3' ends of most eukaryotic mRNAs. They have been implicated in theThe CD corresponds to the RRM. regulation of poly(A) tail length during the polyadenylation reaction, translation initiation, mRNA stabilization by influencing the rate of deadenylation and inhibition of mRNA decapping. The family represents type I polyadenylate-binding proteins (PABPs), including polyadenylate-binding protein 1 (PABP-1 or PABPC1), polyadenylate-binding protein 3 (PABP-3 or PABPC3), polyadenylate-binding protein 4 (PABP-4 or APP-1 or iPABP), polyadenylate-binding protein 5 (PABP-5 or PABPC5), polyadenylate-binding protein 1-like (PABP-1-like or PABPC1L), polyadenylate-binding protein 1-like 2 (PABPC1L2 or RBM32), polyadenylate-binding protein 4-like (PABP-4-like or PABPC4L), yeast polyadenylate-binding protein, cytoplasmic and nuclear (PABP or ACBP-67), and similar proteins. PABP-1 is an ubiquitously expressed multifunctional protein that may play a role in 3' end formation of mRNA, translation initiation, mRNA stabilization, protection of poly(A) from nuclease activity, mRNA deadenylation, inhibition of mRNA decapping, and mRNP maturation. Although PABP-1 is thought to be a cytoplasmic protein, it is also found in the nucleus. PABP-1 may be involved in nucleocytoplasmic trafficking and utilization of mRNP particles. PABP-1 contains four copies of RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), a less well conserved linker region, and a proline-rich C-terminal conserved domain (CTD). PABP-3 is a testis-specific poly(A)-binding protein specifically expressed in round spermatids. It is mainly found in mammalian and may play an important role in the testis-specific regulation of mRNA homeostasis. PABP-3 shows significant sequence similarity to PABP-1. However, it binds to poly(A) with a lower affinity than PABP-1. Moreover, PABP-1 possesses an A-rich sequence in its 5'-UTR and allows binding of PABP and blockage of translation of its own mRNA. In contrast, PABP-3 lacks the A-rich sequence in its 5'-UTR. PABP-4 is an inducible poly(A)-binding protein (iPABP) that is primarily localized to the cytoplasm. It shows significant sequence similarity to PABP-1 as well. The RNA binding properties of PABP-1 and PABP-4 appear to be identical. PABP-5 is encoded by PABPC5 gene within the X-specific subinterval, and expressed in fetal brain and in a range of adult tissues in mammalian, such as ovary and testis. It may play an important role in germ cell development. Moreover, unlike other PABPs, PABP-5 contains only four RRMs, but lacks both the linker region and the CTD. PABP-1-like and PABP-1-like 2 are the orthologs of PABP-1. PABP-4-like is the ortholog of PABP-5. Their cellular functions remain unclear. The family also includes the yeast PABP, a conserved poly(A) binding protein containing poly(A) tails that can be attached to the 3'-ends of mRNAs. The yeast PABP and its homologs may play important roles in the initiation of translation and in mRNA decay. Like vertebrate PABP-1, the yeast PABP contains four RRMs, a linker region, and a proline-rich CTD as well. The first two RRMs are mainly responsible for specific binding to poly(A). The proline-rich region may be involved in protein-protein interactions.


Pssm-ID: 409815 [Multi-domain]  Cd Length: 79  Bit Score: 50.35  E-value: 3.37e-08
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 2244986492 120 NENDIRVMFSPFGQIEECRILRGPDGLSRGCAFVTFSTRAMAQNAIKAMHQSqtMEGcSSPIVVKFA 186
Cdd:cd12381    14 DDEKLREEFSPFGTITSAKVMTDEGGRSKGFGFVCFSSPEEATKAVTEMNGR--IIG-GKPLYVALA 77
RRM3_Nop4p cd12676
RNA recognition motif 3 (RRM3) found in yeast nucleolar protein 4 (Nop4p) and similar proteins; ...
107-179 5.83e-08

RNA recognition motif 3 (RRM3) found in yeast nucleolar protein 4 (Nop4p) and similar proteins; This subgroup corresponds to the RRM3 of Nop4p (also known as Nop77p), encoded by YPL043W from Saccharomyces cerevisiae. It is an essential nucleolar protein involved in processing and maturation of 27S pre-rRNA and biogenesis of 60S ribosomal subunits. Nop4p has four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 410077 [Multi-domain]  Cd Length: 107  Bit Score: 50.50  E-value: 5.83e-08
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 2244986492 107 DRKLFIGMVSKKCNENDIRVMFSPFGQIEECRILRGPD-GLSRGCAFVTFSTRAMAQNAIKAMHQSQTMEGCSS 179
Cdd:cd12676     1 GRTLFVRNLPFDATEDELYSHFSQFGPLKYARVVKDPAtGRSKGTAFVKFKNKEDADNCLSAAPEAQSTSLLEK 74
RRM2_Hrp1p cd12330
RNA recognition motif 2 (RRM2) found in yeast nuclear polyadenylated RNA-binding protein 4 ...
17-97 6.41e-08

RNA recognition motif 2 (RRM2) found in yeast nuclear polyadenylated RNA-binding protein 4 (Hrp1p or Nab4p) and similar proteins; This subfamily corresponds to the RRM1 of Hrp1p and similar proteins. Hrp1p or Nab4p, also termed cleavage factor IB (CFIB), is a sequence-specific trans-acting factor that is essential for mRNA 3'-end formation in yeast Saccharomyces cerevisiae. It can be UV cross-linked to RNA and specifically recognizes the (UA)6 RNA element required for both, the cleavage and poly(A) addition steps. Moreover, Hrp1p can shuttle between the nucleus and the cytoplasm, and play an additional role in the export of mRNAs to the cytoplasm. Hrp1p also interacts with Rna15p and Rna14p, two components of CF1A. In addition, Hrp1p functions as a factor directly involved in modulating the activity of the nonsense-mediated mRNA decay (NMD) pathway; it binds specifically to a downstream sequence element (DSE)-containing RNA and interacts with Upf1p, a component of the surveillance complex, further triggering the NMD pathway. Hrp1p contains two central RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and an arginine-glycine-rich region harboring repeats of the sequence RGGF/Y.


Pssm-ID: 409767 [Multi-domain]  Cd Length: 78  Bit Score: 49.63  E-value: 6.41e-08
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2244986492  17 KMFVGQIPRSWSEKELKELFEPYGAVYQINVLRDRsqNPPQSKGCCFVTFYTRKAALEA-QNALHNIKTlpgmhHPIQMK 95
Cdd:cd12330     1 KIFVGGLAPDVTEEEFKEYFEQFGTVVDAVVMLDH--DTGRSRGFGFVTFDSESAVEKVlSKGFHELGG-----KKVEVK 73

                  ..
gi 2244986492  96 PA 97
Cdd:cd12330    74 RA 75
hnRNP-R-Q TIGR01648
heterogeneous nuclear ribonucleoprotein R, Q family; Sequences in this subfamily include the ...
17-168 7.56e-08

heterogeneous nuclear ribonucleoprotein R, Q family; Sequences in this subfamily include the human heterogeneous nuclear ribonucleoproteins (hnRNP) R, Q, and APOBEC-1 complementation factor (aka APOBEC-1 stimulating protein). These proteins contain three RNA recognition domains (rrm: pfam00076) and a somewhat variable C-terminal domain.


Pssm-ID: 273732 [Multi-domain]  Cd Length: 578  Bit Score: 54.62  E-value: 7.56e-08
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2244986492  17 KMFVGQIPRSWSEKELKELFEPYGAVYQINVLRDRSQnppQSKGCCFVTFYTRKAALEAQNALHNIKTLPGMHHPIQMkp 96
Cdd:TIGR01648  60 EVFVGKIPRDLYEDELVPLFEKAGPIYELRLMMDFSG---QNRGYAFVTFCGKEEAKEAVKLLNNYEIRPGRLLGVCI-- 134
                          90       100       110       120       130       140       150
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 2244986492  97 adseksnAVEDRKLFIGMVSKKCNENDIrvmFSPFGQIEE----CRILRGPDG--LSRGCAFVTF-STRAMAQNAIKAM 168
Cdd:TIGR01648 135 -------SVDNCRLFVGGIPKNKKREEI---LEEFSKVTEgvvdVIVYHSAADkkKNRGFAFVEYeSHRAAAMARRKLM 203
RRM2_RBM23_RBM39 cd12284
RNA recognition motif 2 (RRM2) found in vertebrate RNA-binding protein RBM23, RBM39 and ...
110-184 7.93e-08

RNA recognition motif 2 (RRM2) found in vertebrate RNA-binding protein RBM23, RBM39 and similar proteins; This subfamily corresponds to the RRM2 of RBM39 (also termed HCC1), a nuclear autoantigen that contains an N-terminal arginine/serine rich (RS) motif and three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). An octapeptide sequence called the RS-ERK motif is repeated six times in the RS region of RBM39. Although the cellular function of RBM23 remains unclear, it shows high sequence homology to RBM39 and contains two RRMs. It may possibly function as a pre-mRNA splicing factor.


Pssm-ID: 409726 [Multi-domain]  Cd Length: 78  Bit Score: 49.55  E-value: 7.93e-08
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 2244986492 110 LFIGMVSKKCNENDIRVMFSPFGQIEECRILRGPD-GLSRGCAFVTFSTramAQNAIKAMHQSQTMEGCSSPIVVK 184
Cdd:cd12284     1 LYVGSLHFNITEDMLRGIFEPFGKIEFVQLQKDPEtGRSKGYGFIQFRD---AEDAKKALEQLNGFELAGRPMKVG 73
RRM_cwf2 cd12360
RNA recognition motif (RRM) found in yeast pre-mRNA-splicing factor Cwc2 and similar proteins; ...
108-176 8.92e-08

RNA recognition motif (RRM) found in yeast pre-mRNA-splicing factor Cwc2 and similar proteins; This subfamily corresponds to the RRM of yeast protein Cwc2, also termed Complexed with CEF1 protein 2, or PRP19-associated complex protein 40 (Ntc40), or synthetic lethal with CLF1 protein 3, one of the components of the Prp19-associated complex [nineteen complex (NTC)] that can bind to RNA. NTC is composed of the scaffold protein Prp19 and a number of associated splicing factors, and plays a crucial role in intron removal during premature mRNA splicing in eukaryotes. Cwc2 functions as an RNA-binding protein that can bind both small nuclear RNAs (snRNAs) and pre-mRNA in vitro. It interacts directly with the U6 snRNA to link the NTC to the spliceosome during pre-mRNA splicing. In the N-terminal half, Cwc2 contains a CCCH-type zinc finger (ZnF domain), a RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and an intervening loop, also termed RNA-binding loop or RB loop, between ZnF and RRM, all of which are necessary and sufficient for RNA binding. The ZnF is also responsible for mediating protein-protein interaction. The C-terminal flexible region of Cwc2 interacts with the WD40 domain of Prp19.


Pssm-ID: 409795 [Multi-domain]  Cd Length: 79  Bit Score: 49.18  E-value: 8.92e-08
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 2244986492 108 RKLFIGMVskKCNENDIRVM-------FSPFGQIEECRILrgpdgLSRGCAFVTFSTRAMAQNAIKAMHQsQTMEG 176
Cdd:cd12360     2 RTLYVGGI--KAASNKLAQIeeilrrhFGEWGEIERIRVL-----PSKGIAFVRYKNRANAEFAKEAMAD-QSLDG 69
RRM1_RBM19 cd12564
RNA recognition motif 1 (RRM1) found in RNA-binding protein 19 (RBM19) and similar proteins; ...
117-171 1.03e-07

RNA recognition motif 1 (RRM1) found in RNA-binding protein 19 (RBM19) and similar proteins; This subgroup corresponds to the RRM1 of RBM19, also termed RNA-binding domain-1 (RBD-1), a nucleolar protein conserved in eukaryotes. It is involved in ribosome biogenesis by processing rRNA. In addition, it is essential for preimplantation development. RBM19 has a unique domain organization containing 6 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409980 [Multi-domain]  Cd Length: 76  Bit Score: 48.85  E-value: 1.03e-07
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....*
gi 2244986492 117 KKCNENDIRVMFSPFGQIEECRILRGPDGLSRGCAFVTFSTRAMAQNAIKAMHQS 171
Cdd:cd12564    10 SSITEDRLRKLFSAFGTITDVQLKYTKDGKFRRFGFVGFKSEEEAQKALKHFNNS 64
RRM_SCAF4_SCAF8 cd12227
RNA recognition motif (RRM) found in SR-related and CTD-associated factor 4 (SCAF4), ...
108-168 1.24e-07

RNA recognition motif (RRM) found in SR-related and CTD-associated factor 4 (SCAF4), SR-related and CTD-associated factor 8 (SCAF8) and similar proteins; This subfamily corresponds to the RRM in a new class of SCAFs (SR-like CTD-associated factors), including SCAF4, SCAF8 and similar proteins. The biological role of SCAF4 remains unclear, but it shows high sequence similarity to SCAF8 (also termed CDC5L complex-associated protein 7, or RNA-binding motif protein 16, or CTD-binding SR-like protein RA8). SCAF8 is a nuclear matrix protein that interacts specifically with a highly serine-phosphorylated form of the carboxy-terminal domain (CTD) of the largest subunit of RNA polymerase II (pol II). The pol II CTD plays a role in coupling transcription and pre-mRNA processing. In addition, SCAF8 co-localizes primarily with transcription sites that are enriched in nuclear matrix fraction, which is known to contain proteins involved in pre-mRNA processing. Thus, SCAF8 may play a direct role in coupling with both, transcription and pre-mRNA processing, processes. SCAF8 and SCAF4 both contain a conserved N-terminal CTD-interacting domain (CID), an atypical RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNPs (ribonucleoprotein domain), and serine/arginine-rich motifs.


Pssm-ID: 409674 [Multi-domain]  Cd Length: 77  Bit Score: 48.97  E-value: 1.24e-07
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|.
gi 2244986492 108 RKLFIGMVSKKCNENDIRVMFSPFGQIEECRILRgpdglSRGCAFVTFSTRAMAQNAIKAM 168
Cdd:cd12227     3 TTLWVGHLSKKVTQEELKNLFEEYGEIQSIDMIP-----PRGCAYVCMKTRQDAHRALQKL 58
RRM1_2_CoAA_like cd12343
RNA recognition motif 1 (RRM1) and 2 (RRM2) found in RRM-containing coactivator activator ...
17-81 1.39e-07

RNA recognition motif 1 (RRM1) and 2 (RRM2) found in RRM-containing coactivator activator/modulator (CoAA) and similar proteins; This subfamily corresponds to the RRM in CoAA (also known as RBM14 or PSP2) and RNA-binding protein 4 (RBM4). CoAA is a heterogeneous nuclear ribonucleoprotein (hnRNP)-like protein identified as a nuclear receptor coactivator. It mediates transcriptional coactivation and RNA splicing effects in a promoter-preferential manner, and is enhanced by thyroid hormone receptor-binding protein (TRBP). CoAA contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a TRBP-interacting domain. RBM4 is a ubiquitously expressed splicing factor with two isoforms, RBM4A (also known as Lark homolog) and RBM4B (also known as RBM30), which are very similar in structure and sequence. RBM4 may also function as a translational regulator of stress-associated mRNAs as well as play a role in micro-RNA-mediated gene regulation. RBM4 contains two N-terminal RRMs, a CCHC-type zinc finger, and three alanine-rich regions within their C-terminal regions. This family also includes Drosophila RNA-binding protein lark (Dlark), a homolog of human RBM4. It plays an important role in embryonic development and in the circadian regulation of adult eclosion. Dlark shares high sequence similarity with RBM4 at the N-terminal region. However, Dlark has three proline-rich segments instead of three alanine-rich segments within the C-terminal region.


Pssm-ID: 409779 [Multi-domain]  Cd Length: 66  Bit Score: 48.38  E-value: 1.39e-07
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 2244986492  17 KMFVGQIPRSWSEKELKELFEPYGAVYQINVLRDRSqnppqskgccFVTFYTRKAALEAQNALHN 81
Cdd:cd12343     1 KIFVGNLPDAATSEELRALFEKYGKVTECDIVKNYA----------FVHMEKEEDAEDAIKALNG 55
RRM2_MRD1 cd12566
RNA recognition motif 2 (RRM2) found in yeast multiple RNA-binding domain-containing protein 1 ...
17-79 1.41e-07

RNA recognition motif 2 (RRM2) found in yeast multiple RNA-binding domain-containing protein 1 (MRD1) and similar proteins; This subgroup corresponds to the RRM2 of MRD1 which is encoded by a novel yeast gene MRD1 (multiple RNA-binding domain). It is well-conserved in yeast and its homologs exist in all eukaryotes. MRD1 is present in the nucleolus and the nucleoplasm. It interacts with the 35 S precursor rRNA (pre-rRNA) and U3 small nucleolar RNAs (snoRNAs). It is essential for the initial processing at the A0-A2 cleavage sites in the 35 S pre-rRNA. MRD1 contains 5 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), which may play an important structural role in organizing specific rRNA processing events.


Pssm-ID: 409982 [Multi-domain]  Cd Length: 79  Bit Score: 48.57  E-value: 1.41e-07
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|...
gi 2244986492  17 KMFVGQIPRSWSEKELKELFEPYGAVYQINVLRDRSQNppQSKGCCFVTFYTRKAALEAQNAL 79
Cdd:cd12566     4 RLFLRNLPYSTKEDDLQKLFSKFGEVSEVHVPIDKKTK--KSKGFAYVLFLDPEDAVQAYNEL 64
RRM1_hnRNPQ cd12483
RNA recognition motif 1 (RRM1) found in vertebrate heterogeneous nuclear ribonucleoprotein Q ...
17-89 1.51e-07

RNA recognition motif 1 (RRM1) found in vertebrate heterogeneous nuclear ribonucleoprotein Q (hnRNP Q); This subgroup corresponds to the RRM1 of hnRNP Q, also termed glycine- and tyrosine-rich RNA-binding protein (GRY-RBP), or NS1-associated protein 1 (NASP1), or synaptotagmin-binding, cytoplasmic RNA-interacting protein (SYNCRIP). It is a ubiquitously expressed nuclear RNA-binding protein identified as a component of the spliceosome complex, as well as a component of the apobec-1 editosome. As an alternatively spliced version of NSAP, it acts as an interaction partner of a multifunctional protein required for viral replication, and is implicated in the regulation of specific mRNA transport. hnRNP Q has also been identified as SYNCRIP, a dual functional protein participating in both viral RNA replication and translation. As a synaptotagmin-binding protein, hnRNP Q plays a putative role in organelle-based mRNA transport along the cytoskeleton. Moreover, hnRNP Q has been found in protein complexes involved in translationally coupled mRNA turnover and mRNA splicing. It functions as a wild-type survival motor neuron (SMN)-binding protein that may participate in pre-mRNA splicing and modulate mRNA transport along microtubuli. hnRNP Q contains an acidic auxiliary N-terminal region, followed by two well-defined and one degenerated RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a C-terminal RGG motif; hnRNP Q binds RNA through its RRM domains.


Pssm-ID: 409910 [Multi-domain]  Cd Length: 84  Bit Score: 48.81  E-value: 1.51e-07
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 2244986492  17 KMFVGQIPRSWSEKELKELFEPYGAVYQINVLRDRSQNppQSKGCCFVTFYTRKAALEAQNALHNIKTLPGMH 89
Cdd:cd12483     7 EIFVGKIPRDLFEDELVPLFEKAGPIWDLRLMMDPLTG--LNRGYAFVTFCTKEAAQEAVKLCNNHEIRPGKH 77
RRM2_U2AF65 cd12231
RNA recognition motif 2 (RRM2) found in U2 large nuclear ribonucleoprotein auxiliary factor ...
17-83 2.32e-07

RNA recognition motif 2 (RRM2) found in U2 large nuclear ribonucleoprotein auxiliary factor U2AF 65 kDa subunit (U2AF65) and similar proteins; This subfamily corresponds to the RRM2 of U2AF65 and dU2AF50. U2AF65, also termed U2AF2, is the large subunit of U2 small nuclear ribonucleoprotein (snRNP) auxiliary factor (U2AF), which has been implicated in the recruitment of U2 snRNP to pre-mRNAs and is a highly conserved heterodimer composed of large and small subunits. U2AF65 specifically recognizes the intron polypyrimidine tract upstream of the 3' splice site and promotes binding of U2 snRNP to the pre-mRNA branchpoint. U2AF65 also plays an important role in the nuclear export of mRNA. It facilitates the formation of a messenger ribonucleoprotein export complex, containing both the NXF1 receptor and the RNA substrate. Moreover, U2AF65 interacts directly and specifically with expanded CAG RNA, and serves as an adaptor to link expanded CAG RNA to NXF1 for RNA export. U2AF65 contains an N-terminal RS domain rich in arginine and serine, followed by a proline-rich segment and three C-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The N-terminal RS domain stabilizes the interaction of U2 snRNP with the branch point (BP) by contacting the branch region, and further promotes base pair interactions between U2 snRNA and the BP. The proline-rich segment mediates protein-protein interactions with the RRM domain of the small U2AF subunit (U2AF35 or U2AF1). The RRM1 and RRM2 are sufficient for specific RNA binding, while RRM3 is responsible for protein-protein interactions. The family also includes Splicing factor U2AF 50 kDa subunit (dU2AF50), the Drosophila ortholog of U2AF65. dU2AF50 functions as an essential pre-mRNA splicing factor in flies. It associates with intronless mRNAs and plays a significant and unexpected role in the nuclear export of a large number of intronless mRNAs.


Pssm-ID: 409678 [Multi-domain]  Cd Length: 77  Bit Score: 48.03  E-value: 2.32e-07
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 2244986492  17 KMFVGQIPRSWSEKELKELFEPYGAVYQINVLRDRSQNppQSKGCCFVTFYTRKAALEAQNALHNIK 83
Cdd:cd12231     2 KLFIGGLPNYLNEDQVKELLQSFGKLKAFNLVKDSATG--LSKGYAFCEYVDDNVTDQAIAGLNGMQ 66
RRM2_SF3B4 cd12335
RNA recognition motif 2 (RRM2) found in splicing factor 3B subunit 4 (SF3B4) and similar ...
110-186 2.76e-07

RNA recognition motif 2 (RRM2) found in splicing factor 3B subunit 4 (SF3B4) and similar proteins; This subfamily corresponds to the RRM2 of SF3B4, also termed pre-mRNA-splicing factor SF3b 49 kDa (SF3b50), or spliceosome-associated protein 49 (SAP 49). SF3B4 is a component of the multiprotein complex splicing factor 3b (SF3B), an integral part of the U2 small nuclear ribonucleoprotein (snRNP) and the U11/U12 di-snRNP. SF3B is essential for the accurate excision of introns from pre-messenger RNA, and is involved in the recognition of the pre-mRNA's branch site within the major and minor spliceosomes. SF3B4 functions to tether U2 snRNP with pre-mRNA at the branch site during spliceosome assembly. It is an evolutionarily highly conserved protein with orthologs across diverse species. SF3B4 contains two closely adjacent N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). It binds directly to pre-mRNA and also interacts directly and highly specifically with another SF3B subunit called SAP 145.


Pssm-ID: 409772 [Multi-domain]  Cd Length: 83  Bit Score: 48.12  E-value: 2.76e-07
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 2244986492 110 LFIGMVSKKCNENDIRVMFSPFGQI-EECRILRGPD-GLSRGCAFVTFSTRAMAQNAIKAMHqSQTMegCSSPIVVKFA 186
Cdd:cd12335     4 LFIGNLDPEVDEKLLYDTFSAFGVIlQTPKIMRDPDtGNSKGFGFVSFDSFEASDAAIEAMN-GQYL--CNRPITVSYA 79
RRM2_TIA1 cd12618
RNA recognition motif 2 (RRM2) found in nucleolysin TIA-1 isoform p40 (p40-TIA-1) and similar ...
110-168 2.96e-07

RNA recognition motif 2 (RRM2) found in nucleolysin TIA-1 isoform p40 (p40-TIA-1) and similar proteins; This subgroup corresponds to the RRM2 of p40-TIA-1, the 40-kDa isoform of T-cell-restricted intracellular antigen-1 (TIA-1), and a cytotoxic granule-associated RNA-binding protein mainly found in the granules of cytotoxic lymphocytes. TIA-1 can be phosphorylated by a serine/threonine kinase that is activated during Fas-mediated apoptosis, and function as the granule component responsible for inducing apoptosis in cytolytic lymphocyte (CTL) targets. It is composed of three N-terminal highly homologous RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a glutamine-rich C-terminal auxiliary domain containing a lysosome-targeting motif. TIA-1 interacts with RNAs containing short stretches of uridylates and its RRM2 can mediate the specific binding to uridylate-rich RNAs.


Pssm-ID: 410030 [Multi-domain]  Cd Length: 78  Bit Score: 47.69  E-value: 2.96e-07
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|
gi 2244986492 110 LFIGMVSKKCNENDIRVMFSPFGQIEECRILRG-PDGLSRGCAFVTFSTRAMAQNAIKAM 168
Cdd:cd12618     5 VFVGDLSPEITTEDIKAAFAPFGRISDARVVKDmATGKSKGYGFVSFFNKWDAENAIQQM 64
RRM3_CELF1-6 cd12362
RNA recognition motif 3 (RRM3) found in CELF/Bruno-like family of RNA binding proteins CELF1, ...
18-88 3.03e-07

RNA recognition motif 3 (RRM3) found in CELF/Bruno-like family of RNA binding proteins CELF1, CELF2, CELF3, CELF4, CELF5, CELF6 and similar proteins; This subgroup corresponds to the RRM3 of the CUGBP1 and ETR-3-like factors (CELF) or BRUNOL (Bruno-like) proteins, a family of structurally related RNA-binding proteins involved in the regulation of pre-mRNA splicing in the nucleus and in the control of mRNA translation and deadenylation in the cytoplasm. The family contains six members: CELF-1 (also termed BRUNOL-2, or CUG-BP1, or NAPOR, or EDEN-BP), CELF-2 (also termed BRUNOL-3, or ETR-3, or CUG-BP2, or NAPOR-2), CELF-3 (also termed BRUNOL-1, or TNRC4, or ETR-1, or CAGH4, or ER DA4), CELF-4 (also termed BRUNOL-4), CELF-5 (also termed BRUNOL-5), CELF-6 (also termed BRUNOL-6). They all contain three highly conserved RNA recognition motifs (RRMs), also known as RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains): two consecutive RRMs (RRM1 and RRM2) situated in the N-terminal region followed by a linker region and the third RRM (RRM3) close to the C-terminus of the protein. The low sequence conservation of the linker region is highly suggestive of a large variety in the co-factors that associate with the various CELF family members. Based on both sequence similarity and function, the CELF family can be divided into two subfamilies, the first containing CELFs 1 and 2, and the second containing CELFs 3, 4, 5, and 6. The different CELF proteins may act through different sites on at least some substrates. Furthermore, CELF proteins may interact with each other in varying combinations to influence alternative splicing in different contexts.


Pssm-ID: 409797 [Multi-domain]  Cd Length: 73  Bit Score: 47.61  E-value: 3.03e-07
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 2244986492  18 MFVGQIPRSWSEKELKELFEPYGAVYQINVLRDRSQNppQSKGCCFVTFytrKAALEAQNAlhnIKTLPGM 88
Cdd:cd12362     1 LFVYHLPNEFTDQDLYQLFAPFGNVVSAKVFVDKNTG--RSKGFGFVSY---DNPLSAQAA---IKAMNGF 63
RRM1_hnRNPA2B1 cd12762
RNA recognition motif 1 (RRM1) found in heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNP ...
108-176 3.26e-07

RNA recognition motif 1 (RRM1) found in heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNP A2/B1) and similar proteins; This subgroup corresponds to the RRM1 of hnRNP A2/B1 which is an RNA trafficking response element-binding protein that interacts with the hnRNP A2 response element (A2RE). Many mRNAs, such as myelin basic protein (MBP), myelin-associated oligodendrocytic basic protein (MOBP), carboxyanhydrase II (CAII), microtubule-associated protein tau, and amyloid precursor protein (APP) are trafficked by hnRNP A2/B1. hnRNP A2/B1 also functions as a splicing factor that regulates alternative splicing of the tumor suppressors, such as BIN1, WWOX, the antiapoptotic proteins c-FLIP and caspase-9B, the insulin receptor (IR), and the RON proto-oncogene among others. Moreover, the overexpression of hnRNP A2/B1 has been described in many cancers. It functions as a nuclear matrix protein involving in RNA synthesis and the regulation of cellular migration through alternatively splicing pre-mRNA. It may play a role in tumor cell differentiation. hnRNP A2/B1 contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), followed by a long glycine-rich region at the C-terminus.


Pssm-ID: 410155 [Multi-domain]  Cd Length: 81  Bit Score: 47.73  E-value: 3.26e-07
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2244986492 108 RKLFIGMVSKKCNENDIRVMFSPFGQIEECRILRGP-DGLSRGCAFVTFSTRAMAQNAIKAmhQSQTMEG 176
Cdd:cd12762     3 RKLFIGGLSFETTEESLRNYYEQWGKLTDCVVMRDPaSKRSRGFGFVTFSSMAEVDAAMAA--RPHSIDG 70
RRM3_Crp79_Mug28 cd21622
RNA recognition motif 3 (RRM3) found in Schizosaccharomyces pombe mRNA export factor Crp79, ...
120-193 3.95e-07

RNA recognition motif 3 (RRM3) found in Schizosaccharomyces pombe mRNA export factor Crp79, meiotically up-regulated gene 28 protein (Mug28) and similar proteins; Crp79, also called meiotic expression up-regulated protein 5 (Mug5), or polyadenylate-binding protein crp79, or PABP, or poly(A)-binding protein, is an auxiliary mRNA export factor that binds the poly(A) tail of mRNA and is involved in the export of mRNA from the nucleus to the cytoplasm. Mug28 is a meiosis-specific protein that regulates spore wall formation. Members in this family contain three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The model corresponds to the three RRM motif.


Pssm-ID: 410201 [Multi-domain]  Cd Length: 92  Bit Score: 47.75  E-value: 3.95e-07
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 2244986492 120 NENDIRVMFSPFGQIEECRILRGPD-GLSRGCAFVTFSTRAMAQNAIKAMHQSqtMEGcSSPIVVKFADTQKDKE 193
Cdd:cd21622    18 NKEDLEQLFSPFGQIVSSYLATYPGtGISKGFGFVAFSKPEDAAKAKETLNGV--MVG-RKRIFVSYAERKEDRE 89
RRM1_hnRNPA_hnRNPD_like cd12325
RNA recognition motif 1 (RRM1) found in heterogeneous nuclear ribonucleoprotein hnRNP A and ...
110-167 4.06e-07

RNA recognition motif 1 (RRM1) found in heterogeneous nuclear ribonucleoprotein hnRNP A and hnRNP D subfamilies and similar proteins; This subfamily corresponds to the RRM1 in the hnRNP A subfamily which includes hnRNP A0, hnRNP A1, hnRNP A2/B1, hnRNP A3 and similar proteins. hnRNP A0 is a low abundance hnRNP protein that has been implicated in mRNA stability in mammalian cells. hnRNP A1 is an abundant eukaryotic nuclear RNA-binding protein that may modulate splice site selection in pre-mRNA splicing. hnRNP A2/B1 is an RNA trafficking response element-binding protein that interacts with the hnRNP A2 response element (A2RE). hnRNP A3 is also a RNA trafficking response element-binding protein that participates in the trafficking of A2RE-containing RNA. The hnRNP A subfamily is characterized by two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), followed by a long glycine-rich region at the C-terminus. The hnRNP D subfamily includes hnRNP D0, hnRNP A/B, hnRNP DL and similar proteins. hnRNP D0 is a UUAG-specific nuclear RNA binding protein that may be involved in pre-mRNA splicing and telomere elongation. hnRNP A/B is an RNA unwinding protein with a high affinity for G- followed by U-rich regions. hnRNP A/B has also been identified as an APOBEC1-binding protein that interacts with apolipoprotein B (apoB) mRNA transcripts around the editing site and thus, plays an important role in apoB mRNA editing. hnRNP DL (or hnRNP D-like) is a dual functional protein that possesses DNA- and RNA-binding properties. It has been implicated in mRNA biogenesis at the transcriptional and post-transcriptional levels. All members in this subfamily contain two putative RRMs and a glycine- and tyrosine-rich C-terminus. The family also contains DAZAP1 (Deleted in azoospermia-associated protein 1), RNA-binding protein Musashi homolog Musashi-1, Musashi-2 and similar proteins. They all harbor two RRMs.


Pssm-ID: 409763 [Multi-domain]  Cd Length: 72  Bit Score: 47.13  E-value: 4.06e-07
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....*....
gi 2244986492 110 LFIGMVSKKCNENDIRVMFSPFGQIEECRILRGPD-GLSRGCAFVTFSTRAMAQNAIKA 167
Cdd:cd12325     1 LFVGGLSWETTEESLREYFSKYGEVVDCVVMKDPAtGRSRGFGFVTFKDPSSVDAVLAA 59
RRM1_DND1 cd12487
RNA recognition motif 1 (RRM1) found in vertebrate dead end protein homolog 1 (DND1); This ...
109-183 4.11e-07

RNA recognition motif 1 (RRM1) found in vertebrate dead end protein homolog 1 (DND1); This subgroup corresponds to the RRM1 of DND1, also termed RNA-binding motif, single-stranded-interacting protein 4, an RNA-binding protein that is essential for maintaining viable germ cells in vertebrates. It interacts with the 3'-untranslated region (3'-UTR) of multiple messenger RNAs (mRNAs) and prevents micro-RNA (miRNA) mediated repression of mRNA. For instance, DND1 binds cell cycle inhibitor, P27 (p27Kip1, CDKN1B), and cell cycle regulator and tumor suppressor, LATS2 (large tumor suppressor, homolog 2 of Drosophila). It helps maintain their protein expression through blocking the inhibitory function of microRNAs (miRNA) from these transcripts. DND1 may also impose another level of translational regulation to modulate expression of critical factors in embryonic stem (ES) cells. DND1 interacts specifically with apolipoprotein B editing complex 3 (APOBEC3), a multi-functional protein inhibiting retroviral replication. The DND1-APOBEC3 interaction may play a role in maintaining viability of germ cells and for preventing germ cell tumor development. DND1 contains two conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409913 [Multi-domain]  Cd Length: 78  Bit Score: 47.45  E-value: 4.11e-07
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 2244986492 109 KLFIGMVSKKCNENDIRVMFSPFGQIEECRILRGPDGLSRGCAFVTFSTRAMAQNAIKAMHQSQTMEGCssPIVV 183
Cdd:cd12487     3 EVFIGKIPQDVYEDKLIPLFQSVGQLYEFRLMMTFSGLNRGFAYAKYASRRSAQAAITTLNGYELQKGC--PITV 75
RRM2_TIAR cd12617
RNA recognition motif 2 (RRM2) found in nucleolysin TIAR and similar proteins; This subgroup ...
110-168 4.13e-07

RNA recognition motif 2 (RRM2) found in nucleolysin TIAR and similar proteins; This subgroup corresponds to the RRM2 of nucleolysin TIAR, also termed TIA-1-related protein, a cytotoxic granule-associated RNA-binding protein that shows high sequence similarity with 40-kDa isoform of T-cell-restricted intracellular antigen-1 (p40-TIA-1). TIAR is mainly localized in the nucleus of hematopoietic and nonhematopoietic cells. It is translocated from the nucleus to the cytoplasm in response to exogenous triggers of apoptosis. TIAR possesses nucleolytic activity against cytolytic lymphocyte (CTL) target cells. It can trigger DNA fragmentation in permeabilized thymocytes, and thus may function as an effector responsible for inducing apoptosis. TIAR is composed of three N-terminal, highly homologous RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a glutamine-rich C-terminal auxiliary domain containing a lysosome-targeting motif. It interacts with RNAs containing short stretches of uridylates and its RRM2 can mediate the specific binding to uridylate-rich RNAs.


Pssm-ID: 410029 [Multi-domain]  Cd Length: 80  Bit Score: 47.29  E-value: 4.13e-07
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|
gi 2244986492 110 LFIGMVSKKCNENDIRVMFSPFGQIEECRILRG-PDGLSRGCAFVTFSTRAMAQNAIKAM 168
Cdd:cd12617     4 VFVGDLSPEITTEDIKSAFAPFGKISDARVVKDmATGKSKGYGFVSFYNKLDAENAIVHM 63
RRM1_ACF cd12486
RNA recognition motif 1 (RRM1) found in vertebrate APOBEC-1 complementation factor (ACF); This ...
109-176 4.18e-07

RNA recognition motif 1 (RRM1) found in vertebrate APOBEC-1 complementation factor (ACF); This subgroup corresponds to the RRM1 of ACF, also termed APOBEC-1-stimulating protein, an RNA-binding subunit of a core complex that interacts with apoB mRNA to facilitate C to U RNA editing. It may also act as an apoB mRNA recognition factor and chaperone, and play a key role in cell growth and differentiation. ACF shuttles between the cytoplasm and nucleus. It contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), which display high affinity for an 11 nucleotide AU-rich mooring sequence 3' of the edited cytidine in apoB mRNA. All three RRMs may be required for complementation of editing activity in living cells. RRM2/3 are implicated in ACF interaction with APOBEC-1.


Pssm-ID: 409912 [Multi-domain]  Cd Length: 78  Bit Score: 47.28  E-value: 4.18e-07
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 2244986492 109 KLFIGMVSKKCNENDIRVMFSPFGQIEECRILRGPDGLSRGCAFVTFSTRAMAQNAIKAMHQSQTMEG 176
Cdd:cd12486     3 EIFIGKLPRDLFEDELVPLCEKIGKIYEMRMMMDFNGNNRGYAFVTFSNKQEARNAIKQLNNYEIRNG 70
RRM2_MSSP cd12244
RNA recognition motif 2 (RRM2) found in the c-myc gene single-strand binding proteins (MSSP) ...
18-98 4.29e-07

RNA recognition motif 2 (RRM2) found in the c-myc gene single-strand binding proteins (MSSP) family; This subfamily corresponds to the RRM2 of c-myc gene single-strand binding proteins (MSSP) family, including single-stranded DNA-binding protein MSSP-1 (also termed RBMS1 or SCR2) and MSSP-2 (also termed RBMS2 or SCR3). All MSSP family members contain two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), both of which are responsible for the specific DNA binding activity. Both, MSSP-1 and -2, have been identified as protein factors binding to a putative DNA replication origin/transcriptional enhancer sequence present upstream from the human c-myc gene in both single- and double-stranded forms. Thus they have been implied in regulating DNA replication, transcription, apoptosis induction, and cell-cycle movement, via the interaction with C-MYC, the product of protooncogene c-myc. Moreover, they family includes a new member termed RNA-binding motif, single-stranded-interacting protein 3 (RBMS3), which is not a transcriptional regulator. RBMS3 binds with high affinity to A/U-rich stretches of RNA, and to A/T-rich DNA sequences, and functions as a regulator of cytoplasmic activity. In addition, a putative meiosis-specific RNA-binding protein termed sporulation-specific protein 5 (SPO5, or meiotic RNA-binding protein 1, or meiotically up-regulated gene 12 protein), encoded by Schizosaccharomyces pombe Spo5/Mug12 gene, is also included in this family. SPO5 is a novel meiosis I regulator that may function in the vicinity of the Mei2 dot.


Pssm-ID: 409690 [Multi-domain]  Cd Length: 82  Bit Score: 47.37  E-value: 4.29e-07
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2244986492  18 MFVGQIPRSWSEKELKELFEPYGAVYQINVLRDRSQnppQSKGCCFVTFYTRKAALEAQNALHNiKTLPGMHH---PIQM 94
Cdd:cd12244     3 LYISNLPLDMDEQDLENMLKPFGQVISTRILRDSKG---QSRGVGFARMESREKCEDVISKFNG-KVLKTPSAsgePLLV 78

                  ....
gi 2244986492  95 KPAD 98
Cdd:cd12244    79 KFAD 82
RRM2_gar2 cd12448
RNA recognition motif 2 (RRM2) found in yeast protein gar2 and similar proteins; This ...
110-167 4.46e-07

RNA recognition motif 2 (RRM2) found in yeast protein gar2 and similar proteins; This subfamily corresponds to the RRM2 of yeast protein gar2, a novel nucleolar protein required for 18S rRNA and 40S ribosomal subunit accumulation. It shares similar domain architecture with nucleolin from vertebrates and NSR1 from Saccharomyces cerevisiae. The highly phosphorylated N-terminal domain of gar2 is made up of highly acidic regions separated from each other by basic sequences, and contains multiple phosphorylation sites. The central domain of gar2 contains two closely adjacent N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The C-terminal RGG (or GAR) domain of gar2 is rich in glycine, arginine and phenylalanine residues.


Pssm-ID: 409882 [Multi-domain]  Cd Length: 73  Bit Score: 47.02  E-value: 4.46e-07
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....*....
gi 2244986492 110 LFIGMVSKKCNENDIRVMFSPFGQIEECRILRGPD-GLSRGCAFVTFSTRAMAQNAIKA 167
Cdd:cd12448     1 LFVGNLPFSATQDALYEAFSQHGSIVSVRLPTDREtGQPKGFGYVDFSTIDSAEAAIDA 59
RRM_HP0827_like cd12399
RNA recognition motif (RRM) found in Helicobacter pylori HP0827 protein and similar proteins; ...
18-81 4.51e-07

RNA recognition motif (RRM) found in Helicobacter pylori HP0827 protein and similar proteins; This subfamily corresponds to the RRM of H. pylori HP0827, a putative ssDNA-binding protein 12rnp2 precursor, containing one RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). The ssDNA binding may be important in activation of HP0827.


Pssm-ID: 409833 [Multi-domain]  Cd Length: 75  Bit Score: 47.13  E-value: 4.51e-07
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....
gi 2244986492  18 MFVGQIPRSWSEKELKELFEPYGAVYQINVLRDRSQNPPqsKGCCFVTFYTRKAALEAQNALHN 81
Cdd:cd12399     1 LYVGNLPYSASEEQLKSLFGQFGAVFDVKLPMDRETKRP--RGFGFVELQEEESAEKAIAKLDG 62
RRM1_RBM46 cd12484
RNA recognition motif 1 (RRM1) found in vertebrate RNA-binding protein 46 (RBM46); This ...
17-87 4.56e-07

RNA recognition motif 1 (RRM1) found in vertebrate RNA-binding protein 46 (RBM46); This subgroup corresponds to the RRM1 of RBM46, also termed cancer/testis antigen 68 (CT68), a putative RNA-binding protein that shows high sequence homology with heterogeneous nuclear ribonucleoprotein R (hnRNP R) and heterogeneous nuclear ribonucleoprotein Q (hnRNP Q). Its biological function remains unclear. Like hnRNP R and hnRNP Q, RBM46 contains two well-defined and one degenerated RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409911 [Multi-domain]  Cd Length: 78  Bit Score: 47.19  E-value: 4.56e-07
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 2244986492  17 KMFVGQIPRSWSEKELKELFEPYGAVYQINVLRDRSQnppQSKGCCFVTFYTRKAALEAQNALHNIKTLPG 87
Cdd:cd12484     3 EVFVGKIPRDMYEDELVPVFERAGKIYEFRLMMEFSG---ENRGYAFVMYTTKEEAQLAIKMLNNYEIRPG 70
RRM_G3BP cd12229
RNA recognition motif (RRM) found in ras GTPase-activating protein-binding protein G3BP1, ...
13-81 4.92e-07

RNA recognition motif (RRM) found in ras GTPase-activating protein-binding protein G3BP1, G3BP2 and similar proteins; This subfamily corresponds to the RRM domain in the G3BP family of RNA-binding and SH3 domain-binding proteins. G3BP acts at the level of RNA metabolism in response to cell signaling, possibly as RNA transcript stabilizing factors or an RNase. Members include G3BP1, G3BP2 and similar proteins. These proteins associate directly with the SH3 domain of GTPase-activating protein (GAP), which functions as an inhibitor of Ras. They all contain an N-terminal nuclear transfer factor 2 (NTF2)-like domain, an acidic domain, a domain containing PXXP motif(s), an RNA recognition motif (RRM), and an Arg-Gly-rich region (RGG-rich region, or arginine methylation motif).


Pssm-ID: 409676 [Multi-domain]  Cd Length: 81  Bit Score: 47.41  E-value: 4.92e-07
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 2244986492  13 PDAIKMFVGQIPRSWSEKELKELFEPYGAVYQINVLRDRSQNPPQSKGccFVTFYTRKAaleAQNALHN 81
Cdd:cd12229     1 PDNHQLFVGNLPHDITEDELKEFFSRFGNVLELRINSKGGGGRLPNFG--FVVFDDPEA---VQKILAN 64
RRM_SCAF4_SCAF8 cd12227
RNA recognition motif (RRM) found in SR-related and CTD-associated factor 4 (SCAF4), ...
18-83 5.03e-07

RNA recognition motif (RRM) found in SR-related and CTD-associated factor 4 (SCAF4), SR-related and CTD-associated factor 8 (SCAF8) and similar proteins; This subfamily corresponds to the RRM in a new class of SCAFs (SR-like CTD-associated factors), including SCAF4, SCAF8 and similar proteins. The biological role of SCAF4 remains unclear, but it shows high sequence similarity to SCAF8 (also termed CDC5L complex-associated protein 7, or RNA-binding motif protein 16, or CTD-binding SR-like protein RA8). SCAF8 is a nuclear matrix protein that interacts specifically with a highly serine-phosphorylated form of the carboxy-terminal domain (CTD) of the largest subunit of RNA polymerase II (pol II). The pol II CTD plays a role in coupling transcription and pre-mRNA processing. In addition, SCAF8 co-localizes primarily with transcription sites that are enriched in nuclear matrix fraction, which is known to contain proteins involved in pre-mRNA processing. Thus, SCAF8 may play a direct role in coupling with both, transcription and pre-mRNA processing, processes. SCAF8 and SCAF4 both contain a conserved N-terminal CTD-interacting domain (CID), an atypical RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNPs (ribonucleoprotein domain), and serine/arginine-rich motifs.


Pssm-ID: 409674 [Multi-domain]  Cd Length: 77  Bit Score: 47.05  E-value: 5.03e-07
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 2244986492  18 MFVGQIPRSWSEKELKELFEPYGAVYQINVLrdrsqnPPqsKGCCFVTFYTRKAALEAQNALHNIK 83
Cdd:cd12227     5 LWVGHLSKKVTQEELKNLFEEYGEIQSIDMI------PP--RGCAYVCMKTRQDAHRALQKLKNHK 62
RRM2_RBM28_like cd12414
RNA recognition motif 2 (RRM2) found in RNA-binding protein 28 (RBM28) and similar proteins; ...
28-92 5.15e-07

RNA recognition motif 2 (RRM2) found in RNA-binding protein 28 (RBM28) and similar proteins; This subfamily corresponds to the RRM2 of RBM28 and Nop4p. RBM28 is a specific nucleolar component of the spliceosomal small nuclear ribonucleoproteins (snRNPs), possibly coordinating their transition through the nucleolus. It specifically associates with U1, U2, U4, U5, and U6 small nuclear RNAs (snRNAs), and may play a role in the maturation of both small nuclear and ribosomal RNAs. RBM28 has four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and an extremely acidic region between RRM2 and RRM3. The family also includes nucleolar protein 4 (Nop4p or Nop77p) encoded by YPL043W from Saccharomyces cerevisiae. It is an essential nucleolar protein involved in processing and maturation of 27S pre-rRNA and biogenesis of 60S ribosomal subunits. Nop4p also contains four RRMs.


Pssm-ID: 409848 [Multi-domain]  Cd Length: 76  Bit Score: 47.16  E-value: 5.15e-07
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 2244986492  28 SEKELKELFEPYGAVYQINVLRDRSqnpPQSKGCCFVTFYTRKaalEAQNALHNIKTLPGMHHPI 92
Cdd:cd12414    12 TEDDLKKLFSKFGKVLEVTIPKKPD---GKLRGFAFVQFTNVA---DAAKAIKGMNGKKIKGRPV 70
RRM1_MSI2 cd12760
RNA recognition motif 1 (RRM1) found in RNA-binding protein Musashi homolog 2 (Musashi-2 ) and ...
109-170 5.48e-07

RNA recognition motif 1 (RRM1) found in RNA-binding protein Musashi homolog 2 (Musashi-2 ) and similar proteins; This subgroup corresponds to the RRM2 of Musashi-2 (also termed Msi2) which has been identified as a regulator of the hematopoietic stem cell (HSC) compartment and of leukemic stem cells after transplantation of cells with loss and gain of function of the gene. It influences proliferation and differentiation of HSCs and myeloid progenitors, and further modulates normal hematopoiesis and promotes aggressive myeloid leukemia. Musashi-2 contains two conserved N-terminal tandem RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), along with other domains of unknown function.


Pssm-ID: 410153 [Multi-domain]  Cd Length: 93  Bit Score: 47.43  E-value: 5.48e-07
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|...
gi 2244986492 109 KLFIGMVSKKCNENDIRVMFSPFGQIEECRILRGP-DGLSRGCAFVTFSTRAMAQNAIKAMHQ 170
Cdd:cd12760     6 KMFIGGLSWQTSPDSLRDYFSKFGEIRECMVMRDPtTKRSRGFGFVTFADPASVDKVLAQPHH 68
RRM_RBM22 cd12224
RNA recognition motif (RRM) found in Pre-mRNA-splicing factor RBM22 and similar proteins; This ...
18-81 5.88e-07

RNA recognition motif (RRM) found in Pre-mRNA-splicing factor RBM22 and similar proteins; This subgroup corresponds to the RRM of RBM22 (also known as RNA-binding motif protein 22, or Zinc finger CCCH domain-containing protein 16), a newly discovered RNA-binding motif protein which belongs to the SLT11 gene family. SLT11 gene encoding protein (Slt11p) is a splicing factor in yeast, which is required for spliceosome assembly. Slt11p has two distinct biochemical properties: RNA-annealing and RNA-binding activities. RBM22 is the homolog of SLT11 in vertebrate. It has been reported to be involved in pre-splicesome assembly and to interact with the Ca2+-signaling protein ALG-2. It also plays an important role in embryogenesis. RBM22 contains a conserved RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), a zinc finger of the unusual type C-x8-C-x5-C-x3-H, and a C-terminus that is unusually rich in the amino acids Gly and Pro, including sequences of tetraprolines.


Pssm-ID: 409671 [Multi-domain]  Cd Length: 74  Bit Score: 46.89  E-value: 5.88e-07
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....
gi 2244986492  18 MFVGQIPRSWSEKELKELFEPYGAVYQINVLrdrsqnppQSKGCCFVTFYTRKAALEAQNALHN 81
Cdd:cd12224     4 LYVGGLGDKITEKDLRDHFYQFGEIRSITVV--------ARQQCAFVQFTTRQAAERAAERTFN 59
RRM3_CELF1-6 cd12362
RNA recognition motif 3 (RRM3) found in CELF/Bruno-like family of RNA binding proteins CELF1, ...
110-172 6.19e-07

RNA recognition motif 3 (RRM3) found in CELF/Bruno-like family of RNA binding proteins CELF1, CELF2, CELF3, CELF4, CELF5, CELF6 and similar proteins; This subgroup corresponds to the RRM3 of the CUGBP1 and ETR-3-like factors (CELF) or BRUNOL (Bruno-like) proteins, a family of structurally related RNA-binding proteins involved in the regulation of pre-mRNA splicing in the nucleus and in the control of mRNA translation and deadenylation in the cytoplasm. The family contains six members: CELF-1 (also termed BRUNOL-2, or CUG-BP1, or NAPOR, or EDEN-BP), CELF-2 (also termed BRUNOL-3, or ETR-3, or CUG-BP2, or NAPOR-2), CELF-3 (also termed BRUNOL-1, or TNRC4, or ETR-1, or CAGH4, or ER DA4), CELF-4 (also termed BRUNOL-4), CELF-5 (also termed BRUNOL-5), CELF-6 (also termed BRUNOL-6). They all contain three highly conserved RNA recognition motifs (RRMs), also known as RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains): two consecutive RRMs (RRM1 and RRM2) situated in the N-terminal region followed by a linker region and the third RRM (RRM3) close to the C-terminus of the protein. The low sequence conservation of the linker region is highly suggestive of a large variety in the co-factors that associate with the various CELF family members. Based on both sequence similarity and function, the CELF family can be divided into two subfamilies, the first containing CELFs 1 and 2, and the second containing CELFs 3, 4, 5, and 6. The different CELF proteins may act through different sites on at least some substrates. Furthermore, CELF proteins may interact with each other in varying combinations to influence alternative splicing in different contexts.


Pssm-ID: 409797 [Multi-domain]  Cd Length: 73  Bit Score: 46.84  E-value: 6.19e-07
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....
gi 2244986492 110 LFIGMVSKKCNENDIRVMFSPFGQIEECRILRGPD-GLSRGCAFVTFSTRAMAQNAIKAMHQSQ 172
Cdd:cd12362     1 LFVYHLPNEFTDQDLYQLFAPFGNVVSAKVFVDKNtGRSKGFGFVSYDNPLSAQAAIKAMNGFQ 64
RRM_Nop6 cd12400
RNA recognition motif (RRM) found in Saccharomyces cerevisiae nucleolar protein 6 (Nop6) and ...
110-171 6.65e-07

RNA recognition motif (RRM) found in Saccharomyces cerevisiae nucleolar protein 6 (Nop6) and similar proteins; This subfamily corresponds to the RRM of Nop6, also known as Ydl213c, a component of 90S pre-ribosomal particles in yeast S. cerevisiae. It is enriched in the nucleolus and is required for 40S ribosomal subunit biogenesis. Nop6 is a non-essential putative RNA-binding protein with two N-terminal putative nuclear localisation sequences (NLS-1 and NLS-2) and an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). It binds to the pre-rRNA early during transcription and plays an essential role in pre-rRNA processing.


Pssm-ID: 409834 [Multi-domain]  Cd Length: 74  Bit Score: 46.45  E-value: 6.65e-07
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|...
gi 2244986492 110 LFIGMVSKKCNENDIRVMFSPFGQIEECRILRGPD-GLSRGCAFVTFSTRAMAQNAIKaMHQS 171
Cdd:cd12400     3 LFVGNLPYDTTAEDLKEHFKKAGEPPSVRLLTDKKtGKSKGCAFVEFDNQKALQKALK-LHHT 64
RRM_ZCRB1 cd12393
RNA recognition motif (RRM) found in Zinc finger CCHC-type and RNA-binding motif-containing ...
122-178 6.76e-07

RNA recognition motif (RRM) found in Zinc finger CCHC-type and RNA-binding motif-containing protein 1 (ZCRB1) and similar proteins; This subfamily corresponds to the RRM of ZCRB1, also termed MADP-1, or U11/U12 small nuclear ribonucleoprotein 31 kDa protein (U11/U12 snRNP 31 or U11/U12-31K), a novel multi-functional nuclear factor, which may be involved in morphine dependence, cold/heat stress, and hepatocarcinoma. It is located in the nucleoplasm, but outside the nucleolus. ZCRB1 is one of the components of U11/U12 snRNPs that bind to U12-type pre-mRNAs and form a di-snRNP complex, simultaneously recognizing the 5' splice site and branchpoint sequence. ZCRB1 is characterized by an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a CCHC-type Zinc finger motif. In addition, it contains core nucleocapsid motifs, and Lys- and Glu-rich domains.


Pssm-ID: 409827 [Multi-domain]  Cd Length: 76  Bit Score: 46.51  E-value: 6.76e-07
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|..
gi 2244986492 122 NDIRVMFSPFGQIEECRILRGPDG-LSRGCAFVTFSTRAMAQNAIKAMHQSQtMEG----CS 178
Cdd:cd12393    16 NDLHQIFSKYGKVVKVTILKDKETrKSKGVAFVLFLDRESAHNAVRAMNNKE-LFGrtlkCS 76
RRM_RBM24_RBM38_like cd12384
RNA recognition motif (RRM) found in eukaryotic RNA-binding protein RBM24, RBM38 and similar ...
17-75 7.35e-07

RNA recognition motif (RRM) found in eukaryotic RNA-binding protein RBM24, RBM38 and similar proteins; This subfamily corresponds to the RRM of RBM24 and RBM38 from vertebrate, SUPpressor family member SUP-12 from Caenorhabditis elegans and similar proteins. Both, RBM24 and RBM38, are preferentially expressed in cardiac and skeletal muscle tissues. They regulate myogenic differentiation by controlling the cell cycle in a p21-dependent or -independent manner. RBM24, also termed RNA-binding region-containing protein 6, interacts with the 3'-untranslated region (UTR) of myogenin mRNA and regulates its stability in C2C12 cells. RBM38, also termed CLL-associated antigen KW-5, or HSRNASEB, or RNA-binding region-containing protein 1(RNPC1), or ssDNA-binding protein SEB4, is a direct target of the p53 family. It is required for maintaining the stability of the basal and stress-induced p21 mRNA by binding to their 3'-UTRs. It also binds the AU-/U-rich elements in p63 3'-UTR and regulates p63 mRNA stability and activity. SUP-12 is a novel tissue-specific splicing factor that controls muscle-specific splicing of the ADF/cofilin pre-mRNA in C. elegans. All family members contain a conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 409818 [Multi-domain]  Cd Length: 76  Bit Score: 46.60  E-value: 7.35e-07
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....*....
gi 2244986492  17 KMFVGQIPRSWSEKELKELFEPYGAVYQINVLRDRsqNPPQSKGCCFVTFYTRKAALEA 75
Cdd:cd12384     2 KIFVGGLPYHTTDDSLREYFEQFGEIEEAVVITDR--QTGKSRGYGFVTMADREAAERA 58
RRM4_MRN1 cd12522
RNA recognition motif 4 (RRM4) found in RNA-binding protein MRN1 and similar proteins; This ...
18-87 7.40e-07

RNA recognition motif 4 (RRM4) found in RNA-binding protein MRN1 and similar proteins; This subgroup corresponds to the RRM4 of MRN1, also termed multicopy suppressor of RSC-NHP6 synthetic lethality protein 1, or post-transcriptional regulator of 69 kDa, which is a RNA-binding protein found in yeast. Although its specific biological role remains unclear, MRN1 might be involved in translational regulation. Members in this family contain four copies of conserved RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 409942 [Multi-domain]  Cd Length: 81  Bit Score: 46.75  E-value: 7.40e-07
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 2244986492  18 MFVGQI--PRSWSEKELKELFEPYGAVYQINVLRDrsqnppqsKGCCFVTFYTRKAALeaqNALHNIKTLPG 87
Cdd:cd12522     6 VYIGNIddVRVLTEERLRHDFSQYGEIEQVNFLRE--------KNCAFVNFTNIANAI---KAIDKIKSKPY 66
RRM2_RBM34 cd12395
RNA recognition motif 2 (RRM2) found in RNA-binding protein 34 (RBM34) and similar proteins; ...
111-172 7.63e-07

RNA recognition motif 2 (RRM2) found in RNA-binding protein 34 (RBM34) and similar proteins; This subfamily corresponds to the RRM2 of RBM34, a putative RNA-binding protein containing two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). Although the function of RBM34 remains unclear currently, its RRM domains may participate in mRNA processing. RBM34 may act as an mRNA processing-related protein.


Pssm-ID: 409829 [Multi-domain]  Cd Length: 73  Bit Score: 46.34  E-value: 7.63e-07
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|...
gi 2244986492 111 FIGMVSKKCNENDIRVMFSPFGQIEECRILRGPD-GLSRGCAFVTFSTRAMAQNAIKaMHQSQ 172
Cdd:cd12395     3 FVGNLPFDIEEEELRKHFEDCGDVEAVRIVRDREtGIGKGFGYVLFKDKDSVDLALK-LNGSK 64
RRM3_TIA1_like cd12354
RNA recognition motif 2 (RRM2) found in granule-associated RNA binding proteins (p40-TIA-1 and ...
19-81 8.49e-07

RNA recognition motif 2 (RRM2) found in granule-associated RNA binding proteins (p40-TIA-1 and TIAR), and yeast nuclear and cytoplasmic polyadenylated RNA-binding protein PUB1; This subfamily corresponds to the RRM3 of TIA-1, TIAR, and PUB1. Nucleolysin TIA-1 isoform p40 (p40-TIA-1 or TIA-1) and nucleolysin TIA-1-related protein (TIAR) are granule-associated RNA binding proteins involved in inducing apoptosis in cytotoxic lymphocyte (CTL) target cells. They share high sequence similarity and are expressed in a wide variety of cell types. TIA-1 can be phosphorylated by a serine/threonine kinase that is activated during Fas-mediated apoptosis.TIAR is mainly localized in the nucleus of hematopoietic and nonhematopoietic cells. It is translocated from the nucleus to the cytoplasm in response to exogenous triggers of apoptosis. Both TIA-1 and TIAR bind specifically to poly(A) but not to poly(C) homopolymers. They are composed of three N-terminal highly homologous RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a glutamine-rich C-terminal auxiliary domain containing a lysosome-targeting motif. TIA-1 and TIAR interact with RNAs containing short stretches of uridylates and their RRM2 can mediate the specific binding to uridylate-rich RNAs. The C-terminal auxiliary domain may be responsible for interacting with other proteins. In addition, TIA-1 and TIAR share a potential serine protease-cleavage site (Phe-Val-Arg) localized at the junction between their RNA binding domains and their C-terminal auxiliary domains. This subfamily also includes a yeast nuclear and cytoplasmic polyadenylated RNA-binding protein PUB1, termed ARS consensus-binding protein ACBP-60, or poly uridylate-binding protein, or poly(U)-binding protein, which has been identified as both a heterogeneous nuclear RNA-binding protein (hnRNP) and a cytoplasmic mRNA-binding protein (mRNP). It may be stably bound to a translationally inactive subpopulation of mRNAs within the cytoplasm. PUB1 is distributed in both, the nucleus and the cytoplasm, and binds to poly(A)+ RNA (mRNA or pre-mRNA). Although it is one of the major cellular proteins cross-linked by UV light to polyadenylated RNAs in vivo, PUB1 is nonessential for cell growth in yeast. PUB1 also binds to T-rich single stranded DNA (ssDNA); however, there is no strong evidence implicating PUB1 in the mechanism of DNA replication. PUB1 contains three RRMs, and a GAR motif (glycine and arginine rich stretch) that is located between RRM2 and RRM3.


Pssm-ID: 409790 [Multi-domain]  Cd Length: 71  Bit Score: 46.12  E-value: 8.49e-07
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|...
gi 2244986492  19 FVGQIPRSWSEKELKELFEPYGAVYQINVLRDrsqnppqsKGCCFVTFYTRKAALEAQNALHN 81
Cdd:cd12354     4 YVGNITKGLTEALLQQTFSPFGQILEVRVFPD--------KGYAFIRFDSHEAATHAIVSVNG 58
RRM1_Hrp1p cd12577
RNA recognition motif 1 (RRM1) found in yeast nuclear polyadenylated RNA-binding protein 4 ...
110-169 8.79e-07

RNA recognition motif 1 (RRM1) found in yeast nuclear polyadenylated RNA-binding protein 4 (Hrp1p or Nab4p) and similar proteins; This subfamily corresponds to the RRM1 of Hrp1p and similar proteins. Hrp1p or Nab4p, also termed cleavage factor IB (CFIB), is a sequence-specific trans-acting factor that is essential for mRNA 3'-end formation in yeast Saccharomyces cerevisiae. It can be UV cross-linked to RNA and specifically recognizes the (UA)6 RNA element required for both, the cleavage and poly(A) addition, steps. Moreover, Hrp1p can shuttle between the nucleus and the cytoplasm, and play an additional role in the export of mRNAs to the cytoplasm. Hrp1p also interacts with Rna15p and Rna14p, two components of CF1A. In addition, Hrp1p functions as a factor directly involved in modulating the activity of the nonsense-mediated mRNA decay (NMD) pathway. It binds specifically to a downstream sequence element (DSE)-containing RNA and interacts with Upf1p, a component of the surveillance complex, further triggering the NMD pathway. Hrp1p contains two central RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and an arginine-glycine-rich region harboring repeats of the sequence RGGF/Y.


Pssm-ID: 409991 [Multi-domain]  Cd Length: 76  Bit Score: 46.34  E-value: 8.79e-07
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|.
gi 2244986492 110 LFIGMVSKKCNENDIRVMFSPFGQIEECRILRGP-DGLSRGCAFVTFSTRAMAQNAIKAMH 169
Cdd:cd12577     1 MFIGGLNWDTTEEGLRDYFSQFGTVVDCTIMKDSaTGRSRGFGFLTFEDPSSVNEVMKKEH 61
RRM_ZCRB1 cd12393
RNA recognition motif (RRM) found in Zinc finger CCHC-type and RNA-binding motif-containing ...
19-81 9.62e-07

RNA recognition motif (RRM) found in Zinc finger CCHC-type and RNA-binding motif-containing protein 1 (ZCRB1) and similar proteins; This subfamily corresponds to the RRM of ZCRB1, also termed MADP-1, or U11/U12 small nuclear ribonucleoprotein 31 kDa protein (U11/U12 snRNP 31 or U11/U12-31K), a novel multi-functional nuclear factor, which may be involved in morphine dependence, cold/heat stress, and hepatocarcinoma. It is located in the nucleoplasm, but outside the nucleolus. ZCRB1 is one of the components of U11/U12 snRNPs that bind to U12-type pre-mRNAs and form a di-snRNP complex, simultaneously recognizing the 5' splice site and branchpoint sequence. ZCRB1 is characterized by an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a CCHC-type Zinc finger motif. In addition, it contains core nucleocapsid motifs, and Lys- and Glu-rich domains.


Pssm-ID: 409827 [Multi-domain]  Cd Length: 76  Bit Score: 46.12  E-value: 9.62e-07
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|...
gi 2244986492  19 FVGQIPRSWSEKELKELFEPYGAVYQINVLRDRSQNppQSKGCCFVTFYTRKAALEAQNALHN 81
Cdd:cd12393     5 YVSNLPFSLTNNDLHQIFSKYGKVVKVTILKDKETR--KSKGVAFVLFLDRESAHNAVRAMNN 65
RRM2_Spen cd12309
RNA recognition motif 2 (RRM2) found in the Spen (split end) protein family; This subfamily ...
108-168 9.83e-07

RNA recognition motif 2 (RRM2) found in the Spen (split end) protein family; This subfamily corresponds to the RRM2 domain in the Spen (split end) protein family which includes RNA binding motif protein 15 (RBM15), putative RNA binding motif protein 15B (RBM15B), and similar proteins found in Metazoa. RBM15, also termed one-twenty two protein 1 (OTT1), conserved in eukaryotes, is a novel mRNA export factor and component of the NXF1 pathway. It binds to NXF1 and serves as receptor for the RNA export element RTE. It also possess mRNA export activity and can facilitate the access of DEAD-box protein DBP5 to mRNA at the nuclear pore complex (NPC). RNA-binding protein 15B (RBM15B), also termed one twenty-two 3 (OTT3), is a paralog of RBM15 and therefore has post-transcriptional regulatory activity. It is a nuclear protein sharing with RBM15 the association with the splicing factor compartment and the nuclear envelope as well as the binding to mRNA export factors NXF1 and Aly/REF. Members in this family belong to the Spen (split end) protein family, which share a domain architecture comprising of three N-terminal RNA recognition motifs (RRMs), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a C-terminal SPOC (Spen paralog and ortholog C-terminal) domain.


Pssm-ID: 240755 [Multi-domain]  Cd Length: 79  Bit Score: 46.24  E-value: 9.83e-07
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|.
gi 2244986492 108 RKLFIGMVSKKCNENDIRVMFSPFGQIEECRILRGPDGLSRGCAFVTFSTRAMAQNAIKAM 168
Cdd:cd12309     3 RTLFVGNLEITITEEELRRAFERYGVVEDVDIKRPPRGQGNAYAFVKFLNLDMAHRAKVAM 63
RRM1_Hu_like cd12375
RNA recognition motif 1 (RRM1) found in the Hu proteins family, Drosophila sex-lethal (SXL), ...
401-430 1.02e-06

RNA recognition motif 1 (RRM1) found in the Hu proteins family, Drosophila sex-lethal (SXL), and similar proteins; This subfamily corresponds to the RRM1 of Hu proteins and SXL. The Hu proteins family represents a group of RNA-binding proteins involved in diverse biological processes. Since the Hu proteins share high homology with the Drosophila embryonic lethal abnormal vision (ELAV) protein, the Hu family is sometimes referred to as the ELAV family. Drosophila ELAV is exclusively expressed in neurons and is required for the correct differentiation and survival of neurons in flies. The neuronal members of the Hu family include Hu-antigen B (HuB or ELAV-2 or Hel-N1), Hu-antigen C (HuC or ELAV-3 or PLE21), and Hu-antigen D (HuD or ELAV-4), which play important roles in neuronal differentiation, plasticity and memory. HuB is also expressed in gonads. Hu-antigen R (HuR or ELAV-1 or HuA) is ubiquitously expressed Hu family member. It has a variety of biological functions mostly related to the regulation of cellular response to DNA damage and other types of stress. Hu proteins perform their cytoplasmic and nuclear molecular functions by coordinately regulating functionally related mRNAs. In the cytoplasm, Hu proteins recognize and bind to AU-rich RNA elements (AREs) in the 3' untranslated regions (UTRs) of certain target mRNAs, such as GAP-43, vascular epithelial growth factor (VEGF), the glucose transporter GLUT1, eotaxin and c-fos, and stabilize those ARE-containing mRNAs. They also bind and regulate the translation of some target mRNAs, such as neurofilament M, GLUT1, and p27. In the nucleus, Hu proteins function as regulators of polyadenylation and alternative splicing. Each Hu protein contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an ARE. RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions. This family also includes the sex-lethal protein (SXL) from Drosophila melanogaster. SXL governs sexual differentiation and X chromosome dosage compensation in flies. It induces female-specific alternative splicing of the transformer (tra) pre-mRNA by binding to the tra uridine-rich polypyrimidine tract at the non-sex-specific 3' splice site during the sex-determination process. SXL binds to its own pre-mRNA and promotes female-specific alternative splicing. It contains an N-terminal Gly/Asn-rich domain that may be responsible for the protein-protein interaction, and tandem RRMs that show high preference to bind single-stranded, uridine-rich target RNA transcripts.


Pssm-ID: 409810 [Multi-domain]  Cd Length: 76  Bit Score: 46.25  E-value: 1.02e-06
                          10        20        30
                  ....*....|....*....|....*....|
gi 2244986492 401 GFVSYDNPVSAQAAIQAMNGFQIGMKRLKV 430
Cdd:cd12375    44 GFVNYRDPNDARKAINTLNGLDLENKRLKV 73
RRM_SNP1_like cd21615
RNA recognition motif (RRM) found in Saccharomyces cerevisiae U1 small nuclear ...
108-183 1.03e-06

RNA recognition motif (RRM) found in Saccharomyces cerevisiae U1 small nuclear ribonucleoprotein SNP1 and similar proteins; SNP1, also called U1 snRNP protein SNP1, or U1 small nuclear ribonucleoprotein 70 kDa homolog, or U1 70K, or U1 snRNP 70 kDa homolog, interacts with mRNA and is involved in nuclear mRNA splicing. It is a component of the spliceosome, where it is associated with snRNP U1 by binding stem loop I of U1 snRNA. Members in this family contain an N-terminal U1snRNP70 domain and an RNA recognition motif (RRM), also called RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 410194 [Multi-domain]  Cd Length: 118  Bit Score: 47.31  E-value: 1.03e-06
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 2244986492 108 RKLFIGMVSKKCNENDIRVMFSPFGQIEECRILRgpD---GLSRGCAFVTFSTRAMAQNAIKAMHQSQTMEGCSSPIVV 183
Cdd:cd21615    19 KTLFVGRLDYSLTELELQKKFSKFGEIEKIRIVR--DketGKSRGYAFIVFKSESDAKNAFKEGNGLRGLKINDRTCIV 95
RRM_snRNP35 cd12237
RNA recognition motif (RRM) found in U11/U12 small nuclear ribonucleoprotein 35 kDa protein ...
110-171 1.07e-06

RNA recognition motif (RRM) found in U11/U12 small nuclear ribonucleoprotein 35 kDa protein (U11/U12-35K) and similar proteins; This subfamily corresponds to the RRM of U11/U12-35K, also termed protein HM-1, or U1 snRNP-binding protein homolog, and is one of the components of the U11/U12 snRNP, which is a subunit of the minor (U12-dependent) spliceosome required for splicing U12-type nuclear pre-mRNA introns. U11/U12-35K is highly conserved among bilateria and plants, but lacks in some organisms, such as Saccharomyces cerevisiae and Caenorhabditis elegans. Moreover, U11/U12-35K shows significant sequence homology to U1 snRNP-specific 70 kDa protein (U1-70K or snRNP70). It contains a conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), followed by an adjacent glycine-rich region, and Arg-Asp and Arg-Glu dipeptide repeats rich domain, making U11/U12-35K a possible functional analog of U1-70K. It may facilitate 5' splice site recognition in the minor spliceosome and play a role in exon bridging, interacting with components of the major spliceosome bound to the pyrimidine tract of an upstream U2-type intron. The family corresponds to the RRM of U11/U12-35K that may directly contact the U11 or U12 snRNA through the RRM domain.


Pssm-ID: 409683 [Multi-domain]  Cd Length: 94  Bit Score: 46.55  E-value: 1.07e-06
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 2244986492 110 LFIGMVSKKCNENDIRVMFSPFGQIEECRILRgpD---GLSRGCAFVTFSTRAMAQNAIKAMHQS 171
Cdd:cd12237     7 LFVGRLSLQTTEEKLKEVFSRYGDIRRLRLVR--DivtGFSKRYAFIEYKEERDALHAYRDAKKL 69
RRM1_SECp43_like cd12344
RNA recognition motif 1 (RRM1) found in tRNA selenocysteine-associated protein 1 (SECp43) and ...
20-94 1.22e-06

RNA recognition motif 1 (RRM1) found in tRNA selenocysteine-associated protein 1 (SECp43) and similar proteins; This subfamily corresponds to the RRM1 in tRNA selenocysteine-associated protein 1 (SECp43), yeast negative growth regulatory protein NGR1 (RBP1), yeast protein NAM8, and similar proteins. SECp43 is an RNA-binding protein associated specifically with eukaryotic selenocysteine tRNA [tRNA(Sec)]. It may play an adaptor role in the mechanism of selenocysteine insertion. SECp43 is located primarily in the nucleus and contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a C-terminal polar/acidic region. Yeast proteins, NGR1 and NAM8, show high sequence similarity with SECp43. NGR1 is a putative glucose-repressible protein that binds both RNA and single-stranded DNA (ssDNA). It may function in regulating cell growth in early log phase, possibly through its participation in RNA metabolism. NGR1 contains three RRMs, two of which are followed by a glutamine-rich stretch that may be involved in transcriptional activity. In addition, NGR1 has an asparagine-rich region near the C-terminus which also harbors a methionine-rich region. NAM8 is a putative RNA-binding protein that acts as a suppressor of mitochondrial splicing deficiencies when overexpressed in yeast. It may be a non-essential component of the mitochondrial splicing machinery. NAM8 also contains three RRMs.


Pssm-ID: 409780 [Multi-domain]  Cd Length: 82  Bit Score: 46.14  E-value: 1.22e-06
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 2244986492  20 VGQIPRSWSEKELKELFEPYGA-VYQINVLRDRSQNppQSKGCCFVTFYTRKaalEAQNALHNI--KTLPGMHHPIQM 94
Cdd:cd12344     4 MGDLEPWMDEAYISSCFAKTGEeVVSVKIIRNKQTG--KSAGYCFVEFATQE---AAEQALEHLngKPIPNTQQRFRL 76
RRM2_PUF60 cd12371
RNA recognition motif 2 (RRM2) found in (U)-binding-splicing factor PUF60 and similar proteins; ...
401-430 1.24e-06

RNA recognition motif 2 (RRM2) found in (U)-binding-splicing factor PUF60 and similar proteins; This subfamily corresponds to the RRM2 of PUF60, also termed FUSE-binding protein-interacting repressor (FBP-interacting repressor or FIR), or Ro-binding protein 1 (RoBP1), or Siah-binding protein 1 (Siah-BP1). PUF60 is an essential splicing factor that functions as a poly-U RNA-binding protein required to reconstitute splicing in depleted nuclear extracts. Its function is enhanced through interaction with U2 auxiliary factor U2AF65. PUF60 also controls human c-myc gene expression by binding and inhibiting the transcription factor far upstream sequence element (FUSE)-binding-protein (FBP), an activator of c-myc promoters. PUF60 contains two central RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a C-terminal U2AF (U2 auxiliary factor) homology motifs (UHM) that harbors another RRM and binds to tryptophan-containing linear peptide motifs (UHM ligand motifs, ULMs) in several nuclear proteins. Research indicates that PUF60 binds FUSE as a dimer, and only the first two RRM domains participate in the single-stranded DNA recognition.


Pssm-ID: 409806 [Multi-domain]  Cd Length: 77  Bit Score: 46.12  E-value: 1.24e-06
                          10        20        30
                  ....*....|....*....|....*....|
gi 2244986492 401 GFVSYDNPVSAQAAIQAMNGFQIGMKRLKV 430
Cdd:cd12371    45 GFIEYENPQSAQDAIASMNLFDLGGQYLRV 74
RRM1_MSI cd12576
RNA recognition motif 1 (RRM1) found in RNA-binding protein Musashi homolog Musashi-1, ...
109-156 1.25e-06

RNA recognition motif 1 (RRM1) found in RNA-binding protein Musashi homolog Musashi-1, Musashi-2 and similar proteins; This subfamily corresponds to the RRM1 in Musashi-1 and Musashi-2. Musashi-1 (also termed Msi1) is a neural RNA-binding protein putatively expressed in central nervous system (CNS) stem cells and neural progenitor cells, and associated with asymmetric divisions in neural progenitor cells. It is evolutionarily conserved from invertebrates to vertebrates. Musashi-1 is a homolog of Drosophila Musashi and Xenopus laevis nervous system-specific RNP protein-1 (Nrp-1). It has been implicated in the maintenance of the stem-cell state, differentiation, and tumorigenesis. It translationally regulates the expression of a mammalian numb gene by binding to the 3'-untranslated region of mRNA of Numb, encoding a membrane-associated inhibitor of Notch signaling, and further influences neural development. Moreover, Musashi-1 represses translation by interacting with the poly(A)-binding protein and competes for binding of the eukaryotic initiation factor-4G (eIF-4G). Musashi-2 (also termed Msi2) has been identified as a regulator of the hematopoietic stem cell (HSC) compartment and of leukemic stem cells after transplantation of cells with loss and gain of function of the gene. It influences proliferation and differentiation of HSCs and myeloid progenitors, and further modulates normal hematopoiesis and promotes aggressive myeloid leukemia. Both, Musashi-1 and Musashi-2, contain two conserved N-terminal tandem RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), along with other domains of unknown function.


Pssm-ID: 409990 [Multi-domain]  Cd Length: 76  Bit Score: 45.90  E-value: 1.25e-06
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|....*....
gi 2244986492 109 KLFIGMVSKKCNENDIRVMFSPFGQIEECRILRGP-DGLSRGCAFVTFS 156
Cdd:cd12576     1 KMFIGGLSWQTTPEGLREYFSKFGEITECMVMRDPtTKRSRGFGFVTFS 49
RRM_RBMX_like cd12382
RNA recognition motif (RRM) found in heterogeneous nuclear ribonucleoprotein G (hnRNP G), Y ...
109-168 1.37e-06

RNA recognition motif (RRM) found in heterogeneous nuclear ribonucleoprotein G (hnRNP G), Y chromosome RNA recognition motif 1 (hRBMY), testis-specific heterogeneous nuclear ribonucleoprotein G-T (hnRNP G-T) and similar proteins; This subfamily corresponds to the RRM domain of hnRNP G, also termed glycoprotein p43 or RBMX, an RNA-binding motif protein located on the X chromosome. It is expressed ubiquitously and has been implicated in the splicing control of several pre-mRNAs. Moreover, hnRNP G may function as a regulator of transcription for SREBP-1c and GnRH1. Research has shown that hnRNP G may also act as a tumor-suppressor since it upregulates the Txnip gene and promotes the fidelity of DNA end-joining activity. In addition, hnRNP G appears to play a critical role in proper neural development of zebrafish and frog embryos. The family also includes several paralogs of hnRNP G, such as hRBMY and hnRNP G-T (also termed RNA-binding motif protein, X-linked-like-2). Both, hRBMY and hnRNP G-T, are exclusively expressed in testis and critical for male fertility. Like hnRNP G, hRBMY and hnRNP G-T interact with factors implicated in the regulation of pre-mRNA splicing, such as hTra2-beta1 and T-STAR. Although members in this family share a high conserved N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), they appear to recognize different RNA targets. For instance, hRBMY interacts specifically with a stem-loop structure in which the loop is formed by the sequence CA/UCAA. In contrast, hnRNP G associates with single stranded RNA sequences containing a CCA/C motif. In addition to the RRM, hnRNP G contains a nascent transcripts targeting domain (NTD) in the middle region and a novel auxiliary RNA-binding domain (RBD) in its C-terminal region. The C-terminal RBD exhibits distinct RNA binding specificity, and would play a critical role in the regulation of alternative splicing by hnRNP G.


Pssm-ID: 409816 [Multi-domain]  Cd Length: 80  Bit Score: 45.86  E-value: 1.37e-06
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|.
gi 2244986492 109 KLFIGMVSKKCNENDIRVMFSPFGQIEECRILRGPD-GLSRGCAFVTFSTRAMAQNAIKAM 168
Cdd:cd12382     3 KLFIGGLNTETNEKALEAVFGKYGRIVEVLLMKDREtNKSRGFAFVTFESPADAKDAARDM 63
RRM2_MRN1 cd12523
RNA recognition motif 2 (RRM2) found in RNA-binding protein MRN1 and similar proteins; This ...
19-86 1.44e-06

RNA recognition motif 2 (RRM2) found in RNA-binding protein MRN1 and similar proteins; This subgroup corresponds to the RRM2 of MRN1, also termed multicopy suppressor of RSC-NHP6 synthetic lethality protein 1, or post-transcriptional regulator of 69 kDa, which is a RNA-binding protein found in yeast. Although its specific biological role remains unclear, MRN1 might be involved in translational regulation. Members in this family contain four copies of conserved RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 409943 [Multi-domain]  Cd Length: 78  Bit Score: 45.89  E-value: 1.44e-06
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 2244986492  19 FVGQIPRSWSEKELKELFEPYGAVYQINVLRDrsqnppqsKGCCFVTFytrkaaLEAQNALHNIKTLP 86
Cdd:cd12523     7 YLGNLPESITEEELREDLEKFGPIDQIKIVKE--------KNIAFVHF------LSIANAIKVVTTLP 60
RRM2_4_MRN1 cd12262
RNA recognition motif 2 (RRM2) and 4 (RRM4) found in RNA-binding protein MRN1 and similar ...
108-168 1.60e-06

RNA recognition motif 2 (RRM2) and 4 (RRM4) found in RNA-binding protein MRN1 and similar proteins; This subgroup corresponds to the RRM2 and RRM4 of MRN1, also termed multicopy suppressor of RSC-NHP6 synthetic lethality protein 1, or post-transcriptional regulator of 69 kDa, and is an RNA-binding protein found in yeast. Although its specific biological role remains unclear, MRN1 might be involved in translational regulation. Members in this family contain four copies of conserved RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 409706 [Multi-domain]  Cd Length: 78  Bit Score: 45.85  E-value: 1.60e-06
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|.
gi 2244986492 108 RKLFIGMVSKKCNENDIRVMFSPFGQIEECRILRgpdglSRGCAFVTFSTRAmaqNAIKAM 168
Cdd:cd12262     4 RNVYVGNLDDSLTEEEIRGILEKYGEIESIKILK-----EKNCAFVNYLNIA---NAIKAV 56
RRM2_hnRNPD_like cd12329
RNA recognition motif 2 (RRM2) found in heterogeneous nuclear ribonucleoprotein hnRNP D0, ...
17-82 1.72e-06

RNA recognition motif 2 (RRM2) found in heterogeneous nuclear ribonucleoprotein hnRNP D0, hnRNP A/B, hnRNP DL and similar proteins; This subfamily corresponds to the RRM2 of hnRNP D0, hnRNP A/B, hnRNP DL and similar proteins. hnRNP D0, a UUAG-specific nuclear RNA binding protein that may be involved in pre-mRNA splicing and telomere elongation. hnRNP A/B is an RNA unwinding protein with a high affinity for G- followed by U-rich regions. It has also been identified as an APOBEC1-binding protein that interacts with apolipoprotein B (apoB) mRNA transcripts around the editing site and thus plays an important role in apoB mRNA editing. hnRNP DL (or hnRNP D-like) is a dual functional protein that possesses DNA- and RNA-binding properties. It has been implicated in mRNA biogenesis at the transcriptional and post-transcriptional levels. All memembers in this family contain two putative RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a glycine- and tyrosine-rich C-terminus.


Pssm-ID: 240775 [Multi-domain]  Cd Length: 75  Bit Score: 45.43  E-value: 1.72e-06
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 2244986492  17 KMFVGQIPRSWSEKELKELFEPYGAVYQINVLRDRSQNppQSKGCCFVTFYTRKA---ALEAQnaLHNI 82
Cdd:cd12329     1 KIFVGGLSPETTEEKIREYFGKFGNIVEIELPMDKKTN--KRRGFCFITFDSEEPvkkILETQ--FHVI 65
RRM3_NGR1_NAM8_like cd12346
RNA recognition motif 3 (RRM3) found in yeast negative growth regulatory protein NGR1 (RBP1), ...
19-80 1.93e-06

RNA recognition motif 3 (RRM3) found in yeast negative growth regulatory protein NGR1 (RBP1), yeast protein NAM8 and similar proteins; This subfamily corresponds to the RRM3 of NGR1 and NAM8. NGR1, also termed RNA-binding protein RBP1, is a putative glucose-repressible protein that binds both RNA and single-stranded DNA (ssDNA) in yeast. It may function in regulating cell growth in early log phase, possibly through its participation in RNA metabolism. NGR1 contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), followed by a glutamine-rich stretch that may be involved in transcriptional activity. In addition, NGR1 has an asparagine-rich region near the carboxyl terminus which also harbors a methionine-rich region. The family also includes protein NAM8, which is a putative RNA-binding protein that acts as a suppressor of mitochondrial splicing deficiencies when overexpressed in yeast. It may be a non-essential component of the mitochondrial splicing machinery. Like NGR1, NAM8 contains two RRMs.


Pssm-ID: 409782 [Multi-domain]  Cd Length: 72  Bit Score: 45.39  E-value: 1.93e-06
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|..
gi 2244986492  19 FVGQIPRSWSEKELKELFEPYGAVYQINVlrdrsqnpPQSKGCCFVTFYTRKAALEAQNALH 80
Cdd:cd12346     5 FVGGLDPNVTEEDLRVLFGPFGEIVYVKI--------PPGKGCGFVQFVNRASAEAAIQKLQ 58
RRM_SRSF2_SRSF8 cd12311
RNA recognition motif (RRM) found in serine/arginine-rich splicing factor SRSF2, SRSF8 and ...
28-93 1.97e-06

RNA recognition motif (RRM) found in serine/arginine-rich splicing factor SRSF2, SRSF8 and similar proteins; This subfamily corresponds to the RRM of SRSF2 and SRSF8. SRSF2, also termed protein PR264, or splicing component, 35 kDa (splicing factor SC35 or SC-35), is a prototypical SR protein that plays important roles in the alternative splicing of pre-mRNA. It is also involved in transcription elongation by directly or indirectly mediating the recruitment of elongation factors to the C-terminal domain of polymerase II. SRSF2 is exclusively localized in the nucleus and is restricted to nuclear processes. It contains a single N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), followed by a C-terminal RS domain rich in serine-arginine dipeptides. The RRM is responsible for the specific recognition of 5'-SSNG-3' (S=C/G) RNA. In the regulation of alternative splicing events, it specifically binds to cis-regulatory elements on the pre-mRNA. The RS domain modulates SRSF2 activity through phosphorylation, directly contacts RNA, and promotes protein-protein interactions with the spliceosome. SRSF8, also termed SRP46 or SFRS2B, is a novel mammalian SR splicing factor encoded by a PR264/SC35 functional retropseudogene. SRSF8 is localized in the nucleus and does not display the same activity as PR264/SC35. It functions as an essential splicing factor in complementing a HeLa cell S100 extract deficient in SR proteins. Like SRSF2, SRSF8 contains a single N-terminal RRM and a C-terminal RS domain.


Pssm-ID: 409751 [Multi-domain]  Cd Length: 73  Bit Score: 45.34  E-value: 1.97e-06
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 2244986492  28 SEKELKELFEPYGAVYQINVLRDRSQNppQSKGCCFVTFYTRKAALEAQNALHNiKTLPGMHHPIQ 93
Cdd:cd12311    11 TPDDLRRVFEKYGEVGDVYIPRDRYTR--ESRGFAFVRFYDKRDAEDAIDAMDG-AELDGRELRVQ 73
RRM1_hnRNPA1 cd12761
RNA recognition motif 1 (RRM1) found in heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) ...
108-167 1.97e-06

RNA recognition motif 1 (RRM1) found in heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) and similar proteins; This subgroup corresponds to the RRM1 of hnRNP A1, also termed helix-destabilizing protein, or single-strand RNA-binding protein, or hnRNP core protein A1, and is an abundant eukaryotic nuclear RNA-binding protein that may modulate splice site selection in pre-mRNA splicing. hnRNP A1 has been characterized as a splicing silencer, often acting in opposition to an activating hnRNP H. It silences exons when bound to exonic elements in the alternatively spliced transcripts of c-src, HIV, GRIN1, and beta-tropomyosin. hnRNP A1 can shuttle between the nucleus and the cytoplasm. Thus, it may be involved in transport of cellular RNAs, including the packaging of pre-mRNA into hnRNP particles and transport of poly A+ mRNA from the nucleus to the cytoplasm. The cytoplasmic hnRNP A1 has high affinity with AU-rich elements, whereas the nuclear hnRNP A1 has high affinity with a polypyrimidine stretch bordered by AG at the 3' ends of introns. hnRNP A1 is also involved in the replication of an RNA virus, such as mouse hepatitis virus (MHV), through an interaction with the transcription-regulatory region of viral RNA. hnRNP A1, together with the scaffold protein septin 6, serves as host protein to form a complex with NS5b and viral RNA, and further plays important roles in the replication of Hepatitis C virus (HCV). hnRNP A1 contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), followed by a long glycine-rich region at the C-terminus. The RRMs of hnRNP A1 play an important role in silencing the exon and the glycine-rich domain is responsible for protein-protein interactions.


Pssm-ID: 410154 [Multi-domain]  Cd Length: 81  Bit Score: 45.43  E-value: 1.97e-06
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|.
gi 2244986492 108 RKLFIGMVSKKCNENDIRVMFSPFGQIEECRILRGPDG-LSRGCAFVTFSTRAMAQNAIKA 167
Cdd:cd12761     3 RKLFIGGLSFETTDESLRSHFEQWGTLTDCVVMRDPNTkRSRGFGFVTYATVEEVDAAMNA 63
RRM2_HuC cd12776
RNA recognition motif 2 (RRM2) found in vertebrate Hu-antigen C (HuC); This subgroup ...
18-98 2.02e-06

RNA recognition motif 2 (RRM2) found in vertebrate Hu-antigen C (HuC); This subgroup corresponds to the RRM2 of HuC, also termed ELAV-like protein 3 (ELAV-3), or paraneoplastic cerebellar degeneration-associated antigen, or paraneoplastic limbic encephalitis antigen 21 (PLE21), one of the neuronal members of the Hu family. The neuronal Hu proteins play important roles in neuronal differentiation, plasticity and memory. Like other Hu proteins, HuC contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an AU-rich RNA element (ARE). The AU-rich element binding of HuC can be inhibited by flavonoids. RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions.


Pssm-ID: 241220 [Multi-domain]  Cd Length: 81  Bit Score: 45.38  E-value: 2.02e-06
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2244986492  18 MFVGQIPRSWSEKELKELFEPYGAVYQINVLRDrsQNPPQSKGCCFVTFYTRKAALEAQNALHNIKTLpGMHHPIQMKPA 97
Cdd:cd12776     4 LYVSGLPKTMSQKEMEQLFSQYGRIITSRILVD--QVTGVSRGVGFIRFDKRIEAEEAIKGLNGQKPL-GAAEPITVKFA 80

                  .
gi 2244986492  98 D 98
Cdd:cd12776    81 N 81
RBD_RRM1_NPL3 cd12340
RNA recognition motif 1 (RRM1) found in yeast nucleolar protein 3 (Npl3p) and similar proteins; ...
17-93 2.08e-06

RNA recognition motif 1 (RRM1) found in yeast nucleolar protein 3 (Npl3p) and similar proteins; This subfamily corresponds to the RRM1 of Npl3p, also termed mitochondrial targeting suppressor 1 protein, or nuclear polyadenylated RNA-binding protein 1. Npl3p is a major yeast RNA-binding protein that competes with 3'-end processing factors, such as Rna15, for binding to the nascent RNA, protecting the transcript from premature termination and coordinating transcription termination and the packaging of the fully processed transcript for export. It specifically recognizes a class of G/U-rich RNAs. Npl3p is a multi-domain protein containing two central RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), separated by a short linker and a C-terminal domain rich in glycine, arginine and serine residues.


Pssm-ID: 409777 [Multi-domain]  Cd Length: 69  Bit Score: 45.08  E-value: 2.08e-06
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 2244986492  17 KMFVGQIPRSWSEKELKELFEPYGAVYQINVLRDRsqnppqskGCCFVTFYTRKAALEAQNALHNiktLPGMHHPIQ 93
Cdd:cd12340     1 RLFVRPFPPDTSESAIREIFSPYGPVKEVKMLSDS--------NFAFVEFEELEDAIRAKDSVHG---RVLNNEPLY 66
RRM3_I_PABPs cd12380
RNA recognition motif 3 (RRM3) found found in type I polyadenylate-binding proteins; This ...
121-169 2.14e-06

RNA recognition motif 3 (RRM3) found found in type I polyadenylate-binding proteins; This subfamily corresponds to the RRM3 of type I poly(A)-binding proteins (PABPs), highly conserved proteins that bind to the poly(A) tail present at the 3' ends of most eukaryotic mRNAs. They have been implicated in the regulation of poly(A) tail length during the polyadenylation reaction, translation initiation, mRNA stabilization by influencing the rate of deadenylation and inhibition of mRNA decapping. The family represents type I polyadenylate-binding proteins (PABPs), including polyadenylate-binding protein 1 (PABP-1 or PABPC1), polyadenylate-binding protein 3 (PABP-3 or PABPC3), polyadenylate-binding protein 4 (PABP-4 or APP-1 or iPABP), polyadenylate-binding protein 5 (PABP-5 or PABPC5), polyadenylate-binding protein 1-like (PABP-1-like or PABPC1L), polyadenylate-binding protein 1-like 2 (PABPC1L2 or RBM32), polyadenylate-binding protein 4-like (PABP-4-like or PABPC4L), yeast polyadenylate-binding protein, cytoplasmic and nuclear (PABP or ACBP-67), and similar proteins. PABP-1 is an ubiquitously expressed multifunctional protein that may play a role in 3' end formation of mRNA, translation initiation, mRNA stabilization, protection of poly(A) from nuclease activity, mRNA deadenylation, inhibition of mRNA decapping, and mRNP maturation. Although PABP-1 is thought to be a cytoplasmic protein, it is also found in the nucleus. PABP-1 may be involved in nucleocytoplasmic trafficking and utilization of mRNP particles. PABP-1 contains four copies of RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), a less well conserved linker region, and a proline-rich C-terminal conserved domain (CTD). PABP-3 is a testis-specific poly(A)-binding protein specifically expressed in round spermatids. It is mainly found in mammalian and may play an important role in the testis-specific regulation of mRNA homeostasis. PABP-3 shows significant sequence similarity to PABP-1. However, it binds to poly(A) with a lower affinity than PABP-1. PABP-1 possesses an A-rich sequence in its 5'-UTR and allows binding of PABP and blockage of translation of its own mRNA. In contrast, PABP-3 lacks the A-rich sequence in its 5'-UTR. PABP-4 is an inducible poly(A)-binding protein (iPABP) that is primarily localized to the cytoplasm. It shows significant sequence similarity to PABP-1 as well. The RNA binding properties of PABP-1 and PABP-4 appear to be identical. PABP-5 is encoded by PABPC5 gene within the X-specific subinterval, and expressed in fetal brain and in a range of adult tissues in mammalian, such as ovary and testis. It may play an important role in germ cell development. Moreover, unlike other PABPs, PABP-5 contains only four RRMs, but lacks both the linker region and the CTD. PABP-1-like and PABP-1-like 2 are the orthologs of PABP-1. PABP-4-like is the ortholog of PABP-5. Their cellular functions remain unclear. The family also includes the yeast PABP, a conserved poly(A) binding protein containing poly(A) tails that can be attached to the 3'-ends of mRNAs. The yeast PABP and its homologs may play important roles in the initiation of translation and in mRNA decay. Like vertebrate PABP-1, the yeast PABP contains four RRMs, a linker region, and a proline-rich CTD as well. The first two RRMs are mainly responsible for specific binding to poly(A). The proline-rich region may be involved in protein-protein interactions.


Pssm-ID: 409814 [Multi-domain]  Cd Length: 80  Bit Score: 45.24  E-value: 2.14e-06
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|....*....
gi 2244986492 121 ENDIRVMFSPFGQIEECRILRGPDGLSRGCAFVTFSTRAMAQNAIKAMH 169
Cdd:cd12380    15 DDELKELFEKYGKITSAKVMKDDSGKSKGFGFVNFENHEAAQKAVEELN 63
RRM1_PHIP1 cd12271
RNA recognition motif 1 (RRM1) found in Arabidopsis thaliana phragmoplastin interacting ...
110-165 2.48e-06

RNA recognition motif 1 (RRM1) found in Arabidopsis thaliana phragmoplastin interacting protein 1 (PHIP1) and similar proteins; This subfamily corresponds to the RRM1 of PHIP1. A. thaliana PHIP1 and its homologs represent a novel class of plant-specific RNA-binding proteins that may play a unique role in the polarized mRNA transport to the vicinity of the cell plate. The family members consist of multiple functional domains, including a lysine-rich domain (KRD domain) that contains three nuclear localization motifs (KKKR/NK), two RNA recognition motifs (RRMs), and three CCHC-type zinc fingers. PHIP1 is a peripheral membrane protein and is localized at the cell plate during cytokinesis in plants. In addition to phragmoplastin, PHIP1 interacts with two Arabidopsis small GTP-binding proteins, Rop1 and Ran2. However, PHIP1 interacted only with the GTP-bound form of Rop1 but not the GDP-bound form. It also binds specifically to Ran2 mRNA.


Pssm-ID: 409714 [Multi-domain]  Cd Length: 72  Bit Score: 45.01  E-value: 2.48e-06
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....*..
gi 2244986492 110 LFIGMVSKKCNENDIRVMFSPFGQIEECRILRGPD-GLSRGCAFVTFSTRAMAQNAI 165
Cdd:cd12271     1 VYVGGIPYYSTEAEIRSYFSSCGEVRSVDLMRFPDsGNFRGIAFITFKTEEAAKRAL 57
RRM2_RBM23_RBM39 cd12284
RNA recognition motif 2 (RRM2) found in vertebrate RNA-binding protein RBM23, RBM39 and ...
18-79 2.49e-06

RNA recognition motif 2 (RRM2) found in vertebrate RNA-binding protein RBM23, RBM39 and similar proteins; This subfamily corresponds to the RRM2 of RBM39 (also termed HCC1), a nuclear autoantigen that contains an N-terminal arginine/serine rich (RS) motif and three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). An octapeptide sequence called the RS-ERK motif is repeated six times in the RS region of RBM39. Although the cellular function of RBM23 remains unclear, it shows high sequence homology to RBM39 and contains two RRMs. It may possibly function as a pre-mRNA splicing factor.


Pssm-ID: 409726 [Multi-domain]  Cd Length: 78  Bit Score: 45.31  E-value: 2.49e-06
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|..
gi 2244986492  18 MFVGQIPRSWSEKELKELFEPYGAVYQINVLRDRSQNppQSKGCCFVTFYTRKAALEAQNAL 79
Cdd:cd12284     1 LYVGSLHFNITEDMLRGIFEPFGKIEFVQLQKDPETG--RSKGYGFIQFRDAEDAKKALEQL 60
RRM1_ACF cd12486
RNA recognition motif 1 (RRM1) found in vertebrate APOBEC-1 complementation factor (ACF); This ...
17-81 2.61e-06

RNA recognition motif 1 (RRM1) found in vertebrate APOBEC-1 complementation factor (ACF); This subgroup corresponds to the RRM1 of ACF, also termed APOBEC-1-stimulating protein, an RNA-binding subunit of a core complex that interacts with apoB mRNA to facilitate C to U RNA editing. It may also act as an apoB mRNA recognition factor and chaperone, and play a key role in cell growth and differentiation. ACF shuttles between the cytoplasm and nucleus. It contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), which display high affinity for an 11 nucleotide AU-rich mooring sequence 3' of the edited cytidine in apoB mRNA. All three RRMs may be required for complementation of editing activity in living cells. RRM2/3 are implicated in ACF interaction with APOBEC-1.


Pssm-ID: 409912 [Multi-domain]  Cd Length: 78  Bit Score: 44.97  E-value: 2.61e-06
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 2244986492  17 KMFVGQIPRSWSEKELKELFEPYGAVYQINVLRDRSQNppqSKGCCFVTFYTRKAALEAQNALHN 81
Cdd:cd12486     3 EIFIGKLPRDLFEDELVPLCEKIGKIYEMRMMMDFNGN---NRGYAFVTFSNKQEARNAIKQLNN 64
RRM1_PSRP2_like cd21609
RNA recognition motif 1 (RRM1) found in chloroplastic plastid-specific 30S ribosomal protein 2 ...
17-75 3.35e-06

RNA recognition motif 1 (RRM1) found in chloroplastic plastid-specific 30S ribosomal protein 2 (PSRP-2) and similar proteins; PSRP-2, also called chloroplastic 30S ribosomal protein 2, or chloroplastic small ribosomal subunit protein cS22, is a component of the chloroplast ribosome (chloro-ribosome), a dedicated translation machinery responsible for the synthesis of chloroplast genome-encoded proteins, including proteins of the transcription and translation machinery and components of the photosynthetic apparatus. It binds single strand DNA (ssDNA) and RNA in vitro. It exhibits RNA chaperone activity and regulates negatively resistance responses to abiotic stresses during seed germination (e.g. salt, dehydration, and low temperature) and seedling growth (e.g. salt). The family also includes Nicotiana sylvestris chloroplastic 33 kDa ribonucleoprotein (NsCP33) and Arabidopsis thaliana chloroplastic 31 kDa ribonucleoprotein (AtCP31A). NsCP33 may be involved in splicing and/or processing of chloroplast RNA's. AtCP31A, also called RNA-binding protein 1/2/3 (AtRBP33), or RNA-binding protein CP31A, or RNA-binding protein RNP-T, or RNA-binding protein cp31, is required for specific RNA editing events in chloroplasts and stabilizes specific chloroplast mRNAs, as well as for normal chloroplast development under cold stress conditions by stabilizing transcripts of numerous mRNAs under these conditions. CP31A may modulate telomere replication through RNA binding domains. Members in this family contain two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The model corresponds to the first RRM motif.


Pssm-ID: 410188 [Multi-domain]  Cd Length: 80  Bit Score: 44.72  E-value: 3.35e-06
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....*....
gi 2244986492  17 KMFVGQIPRSWSEKELKELFEPYGAVYQINVLRDRSQNppQSKGCCFVTFYTRKAALEA 75
Cdd:cd21609     1 RLYVGNIPRNVTSEELAKIFEEAGTVEIAEVMYDRYTG--RSRGFGFVTMGSVEDAKAA 57
RRM_BOULE cd12673
RNA recognition motif (RRM) found in protein BOULE; This subgroup corresponds to the RRM of ...
17-85 3.36e-06

RNA recognition motif (RRM) found in protein BOULE; This subgroup corresponds to the RRM of BOULE, the founder member of the human DAZ gene family. Invertebrates contain a single BOULE, while vertebrates, other than catarrhine primates, possess both BOULE and DAZL genes. The catarrhine primates possess BOULE, DAZL, and DAZ genes. BOULE encodes an RNA-binding protein containing an RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a single copy of the DAZ motif. Although its specific biochemical functions remains to be investigated, BOULE protein may interact with poly(A)-binding proteins (PABPs), and act as translational activators of specific mRNAs during gametogenesis.


Pssm-ID: 410074 [Multi-domain]  Cd Length: 81  Bit Score: 44.87  E-value: 3.36e-06
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 2244986492  17 KMFVGQIPRSWSEKELKELFEPYGAVYQINVLRDRSQnppQSKGCCFVTFYTRKaalEAQNALHNIKTL 85
Cdd:cd12673     4 RIFVGGIDFKTNENDLRKFFAQYGSVKEVKIVNDRAG---VSKGYGFITFETQE---DAQKILQEAEKL 66
RRM5_MRD1 cd12570
RNA recognition motif 5 (RRM5) found in yeast multiple RNA-binding domain-containing protein 1 ...
109-169 3.61e-06

RNA recognition motif 5 (RRM5) found in yeast multiple RNA-binding domain-containing protein 1 (MRD1) and similar proteins; This subgroup corresponds to the RRM5 of MRD1 which is encoded by a novel yeast gene MRD1 (multiple RNA-binding domain). It is well-conserved in yeast and its homologs exist in all eukaryotes. MRD1 is present in the nucleolus and the nucleoplasm. It interacts with the 35 S precursor rRNA (pre-rRNA) and U3 small nucleolar RNAs (snoRNAs). MRD1 is essential for the initial processing at the A0-A2 cleavage sites in the 35 S pre-rRNA. It contains 5 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), which may play an important structural role in organizing specific rRNA processing events.


Pssm-ID: 241014 [Multi-domain]  Cd Length: 76  Bit Score: 44.81  E-value: 3.61e-06
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|.
gi 2244986492 109 KLFIGMVSKKCNENDIRVMFSPFGQIEECRILRGPDGLSRGCAFVTFSTRAMAQNAIKAMH 169
Cdd:cd12570     2 KILVKNLPFEATKKDVRTLFSSYGQLKSVRVPKKFDQSARGFAFVEFSTAKEALNAMNALK 62
RRM2_PUF60 cd12371
RNA recognition motif 2 (RRM2) found in (U)-binding-splicing factor PUF60 and similar proteins; ...
109-168 3.80e-06

RNA recognition motif 2 (RRM2) found in (U)-binding-splicing factor PUF60 and similar proteins; This subfamily corresponds to the RRM2 of PUF60, also termed FUSE-binding protein-interacting repressor (FBP-interacting repressor or FIR), or Ro-binding protein 1 (RoBP1), or Siah-binding protein 1 (Siah-BP1). PUF60 is an essential splicing factor that functions as a poly-U RNA-binding protein required to reconstitute splicing in depleted nuclear extracts. Its function is enhanced through interaction with U2 auxiliary factor U2AF65. PUF60 also controls human c-myc gene expression by binding and inhibiting the transcription factor far upstream sequence element (FUSE)-binding-protein (FBP), an activator of c-myc promoters. PUF60 contains two central RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a C-terminal U2AF (U2 auxiliary factor) homology motifs (UHM) that harbors another RRM and binds to tryptophan-containing linear peptide motifs (UHM ligand motifs, ULMs) in several nuclear proteins. Research indicates that PUF60 binds FUSE as a dimer, and only the first two RRM domains participate in the single-stranded DNA recognition.


Pssm-ID: 409806 [Multi-domain]  Cd Length: 77  Bit Score: 44.58  E-value: 3.80e-06
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|.
gi 2244986492 109 KLFIGMVSKKCNENDIRVMFSPFGQIEECRILRGPD-GLSRGCAFVTFSTRAMAQNAIKAM 168
Cdd:cd12371     2 RIYVASVHPDLSEDDIKSVFEAFGKIKSCSLAPDPEtGKHKGYGFIEYENPQSAQDAIASM 62
RRM1_RBM46 cd12484
RNA recognition motif 1 (RRM1) found in vertebrate RNA-binding protein 46 (RBM46); This ...
108-176 4.05e-06

RNA recognition motif 1 (RRM1) found in vertebrate RNA-binding protein 46 (RBM46); This subgroup corresponds to the RRM1 of RBM46, also termed cancer/testis antigen 68 (CT68), a putative RNA-binding protein that shows high sequence homology with heterogeneous nuclear ribonucleoprotein R (hnRNP R) and heterogeneous nuclear ribonucleoprotein Q (hnRNP Q). Its biological function remains unclear. Like hnRNP R and hnRNP Q, RBM46 contains two well-defined and one degenerated RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409911 [Multi-domain]  Cd Length: 78  Bit Score: 44.50  E-value: 4.05e-06
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 2244986492 108 RKLFIGMVSKKCNENDIRVMFSPFGQIEECRILRGPDGLSRGCAFVTFSTRAMAQNAIKAMHQSQTMEG 176
Cdd:cd12484     2 CEVFVGKIPRDMYEDELVPVFERAGKIYEFRLMMEFSGENRGYAFVMYTTKEEAQLAIKMLNNYEIRPG 70
RRM2_HuB cd12775
RNA recognition motif 2 (RRM2) found in vertebrate Hu-antigen B (HuB); This subgroup ...
18-97 4.58e-06

RNA recognition motif 2 (RRM2) found in vertebrate Hu-antigen B (HuB); This subgroup corresponds to the RRM2 of HuB, also termed ELAV-like protein 2 (ELAV-2), or ELAV-like neuronal protein 1, or nervous system-specific RNA-binding protein Hel-N1 (Hel-N1), one of the neuronal members of the Hu family. The neuronal Hu proteins play important roles in neuronal differentiation, plasticity and memory. HuB is also expressed in gonads. It is up-regulated during neuronal differentiation of embryonic carcinoma P19 cells. Like other Hu proteins, HuB contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an AU-rich RNA element (ARE). RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions.


Pssm-ID: 410168 [Multi-domain]  Cd Length: 84  Bit Score: 44.71  E-value: 4.58e-06
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2244986492  18 MFVGQIPRSWSEKELKELFEPYGAVYQINVLRDrsQNPPQSKGCCFVTFYTRKAALEAQNALHNIKTlPGMHHPIQMKPA 97
Cdd:cd12775     8 LYVSGLPKTMTQKELEQLFSQYGRIITSRILVD--QVTGVSRGVGFIRFDKRIEAEEAIKGLNGQKP-PGATEPITVKFA 84
RRM1_hnRNPQ cd12483
RNA recognition motif 1 (RRM1) found in vertebrate heterogeneous nuclear ribonucleoprotein Q ...
109-176 4.63e-06

RNA recognition motif 1 (RRM1) found in vertebrate heterogeneous nuclear ribonucleoprotein Q (hnRNP Q); This subgroup corresponds to the RRM1 of hnRNP Q, also termed glycine- and tyrosine-rich RNA-binding protein (GRY-RBP), or NS1-associated protein 1 (NASP1), or synaptotagmin-binding, cytoplasmic RNA-interacting protein (SYNCRIP). It is a ubiquitously expressed nuclear RNA-binding protein identified as a component of the spliceosome complex, as well as a component of the apobec-1 editosome. As an alternatively spliced version of NSAP, it acts as an interaction partner of a multifunctional protein required for viral replication, and is implicated in the regulation of specific mRNA transport. hnRNP Q has also been identified as SYNCRIP, a dual functional protein participating in both viral RNA replication and translation. As a synaptotagmin-binding protein, hnRNP Q plays a putative role in organelle-based mRNA transport along the cytoskeleton. Moreover, hnRNP Q has been found in protein complexes involved in translationally coupled mRNA turnover and mRNA splicing. It functions as a wild-type survival motor neuron (SMN)-binding protein that may participate in pre-mRNA splicing and modulate mRNA transport along microtubuli. hnRNP Q contains an acidic auxiliary N-terminal region, followed by two well-defined and one degenerated RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a C-terminal RGG motif; hnRNP Q binds RNA through its RRM domains.


Pssm-ID: 409910 [Multi-domain]  Cd Length: 84  Bit Score: 44.57  E-value: 4.63e-06
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 2244986492 109 KLFIGMVSKKCNENDIRVMFSPFGQIEECRILRGP-DGLSRGCAFVTFSTRAMAQNAIKAMHQSQTMEG 176
Cdd:cd12483     7 EIFVGKIPRDLFEDELVPLFEKAGPIWDLRLMMDPlTGLNRGYAFVTFCTKEAAQEAVKLCNNHEIRPG 75
RRM6_RBM19_RRM5_MRD1 cd12320
RNA recognition motif 6 (RRM6) found in RNA-binding protein 19 (RBM19 or RBD-1) and RNA ...
17-79 4.72e-06

RNA recognition motif 6 (RRM6) found in RNA-binding protein 19 (RBM19 or RBD-1) and RNA recognition motif 5 (RRM5) found in multiple RNA-binding domain-containing protein 1 (MRD1); This subfamily corresponds to the RRM6 of RBM19 and RRM5 of MRD1. RBM19, also termed RNA-binding domain-1 (RBD-1), is a nucleolar protein conserved in eukaryotes. It is involved in ribosome biogenesis by processing rRNA and is essential for preimplantation development. It has a unique domain organization containing 6 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). MRD1 is encoded by a novel yeast gene MRD1 (multiple RNA-binding domain). It is well-conserved in yeast and its homologs exist in all eukaryotes. MRD1 is present in the nucleolus and the nucleoplasm. It interacts with the 35 S precursor rRNA (pre-rRNA) and U3 small nucleolar RNAs (snoRNAs). It is essential for the initial processing at the A0-A2 cleavage sites in the 35 S pre-rRNA. MRD1 contains 5 conserved RRMs, which may play an important structural role in organizing specific rRNA processing events.


Pssm-ID: 409759 [Multi-domain]  Cd Length: 76  Bit Score: 44.15  E-value: 4.72e-06
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|...
gi 2244986492  17 KMFVGQIPRSWSEKELKELFEPYGAVYQINVLRDRSQnppQSKGCCFVTFYTRKAALEAQNAL 79
Cdd:cd12320     2 KLIVKNVPFEATRKEIRELFSPFGQLKSVRLPKKFDG---SHRGFAFVEFVTKQEAQNAMEAL 61
RRM1_CoAA cd12608
RNA recognition motif 1 (RRM1) found in vertebrate RRM-containing coactivator activator ...
16-80 4.76e-06

RNA recognition motif 1 (RRM1) found in vertebrate RRM-containing coactivator activator/modulator (CoAA); This subgroup corresponds to the RRM1 of CoAA, also termed RNA-binding protein 14 (RBM14), or paraspeckle protein 2 (PSP2), or synaptotagmin-interacting protein (SYT-interacting protein), a heterogeneous nuclear ribonucleoprotein (hnRNP)-like protein identified as a nuclear receptor coactivator. It mediates transcriptional coactivation and RNA splicing effects in a promoter-preferential manner and is enhanced by thyroid hormone receptor-binding protein (TRBP). CoAA contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a TRBP-interacting domain. It stimulates transcription through its interactions with coactivators, such as TRBP and CREB-binding protein CBP/p300, via the TRBP-interacting domain and interaction with an RNA-containing complex, such as DNA-dependent protein kinase-poly(ADP-ribose) polymerase complexes, via the RRMs.


Pssm-ID: 410020 [Multi-domain]  Cd Length: 69  Bit Score: 44.02  E-value: 4.76e-06
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 2244986492  16 IKMFVGQIPRSWSEKELKELFEPYGAVYQINVLRDRSqnppqskgccFVTFYTRKAALEAQNALH 80
Cdd:cd12608     1 MKIFVGNVDEDTSQEELSALFEPYGAVLSCAVMKQFA----------FVHMRGEAAADRAIRELN 55
RRM2_PUB1 cd12619
RNA recognition motif 2 (RRM2) found in yeast nuclear and cytoplasmic polyadenylated ...
110-168 4.84e-06

RNA recognition motif 2 (RRM2) found in yeast nuclear and cytoplasmic polyadenylated RNA-binding protein PUB1 and similar proteins; This subgroup corresponds to the RRM2 of yeast protein PUB1, also termed ARS consensus-binding protein ACBP-60, or poly uridylate-binding protein, or poly(U)-binding protein. PUB1 has been identified as both, a heterogeneous nuclear RNA-binding protein (hnRNP) and a cytoplasmic mRNA-binding protein (mRNP), which may be stably bound to a translationally inactive subpopulation of mRNAs within the cytoplasm. It is distributed in both, the nucleus and the cytoplasm, and binds to poly(A)+ RNA (mRNA or pre-mRNA). Although it is one of the major cellular proteins cross-linked by UV light to polyadenylated RNAs in vivo, PUB1 is nonessential for cell growth in yeast. PUB1 also binds to T-rich single stranded DNA (ssDNA). However, there is no strong evidence implicating PUB1 in the mechanism of DNA replication. PUB1 contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a GAR motif (glycine and arginine rich stretch) that is located between RRM2 and RRM3.


Pssm-ID: 410031 [Multi-domain]  Cd Length: 80  Bit Score: 44.41  E-value: 4.84e-06
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|
gi 2244986492 110 LFIGMVSKKCNENDIRVMFSPFGQIEECRIL-RGPDGLSRGCAFVTFSTRAMAQNAIKAM 168
Cdd:cd12619     4 IFVGDLSPEVTDAALFNAFSDFPSCSDARVMwDQKTGRSRGYGFVSFRSQQDAQNAINSM 63
RRM2_hnRNPA3 cd12582
RNA recognition motif 2 (RRM2) found in heterogeneous nuclear ribonucleoprotein A3 (hnRNP A3) ...
17-66 5.15e-06

RNA recognition motif 2 (RRM2) found in heterogeneous nuclear ribonucleoprotein A3 (hnRNP A3) and similar proteins; This subgroup corresponds to the RRM2 of hnRNP A3, a novel RNA trafficking response element-binding protein that interacts with the hnRNP A2 response element (A2RE) independently of hnRNP A2 and participates in the trafficking of A2RE-containing RNA. hnRNP A3 can shuttle between the nucleus and the cytoplasm. It contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), followed by a long glycine-rich region at the C-terminus.


Pssm-ID: 409996 [Multi-domain]  Cd Length: 80  Bit Score: 44.17  E-value: 5.15e-06
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|
gi 2244986492  17 KMFVGQIPRSWSEKELKELFEPYGAVYQINVLRDRSQNppQSKGCCFVTF 66
Cdd:cd12582     2 KIFVGGIKEDTEEYHLRDYFEKYGKIETIEVMEDRQSG--KKRGFAFVTF 49
RRM_SRSF3_like cd12373
RNA recognition motif (RRM) found in serine/arginine-rich splicing factor 3 (SRSF3) and ...
109-186 5.34e-06

RNA recognition motif (RRM) found in serine/arginine-rich splicing factor 3 (SRSF3) and similar proteins; This subfamily corresponds to the RRM of two serine/arginine (SR) proteins, serine/arginine-rich splicing factor 3 (SRSF3) and serine/arginine-rich splicing factor 7 (SRSF7). SRSF3, also termed pre-mRNA-splicing factor SRp20, modulates alternative splicing by interacting with RNA cis-elements in a concentration- and cell differentiation-dependent manner. It is also involved in termination of transcription, alternative RNA polyadenylation, RNA export, and protein translation. SRSF3 is critical for cell proliferation, and tumor induction and maintenance. It can shuttle between the nucleus and cytoplasm. SRSF7, also termed splicing factor 9G8, plays a crucial role in both constitutive splicing and alternative splicing of many pre-mRNAs. Its localization and functions are tightly regulated by phosphorylation. SRSF7 is predominantly present in the nuclear and can shuttle between nucleus and cytoplasm. It cooperates with the export protein, Tap/NXF1, helps mRNA export to the cytoplasm, and enhances the expression of unspliced mRNA. Moreover, SRSF7 inhibits tau E10 inclusion through directly interacting with the proximal downstream intron of E10, a clustering region for frontotemporal dementia with Parkinsonism (FTDP) mutations. Both SRSF3 and SRSF7 contain a single N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a C-terminal RS domain rich in serine-arginine dipeptides. The RRM domain is involved in RNA binding, and the RS domain has been implicated in protein shuttling and protein-protein interactions.


Pssm-ID: 409808 [Multi-domain]  Cd Length: 73  Bit Score: 44.16  E-value: 5.34e-06
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 2244986492 109 KLFIGMVSKKCNENDIRVMFSPFGQIEECRILRGPDGLsrgcAFVTFSTRAMAQNAIKAMhqsQTMEGCSSPIVVKFA 186
Cdd:cd12373     1 KVYVGNLGPRVTKRELEDAFEKYGPLRNVWVARNPPGF----AFVEFEDPRDAEDAVRAL---DGRRICGSRVRVELS 71
RRM1_Hu_like cd12375
RNA recognition motif 1 (RRM1) found in the Hu proteins family, Drosophila sex-lethal (SXL), ...
18-84 5.56e-06

RNA recognition motif 1 (RRM1) found in the Hu proteins family, Drosophila sex-lethal (SXL), and similar proteins; This subfamily corresponds to the RRM1 of Hu proteins and SXL. The Hu proteins family represents a group of RNA-binding proteins involved in diverse biological processes. Since the Hu proteins share high homology with the Drosophila embryonic lethal abnormal vision (ELAV) protein, the Hu family is sometimes referred to as the ELAV family. Drosophila ELAV is exclusively expressed in neurons and is required for the correct differentiation and survival of neurons in flies. The neuronal members of the Hu family include Hu-antigen B (HuB or ELAV-2 or Hel-N1), Hu-antigen C (HuC or ELAV-3 or PLE21), and Hu-antigen D (HuD or ELAV-4), which play important roles in neuronal differentiation, plasticity and memory. HuB is also expressed in gonads. Hu-antigen R (HuR or ELAV-1 or HuA) is ubiquitously expressed Hu family member. It has a variety of biological functions mostly related to the regulation of cellular response to DNA damage and other types of stress. Hu proteins perform their cytoplasmic and nuclear molecular functions by coordinately regulating functionally related mRNAs. In the cytoplasm, Hu proteins recognize and bind to AU-rich RNA elements (AREs) in the 3' untranslated regions (UTRs) of certain target mRNAs, such as GAP-43, vascular epithelial growth factor (VEGF), the glucose transporter GLUT1, eotaxin and c-fos, and stabilize those ARE-containing mRNAs. They also bind and regulate the translation of some target mRNAs, such as neurofilament M, GLUT1, and p27. In the nucleus, Hu proteins function as regulators of polyadenylation and alternative splicing. Each Hu protein contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an ARE. RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions. This family also includes the sex-lethal protein (SXL) from Drosophila melanogaster. SXL governs sexual differentiation and X chromosome dosage compensation in flies. It induces female-specific alternative splicing of the transformer (tra) pre-mRNA by binding to the tra uridine-rich polypyrimidine tract at the non-sex-specific 3' splice site during the sex-determination process. SXL binds to its own pre-mRNA and promotes female-specific alternative splicing. It contains an N-terminal Gly/Asn-rich domain that may be responsible for the protein-protein interaction, and tandem RRMs that show high preference to bind single-stranded, uridine-rich target RNA transcripts.


Pssm-ID: 409810 [Multi-domain]  Cd Length: 76  Bit Score: 43.94  E-value: 5.56e-06
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 2244986492  18 MFVGQIPRSWSEKELKELFEPYGAVYQINVLRDRsqNPPQSKGCCFVTFYTRKAALEAQNALHNIKT 84
Cdd:cd12375     2 LIVNYLPQSMTQEELRSLFGAIGPIESCKLVRDK--ITGQSLGYGFVNYRDPNDARKAINTLNGLDL 66
RRM_hnRNPH_ESRPs_RBM12_like cd12254
RNA recognition motif (RRM) found in heterogeneous nuclear ribonucleoprotein (hnRNP) H protein ...
118-170 6.07e-06

RNA recognition motif (RRM) found in heterogeneous nuclear ribonucleoprotein (hnRNP) H protein family, epithelial splicing regulatory proteins (ESRPs), Drosophila RNA-binding protein Fusilli, RNA-binding protein 12 (RBM12) and similar proteins; The family includes RRM domains in the hnRNP H protein family, G-rich sequence factor 1 (GRSF-1), ESRPs (also termed RBM35), Drosophila Fusilli, RBM12 (also termed SWAN), RBM12B, RBM19 (also termed RBD-1) and similar proteins. The hnRNP H protein family includes hnRNP H (also termed mcs94-1), hnRNP H2 (also termed FTP-3 or hnRNP H'), hnRNP F and hnRNP H3 (also termed hnRNP 2H9), which represent a group of nuclear RNA binding proteins that are involved in pre-mRNA processing. GRSF-1 is a cytoplasmic poly(A)+ mRNA binding protein which interacts with RNA in a G-rich element-dependent manner. It may function in RNA packaging, stabilization of RNA secondary structure, or other macromolecular interactions. ESRP1 (also termed RBM35A) and ESRP2 (also termed RBM35B) are epithelial-specific RNA binding proteins that promote splicing of the epithelial variant of fibroblast growth factor receptor 2 (FGFR2), ENAH (also termed hMena), CD44 and CTNND1 (also termed p120-Catenin) transcripts. Fusilli shows high sequence homology to ESRPs. It can regulate endogenous FGFR2 splicing and functions as a splicing factor. The biological roles of both, RBM12 and RBM12B, remain unclear. RBM19 is a nucleolar protein conserved in eukaryotes. It is involved in ribosome biogenesis by processing rRNA. In addition, it is essential for preimplantation development. Members in this family contain 2~6 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409699 [Multi-domain]  Cd Length: 73  Bit Score: 43.70  E-value: 6.07e-06
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....
gi 2244986492 118 KCNENDIRVMFSPFGQIEEC-RILRGPDGLSRGCAFVTFSTRAMAQNAIKAMHQ 170
Cdd:cd12254    10 SATEEDIRDFFSGLDIPPDGiHIVYDDDGRPTGEAYVEFASEEDAQRALRRHKG 63
RRM1_RBM47 cd12485
RNA recognition motif 1 (RRM1) found in vertebrate RNA-binding protein 47 (RBM47); This ...
17-87 6.21e-06

RNA recognition motif 1 (RRM1) found in vertebrate RNA-binding protein 47 (RBM47); This subgroup corresponds to the RRM1 of RBM47, a putative RNA-binding protein that shows high sequence homology with heterogeneous nuclear ribonucleoprotein R (hnRNP R) and heterogeneous nuclear ribonucleoprotein Q (hnRNP Q). Its biological function remains unclear. Like hnRNP R and hnRNP Q, RBM47 contains two well-defined and one degenerated RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 240929 [Multi-domain]  Cd Length: 78  Bit Score: 44.19  E-value: 6.21e-06
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 2244986492  17 KMFVGQIPRSWSEKELKELFEPYGAVYQINVLRDRSQnppQSKGCCFVTFYTRKAALEAQNALHNIKTLPG 87
Cdd:cd12485     3 EVFVGKIPRDVYEDELVPVFESVGRIYEMRLMMDFDG---KNRGYAFVMYTQKHEAKRAVRELNNYEIRPG 70
RRM_FOX1_like cd12407
RNA recognition motif (RRM) found in vertebrate RNA binding protein fox-1 homologs and similar ...
121-176 7.29e-06

RNA recognition motif (RRM) found in vertebrate RNA binding protein fox-1 homologs and similar proteins; This subfamily corresponds to the RRM of several tissue-specific alternative splicing isoforms of vertebrate RNA binding protein Fox-1 homologs, which show high sequence similarity to the Caenorhabditis elegans feminizing locus on X (Fox-1) gene encoding Fox-1 protein. RNA binding protein Fox-1 homolog 1 (RBFOX1), also termed ataxin-2-binding protein 1 (A2BP1), or Fox-1 homolog A, or hexaribonucleotide-binding protein 1 (HRNBP1), is predominantly expressed in neurons, skeletal muscle and heart. It regulates alternative splicing of tissue-specific exons by binding to UGCAUG elements. Moreover, RBFOX1 binds to the C-terminus of ataxin-2 and forms an ataxin-2/A2BP1 complex involved in RNA processing. RNA binding protein fox-1 homolog 2 (RBFOX2), also termed Fox-1 homolog B, or hexaribonucleotide-binding protein 2 (HRNBP2), or RNA-binding motif protein 9 (RBM9), or repressor of tamoxifen transcriptional activity, is expressed in ovary, whole embryo, and human embryonic cell lines in addition to neurons and muscle. RBFOX2 activates splicing of neuron-specific exons through binding to downstream UGCAUG elements. RBFOX2 also functions as a repressor of tamoxifen activation of the estrogen receptor. RNA binding protein Fox-1 homolog 3 (RBFOX3 or NeuN or HRNBP3), also termed Fox-1 homolog C, is a nuclear RNA-binding protein that regulates alternative splicing of the RBFOX2 pre-mRNA, producing a message encoding a dominant negative form of the RBFOX2 protein. Its message is detected exclusively in post-mitotic regions of embryonic brain. Like RBFOX1, both RBFOX2 and RBFOX3 bind to the hexanucleotide UGCAUG elements and modulate brain and muscle-specific splicing of exon EIIIB of fibronectin, exon N1 of c-src, and calcitonin/CGRP. Members in this family also harbor one RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409841 [Multi-domain]  Cd Length: 76  Bit Score: 43.93  E-value: 7.29e-06
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....*....
gi 2244986492 121 ENDIRVMFSPFGQIEECRIL---RGpdglSRGCAFVTFSTRAMAQNAIKAMHqSQTMEG 176
Cdd:cd12407    14 DPDLRQMFGQFGTILDVEIIfneRG----SKGFGFVTFANSADADRAREKLN-GTVVEG 67
RRM_RBM18 cd12355
RNA recognition motif (RRM) found in eukaryotic RNA-binding protein 18 and similar proteins; ...
17-80 7.50e-06

RNA recognition motif (RRM) found in eukaryotic RNA-binding protein 18 and similar proteins; This subfamily corresponds to the RRM of RBM18, a putative RNA-binding protein containing a well-conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). The biological role of RBM18 remains unclear.


Pssm-ID: 409791 [Multi-domain]  Cd Length: 80  Bit Score: 43.83  E-value: 7.50e-06
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 2244986492  17 KMFVGQIPRSWSEKELKELFEPYGAVYQINVLRDRS-QNPPQSKGCCFVTFYTRKAALEAQNALH 80
Cdd:cd12355     1 RLWIGNLDPRLTEYHLLKLLSKYGKIKKFDFLFHKTgPLKGQPRGYCFVTFETKEEAEKAIECLN 65
RRM_SF cd00590
RNA recognition motif (RRM) superfamily; RRM, also known as RBD (RNA binding domain) or RNP ...
401-431 7.66e-06

RNA recognition motif (RRM) superfamily; RRM, also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), is a highly abundant domain in eukaryotes found in proteins involved in post-transcriptional gene expression processes including mRNA and rRNA processing, RNA export, and RNA stability. This domain is 90 amino acids in length and consists of a four-stranded beta-sheet packed against two alpha-helices. RRM usually interacts with ssRNA, but is also known to interact with ssDNA as well as proteins. RRM binds a variable number of nucleotides, ranging from two to eight. The active site includes three aromatic side-chains located within the conserved RNP1 and RNP2 motifs of the domain. The RRM domain is found in a variety heterogeneous nuclear ribonucleoproteins (hnRNPs), proteins implicated in regulation of alternative splicing, and protein components of small nuclear ribonucleoproteins (snRNPs).


Pssm-ID: 409669 [Multi-domain]  Cd Length: 72  Bit Score: 43.43  E-value: 7.66e-06
                          10        20        30
                  ....*....|....*....|....*....|.
gi 2244986492 401 GFVSYDNPVSAQAAIQAMNGFQIGMKRLKVQ 431
Cdd:cd00590    42 AFVEFESPEDAEKALEALNGTELGGRPLKVS 72
RRM2_I_PABPs cd12379
RNA recognition motif 2 (RRM2) found found in type I polyadenylate-binding proteins; This ...
127-169 8.23e-06

RNA recognition motif 2 (RRM2) found found in type I polyadenylate-binding proteins; This subfamily corresponds to the RRM2 of type I poly(A)-binding proteins (PABPs), highly conserved proteins that bind to the poly(A) tail present at the 3' ends of most eukaryotic mRNAs. They have been implicated in the regulation of poly(A) tail length during the polyadenylation reaction, translation initiation, mRNA stabilization by influencing the rate of deadenylation and inhibition of mRNA decapping. The family represents type I polyadenylate-binding proteins (PABPs), including polyadenylate-binding protein 1 (PABP-1 or PABPC1), polyadenylate-binding protein 3 (PABP-3 or PABPC3), polyadenylate-binding protein 4 (PABP-4 or APP-1 or iPABP), polyadenylate-binding protein 5 (PABP-5 or PABPC5), polyadenylate-binding protein 1-like (PABP-1-like or PABPC1L), polyadenylate-binding protein 1-like 2 (PABPC1L2 or RBM32), polyadenylate-binding protein 4-like (PABP-4-like or PABPC4L), yeast polyadenylate-binding protein, cytoplasmic and nuclear (PABP or ACBP-67), and similar proteins. PABP-1 is a ubiquitously expressed multifunctional protein that may play a role in 3' end formation of mRNA, translation initiation, mRNA stabilization, protection of poly(A) from nuclease activity, mRNA deadenylation, inhibition of mRNA decapping, and mRNP maturation. Although PABP-1 is thought to be a cytoplasmic protein, it is also found in the nucleus. PABP-1 may be involved in nucleocytoplasmic trafficking and utilization of mRNP particles. PABP-1 contains four copies of RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), a less well conserved linker region, and a proline-rich C-terminal conserved domain (CTD). PABP-3 is a testis-specific poly(A)-binding protein specifically expressed in round spermatids. It is mainly found in mammalian and may play an important role in the testis-specific regulation of mRNA homeostasis. PABP-3 shows significant sequence similarity to PABP-1. However, it binds to poly(A) with a lower affinity than PABP-1. Moreover, PABP-1 possesses an A-rich sequence in its 5'-UTR and allows binding of PABP and blockage of translation of its own mRNA. In contrast, PABP-3 lacks the A-rich sequence in its 5'-UTR. PABP-4 is an inducible poly(A)-binding protein (iPABP) that is primarily localized to the cytoplasm. It shows significant sequence similarity to PABP-1 as well. The RNA binding properties of PABP-1 and PABP-4 appear to be identical. PABP-5 is encoded by PABPC5 gene within the X-specific subinterval, and expressed in fetal brain and in a range of adult tissues in mammalian, such as ovary and testis. It may play an important role in germ cell development. Unlike other PABPs, PABP-5 contains only four RRMs, but lacks both the linker region and the CTD. PABP-1-like and PABP-1-like 2 are the orthologs of PABP-1. PABP-4-like is the ortholog of PABP-5. Their cellular functions remain unclear. The family also includes the yeast PABP, a conserved poly(A) binding protein containing poly(A) tails that can be attached to the 3'-ends of mRNAs. The yeast PABP and its homologs may play important roles in the initiation of translation and in mRNA decay. Like vertebrate PABP-1, the yeast PABP contains four RRMs, a linker region, and a proline-rich CTD as well. The first two RRMs are mainly responsible for specific binding to poly(A). The proline-rich region may be involved in protein-protein interactions.


Pssm-ID: 409813 [Multi-domain]  Cd Length: 77  Bit Score: 43.72  E-value: 8.23e-06
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|...
gi 2244986492 127 MFSPFGQIEECRILRGPDGLSRGCAFVTFSTRAMAQNAIKAMH 169
Cdd:cd12379    22 TFSAFGNILSCKVATDENGGSKGYGFVHFETEEAAERAIEKVN 64
RRM1_MEI2_EAR1_like cd12275
RNA recognition motif 1 (RRM1) found in Mei2-like proteins and terminal EAR1-like proteins; ...
18-81 8.29e-06

RNA recognition motif 1 (RRM1) found in Mei2-like proteins and terminal EAR1-like proteins; This subfamily corresponds to the RRM1 of Mei2-like proteins from plant and fungi, terminal EAR1-like proteins from plant, and other eukaryotic homologs. Mei2-like proteins represent an ancient eukaryotic RNA-binding protein family whose corresponding Mei2-like genes appear to have arisen early in eukaryote evolution, been lost from some lineages such as Saccharomyces cerevisiae and metazoans, and diversified in the plant lineage. The plant Mei2-like genes may function in cell fate specification during development, rather than as stimulators of meiosis. In the fission yeast Schizosaccharomyces pombe, the Mei2 protein is an essential component of the switch from mitotic to meiotic growth. S. pombe Mei2 stimulates meiosis in the nucleus upon binding a specific non-coding RNA. The terminal EAR1-like protein 1 and 2 (TEL1 and TEL2) are mainly found in land plants. They may play a role in the regulation of leaf initiation. All members in this family are putative RNA-binding proteins carrying three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). In addition to the RRMs, the terminal EAR1-like proteins also contain TEL characteristic motifs that allow sequence and putative functional discrimination between them and Mei2-like proteins.


Pssm-ID: 240721 [Multi-domain]  Cd Length: 71  Bit Score: 43.32  E-value: 8.29e-06
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....
gi 2244986492  18 MFVGQIPRSWSEKELKELFEPYGAVYQINVLRdrsqnppQSKGCCFVTFYTRKAALEAQNALHN 81
Cdd:cd12275     4 LFVINVPRDVTESTLRRLFEVYGDVRGVQTER-------ISEGIVTVHFYDIRDAKRAVRELCG 60
RRM_ALKBH8 cd12431
RNA recognition motif (RRM) found in alkylated DNA repair protein alkB homolog 8 (ALKBH8) and ...
28-92 8.48e-06

RNA recognition motif (RRM) found in alkylated DNA repair protein alkB homolog 8 (ALKBH8) and similar proteins; This subfamily corresponds to the RRM of ALKBH8, also termed alpha-ketoglutarate-dependent dioxygenase ABH8, or S-adenosyl-L-methionine-dependent tRNA methyltransferase ABH8, expressed in various types of human cancers. It is essential in urothelial carcinoma cell survival mediated by NOX-1-dependent ROS signals. ALKBH8 has also been identified as a tRNA methyltransferase that catalyzes methylation of tRNA to yield 5-methylcarboxymethyl uridine (mcm5U) at the wobble position of the anticodon loop. Thus, ALKBH8 plays a crucial role in the DNA damage survival pathway through a distinct mechanism involving the regulation of tRNA modification. ALKBH8 localizes to the cytoplasm. It contains the characteristic AlkB domain that is composed of a tRNA methyltransferase motif, a motif homologous to the bacterial AlkB DNA/RNA repair enzyme, and a dioxygenase catalytic core domain encompassing cofactor-binding sites for iron and 2-oxoglutarate. In addition, unlike other AlkB homologs, ALKBH8 contains an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a C-terminal S-adenosylmethionine (SAM)-dependent methyltransferase (MT) domain.


Pssm-ID: 409865 [Multi-domain]  Cd Length: 80  Bit Score: 43.72  E-value: 8.48e-06
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 2244986492  28 SEKELKELFEPYGAVYQINVLRDRSqnppqskgCCFVTFYTRKAALEAQNALHNIK-TLPGMHHPI 92
Cdd:cd12431    16 SREQLLEVFEKYGTVEDIVMLPGKP--------YSFVSFKSVEEAAKAYNALNGKElELPQQNVPL 73
RRM2_RBMS3 cd12475
RNA recognition motif 2 (RRM2) found in vertebrate RNA-binding motif, ...
110-187 8.83e-06

RNA recognition motif 2 (RRM2) found in vertebrate RNA-binding motif, single-stranded-interacting protein 3 (RBMS3); This subgroup corresponds to the RRM2 of RBMS3, a new member of the c-myc gene single-strand binding proteins (MSSP) family of DNA regulators. Unlike other MSSP proteins, RBMS3 is not a transcriptional regulator. It binds with high affinity to A/U-rich stretches of RNA, and to A/T-rich DNA sequences, and functions as a regulator of cytoplasmic activity. RBMS3 contain two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and its C-terminal region is acidic and enriched in prolines, glutamines and threonines.


Pssm-ID: 240919 [Multi-domain]  Cd Length: 88  Bit Score: 43.94  E-value: 8.83e-06
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2244986492 110 LFIGMVSKKCNENDIRVMFSPFGQIEECRILRGPDGLSRGCAFVTFSTRAMAQNAI-----KAMHQSQTMEGCSSPIVVK 184
Cdd:cd12475     4 LYISNLPISMDEQELENMLKPFGHVISTRILRDANGVSRGVGFARMESTEKCEVVIqhfngKYLKTPPGVPAPTEPLLCK 83

                  ...
gi 2244986492 185 FAD 187
Cdd:cd12475    84 FAD 86
RRM1_RBM28_like cd12413
RNA recognition motif 1 (RRM1) found in RNA-binding protein 28 (RBM28) and similar proteins; ...
109-187 8.87e-06

RNA recognition motif 1 (RRM1) found in RNA-binding protein 28 (RBM28) and similar proteins; This subfamily corresponds to the RRM1 of RBM28 and Nop4p. RBM28 is a specific nucleolar component of the spliceosomal small nuclear ribonucleoproteins (snRNPs), possibly coordinating their transition through the nucleolus. It specifically associates with U1, U2, U4, U5, and U6 small nuclear RNAs (snRNAs), and may play a role in the maturation of both small nuclear and ribosomal RNAs. RBM28 has four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and an extremely acidic region between RRM2 and RRM3. The family also includes nucleolar protein 4 (Nop4p or Nop77p) encoded by YPL043W from Saccharomyces cerevisiae. It is an essential nucleolar protein involved in processing and maturation of 27S pre-rRNA and biogenesis of 60S ribosomal subunits. Nop4p also contains four RRMs.


Pssm-ID: 409847 [Multi-domain]  Cd Length: 79  Bit Score: 43.73  E-value: 8.87e-06
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2244986492 109 KLFIGMVSKKCNENDIRVMFSPFGQIEECRILRGPD-GLSRGCAFVTFstrAMAQNAIKAMHQSQTMEGCSSPIVVKFAD 187
Cdd:cd12413     1 TLFVRNLPYDTTDEQLEELFSDVGPVKRCFVVKDKGkDKCRGFGYVTF---ALAEDAQRALEEVKGKKFGGRKIKVELAK 77
RRM_SAFB_like cd12417
RNA recognition motif (RRM) found in the scaffold attachment factor (SAFB) family; This ...
109-171 9.33e-06

RNA recognition motif (RRM) found in the scaffold attachment factor (SAFB) family; This subfamily corresponds to the RRM domain of the SAFB family, including scaffold attachment factor B1 (SAFB1), scaffold attachment factor B2 (SAFB2), SAFB-like transcriptional modulator (SLTM), and similar proteins, which are ubiquitously expressed. SAFB1, SAFB2 and SLTM have been implicated in many diverse cellular processes including cell growth and transformation, stress response, and apoptosis. They share high sequence similarities and all contain a scaffold attachment factor-box (SAF-box, also known as SAP domain) DNA-binding motif, an RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a region rich in glutamine and arginine residues. SAFB1 is a nuclear protein with a distribution similar to that of SLTM, but unlike that of SAFB2, which is also found in the cytoplasm. To a large extent, SAFB1 and SLTM might share similar functions, such as the inhibition of an oestrogen reporter gene. The additional cytoplasmic localization of SAFB2 implies that it could play additional roles in the cytoplasmic compartment which are distinct from the nuclear functions shared with SAFB1 and SLTM.


Pssm-ID: 409851 [Multi-domain]  Cd Length: 74  Bit Score: 43.40  E-value: 9.33e-06
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....
gi 2244986492 109 KLFIGMVSKKCNENDIRVMFSPFGQIEECRIL-RGPDGLSRGCAFVTFSTRAMAQNAIKAMHQS 171
Cdd:cd12417     1 NLWISGLSDTTKAADLKKIFSKYGKVVSAKVVtSARTPGSRCYGYVTMASVEEADLCIKSLNKT 64
RRM_THOC4 cd12680
RNA recognition motif (RRM) found in THO complex subunit 4 (THOC4) and similar proteins; This ...
109-170 9.73e-06

RNA recognition motif (RRM) found in THO complex subunit 4 (THOC4) and similar proteins; This subgroup corresponds to the RRM of THOC4, also termed transcriptional coactivator Aly/REF, or ally of AML-1 and LEF-1, or bZIP-enhancing factor BEF, an mRNA transporter protein with a well conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). It is involved in RNA transportation from the nucleus. THOC4 was initially identified as a transcription coactivator of LEF-1 and AML-1 for the TCRalpha enhancer function. In addition, THOC4 specifically binds to rhesus (RH) promoter in erythroid. It might be a novel transcription cofactor for erythroid-specific genes.


Pssm-ID: 410081 [Multi-domain]  Cd Length: 75  Bit Score: 43.37  E-value: 9.73e-06
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|..
gi 2244986492 109 KLFIGMVSKKCNENDIRVMFSPFGQIEECRILRGPDGLSRGCAFVTFSTRAmaqNAIKAMHQ 170
Cdd:cd12680     2 KLLVSNLDFGVSDADIKELFAEFGTLKKAAVHYDRSGRSLGTAEVVFERRA---DALKAMKQ 60
RRM1_RBM45 cd12366
RNA recognition motif 1 (RRM1) found in RNA-binding protein 45 (RBM45) and similar proteins; ...
25-93 9.79e-06

RNA recognition motif 1 (RRM1) found in RNA-binding protein 45 (RBM45) and similar proteins; This subfamily corresponds to the RRM1 of RBM45, also termed developmentally-regulated RNA-binding protein 1 (DRB1), a new member of RNA recognition motif (RRM)-type neural RNA-binding proteins, which expresses under spatiotemporal control. It is encoded by gene drb1 that is expressed in neurons, not in glial cells. RBM45 predominantly localizes in cytoplasm of cultured cells and specifically binds to poly(C) RNA. It could play an important role during neurogenesis. RBM45 carries four RRMs, also known as RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409801 [Multi-domain]  Cd Length: 81  Bit Score: 43.46  E-value: 9.79e-06
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 2244986492  25 RSWSEKELKELFEPYGAVYQINVLRDRSQNppQSKGCCFVTFYTRKAALEAQNALHNiKTLPGMHHPIQ 93
Cdd:cd12366    12 KSVTEDDLREAFSPFGEIQDIWVVKDKQTK--ESKGIAYVKFAKSSQAARAMEEMHG-KCLGDDTKPIK 77
RRM2_HuR cd12773
RNA recognition motif 2 (RRM2) found in vertebrate Hu-antigen R (HuR); This subgroup ...
18-97 1.01e-05

RNA recognition motif 2 (RRM2) found in vertebrate Hu-antigen R (HuR); This subgroup corresponds to the RRM2 of HuR, also termed ELAV-like protein 1 (ELAV-1), the ubiquitously expressed Hu family member. It has a variety of biological functions mostly related to the regulation of cellular response to DNA damage and other types of stress. HuR has an anti-apoptotic function during early cell stress response. It binds to mRNAs and enhances the expression of several anti-apoptotic proteins, such as p21waf1, p53, and prothymosin alpha. HuR also has pro-apoptotic function by promoting apoptosis when cell death is unavoidable. Furthermore, HuR may be important in muscle differentiation, adipogenesis, suppression of inflammatory response and modulation of gene expression in response to chronic ethanol exposure and amino acid starvation. Like other Hu proteins, HuR contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an AU-rich RNA element (ARE). RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions.


Pssm-ID: 410166 [Multi-domain]  Cd Length: 84  Bit Score: 43.75  E-value: 1.01e-05
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2244986492  18 MFVGQIPRSWSEKELKELFEPYGAVYQINVLRDrsQNPPQSKGCCFVTFYTRKAALEAQNALHNIKTlPGMHHPIQMKPA 97
Cdd:cd12773     3 LYISGLPRTMTQKDVEDMFSRFGRIINSRVLVD--QATGLSRGVAFIRFDKRSEAEEAITNFNGHKP-PGSSEPITVKFA 79
RRM1_SART3 cd12391
RNA recognition motif 1 (RRM1) found in squamous cell carcinoma antigen recognized by T-cells ...
111-176 1.02e-05

RNA recognition motif 1 (RRM1) found in squamous cell carcinoma antigen recognized by T-cells 3 (SART3) and similar proteins; This subfamily corresponds to the RRM1 of SART3, also termed Tat-interacting protein of 110 kDa (Tip110), an RNA-binding protein expressed in the nucleus of the majority of proliferating cells, including normal cells and malignant cells, but not in normal tissues except for the testes and fetal liver. It is involved in the regulation of mRNA splicing probably via its complex formation with RNA-binding protein with a serine-rich domain (RNPS1), a pre-mRNA-splicing factor. SART3 has also been identified as a nuclear Tat-interacting protein that regulates Tat transactivation activity through direct interaction and functions as an important cellular factor for HIV-1 gene expression and viral replication. In addition, SART3 is required for U6 snRNP targeting to Cajal bodies. It binds specifically and directly to the U6 snRNA, interacts transiently with the U6 and U4/U6 snRNPs, and promotes the reassembly of U4/U6 snRNPs after splicing in vitro. SART3 contains an N-terminal half-a-tetratricopeptide repeat (HAT)-rich domain, a nuclearlocalization signal (NLS) domain, and two C-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409825 [Multi-domain]  Cd Length: 72  Bit Score: 43.37  E-value: 1.02e-05
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 2244986492 111 FIGMVSKKCNENDIRVMFSPFGQIEECRILRGPDGLSRGCAFVTFSTRAMAQNAIKAMHQSqtMEG 176
Cdd:cd12391     3 FVSNLDYSVPEDKIREIFSGCGEITDVRLVKNYKGKSKGYCYVEFKDEESAQKALKLDRQP--VEG 66
RRM1_SXL cd12649
RNA recognition motif 1 (RRM1) found in Drosophila sex-lethal (SXL) and similar proteins; This ...
401-435 1.02e-05

RNA recognition motif 1 (RRM1) found in Drosophila sex-lethal (SXL) and similar proteins; This subfamily corresponds to the RRM1 of SXL which governs sexual differentiation and X chromosome dosage compensation in Drosophila melanogaster. It induces female-specific alternative splicing of the transformer (tra) pre-mRNA by binding to the tra uridine-rich polypyrimidine tract at the non-sex-specific 3' splice site during the sex-determination process. SXL binds also to its own pre-mRNA and promotes female-specific alternative splicing. SXL contains an N-terminal Gly/Asn-rich domain that may be responsible for the protein-protein interaction, and tandem RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), that show high preference to bind single-stranded, uridine-rich target RNA transcripts.


Pssm-ID: 241093 [Multi-domain]  Cd Length: 81  Bit Score: 43.54  E-value: 1.02e-05
                          10        20        30
                  ....*....|....*....|....*....|....*
gi 2244986492 401 GFVSYDNPVSAQAAIQAMNGFQIGMKRLKVQLKRS 435
Cdd:cd12649    45 GFVDFTSEEDAQRAIKTLNGLQLQNKRLKVAYARP 79
RRM_NOL8 cd12226
RNA recognition motif (RRM) found in nucleolar protein 8 (NOL8) and similar proteins; This ...
110-169 1.10e-05

RNA recognition motif (RRM) found in nucleolar protein 8 (NOL8) and similar proteins; This model corresponds to the RRM of NOL8 (also termed Nop132) encoded by a novel NOL8 gene that is up-regulated in the majority of diffuse-type, but not intestinal-type, gastric cancers. Thus, NOL8 may be a good molecular target for treatment of diffuse-type gastric cancer. Also, NOL8 is a phosphorylated protein that contains an N-terminal RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), suggesting NOL8 is likely to function as a novel RNA-binding protein. It may be involved in regulation of gene expression at the post-transcriptional level or in ribosome biogenesis in cancer cells.


Pssm-ID: 409673 [Multi-domain]  Cd Length: 77  Bit Score: 43.33  E-value: 1.10e-05
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|.
gi 2244986492 110 LFIGMVSKKCNENDIRVMFSPFGQIEECRILRGPDGLSRGCAFVTFSTRAMA-QNAIKAMH 169
Cdd:cd12226     2 LFVGGLSPSITEDDLERRFSRFGTVSDVEIIRKKDAPDRGFAYIDLRTSEAAlQKCLSTLN 62
RBD_RRM1_NPL3 cd12340
RNA recognition motif 1 (RRM1) found in yeast nucleolar protein 3 (Npl3p) and similar proteins; ...
109-169 1.18e-05

RNA recognition motif 1 (RRM1) found in yeast nucleolar protein 3 (Npl3p) and similar proteins; This subfamily corresponds to the RRM1 of Npl3p, also termed mitochondrial targeting suppressor 1 protein, or nuclear polyadenylated RNA-binding protein 1. Npl3p is a major yeast RNA-binding protein that competes with 3'-end processing factors, such as Rna15, for binding to the nascent RNA, protecting the transcript from premature termination and coordinating transcription termination and the packaging of the fully processed transcript for export. It specifically recognizes a class of G/U-rich RNAs. Npl3p is a multi-domain protein containing two central RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), separated by a short linker and a C-terminal domain rich in glycine, arginine and serine residues.


Pssm-ID: 409777 [Multi-domain]  Cd Length: 69  Bit Score: 42.77  E-value: 1.18e-05
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|.
gi 2244986492 109 KLFIGMVSKKCNENDIRVMFSPFGQIEECRILRgpdglSRGCAFVTFSTRAMAQNAIKAMH 169
Cdd:cd12340     1 RLFVRPFPPDTSESAIREIFSPYGPVKEVKMLS-----DSNFAFVEFEELEDAIRAKDSVH 56
RRM_SR140 cd12223
RNA recognition motif (RRM) found in U2-associated protein SR140 and similar proteins; This ...
110-168 1.25e-05

RNA recognition motif (RRM) found in U2-associated protein SR140 and similar proteins; This subgroup corresponds to the RRM of SR140 (also termed U2 snRNP-associated SURP motif-containing protein orU2SURP, or 140 kDa Ser/Arg-rich domain protein) which is a putative splicing factor mainly found in higher eukaryotes. Although it is initially identified as one of the 17S U2 snRNP-associated proteins, the molecular and physiological function of SR140 remains unclear. SR140 contains an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), a SWAP/SURP domain that is found in a number of pre-mRNA splicing factors in the middle region, and a C-terminal arginine/serine-rich domain (RS domain).


Pssm-ID: 409670 [Multi-domain]  Cd Length: 84  Bit Score: 43.44  E-value: 1.25e-05
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|...
gi 2244986492 110 LFIGMVSKKCNENDIRVMFSPFGQIEECRIL--RGPD--GLSRGCAFVTFSTRAMAQNAIKAM 168
Cdd:cd12223     4 LYVGNLPPSVTEEVLLREFGRFGPLASVKIMwpRTEEerRRNRNCGFVAFMSRADAERAMREL 66
RRM3_I_PABPs cd12380
RNA recognition motif 3 (RRM3) found found in type I polyadenylate-binding proteins; This ...
19-81 1.34e-05

RNA recognition motif 3 (RRM3) found found in type I polyadenylate-binding proteins; This subfamily corresponds to the RRM3 of type I poly(A)-binding proteins (PABPs), highly conserved proteins that bind to the poly(A) tail present at the 3' ends of most eukaryotic mRNAs. They have been implicated in the regulation of poly(A) tail length during the polyadenylation reaction, translation initiation, mRNA stabilization by influencing the rate of deadenylation and inhibition of mRNA decapping. The family represents type I polyadenylate-binding proteins (PABPs), including polyadenylate-binding protein 1 (PABP-1 or PABPC1), polyadenylate-binding protein 3 (PABP-3 or PABPC3), polyadenylate-binding protein 4 (PABP-4 or APP-1 or iPABP), polyadenylate-binding protein 5 (PABP-5 or PABPC5), polyadenylate-binding protein 1-like (PABP-1-like or PABPC1L), polyadenylate-binding protein 1-like 2 (PABPC1L2 or RBM32), polyadenylate-binding protein 4-like (PABP-4-like or PABPC4L), yeast polyadenylate-binding protein, cytoplasmic and nuclear (PABP or ACBP-67), and similar proteins. PABP-1 is an ubiquitously expressed multifunctional protein that may play a role in 3' end formation of mRNA, translation initiation, mRNA stabilization, protection of poly(A) from nuclease activity, mRNA deadenylation, inhibition of mRNA decapping, and mRNP maturation. Although PABP-1 is thought to be a cytoplasmic protein, it is also found in the nucleus. PABP-1 may be involved in nucleocytoplasmic trafficking and utilization of mRNP particles. PABP-1 contains four copies of RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), a less well conserved linker region, and a proline-rich C-terminal conserved domain (CTD). PABP-3 is a testis-specific poly(A)-binding protein specifically expressed in round spermatids. It is mainly found in mammalian and may play an important role in the testis-specific regulation of mRNA homeostasis. PABP-3 shows significant sequence similarity to PABP-1. However, it binds to poly(A) with a lower affinity than PABP-1. PABP-1 possesses an A-rich sequence in its 5'-UTR and allows binding of PABP and blockage of translation of its own mRNA. In contrast, PABP-3 lacks the A-rich sequence in its 5'-UTR. PABP-4 is an inducible poly(A)-binding protein (iPABP) that is primarily localized to the cytoplasm. It shows significant sequence similarity to PABP-1 as well. The RNA binding properties of PABP-1 and PABP-4 appear to be identical. PABP-5 is encoded by PABPC5 gene within the X-specific subinterval, and expressed in fetal brain and in a range of adult tissues in mammalian, such as ovary and testis. It may play an important role in germ cell development. Moreover, unlike other PABPs, PABP-5 contains only four RRMs, but lacks both the linker region and the CTD. PABP-1-like and PABP-1-like 2 are the orthologs of PABP-1. PABP-4-like is the ortholog of PABP-5. Their cellular functions remain unclear. The family also includes the yeast PABP, a conserved poly(A) binding protein containing poly(A) tails that can be attached to the 3'-ends of mRNAs. The yeast PABP and its homologs may play important roles in the initiation of translation and in mRNA decay. Like vertebrate PABP-1, the yeast PABP contains four RRMs, a linker region, and a proline-rich CTD as well. The first two RRMs are mainly responsible for specific binding to poly(A). The proline-rich region may be involved in protein-protein interactions.


Pssm-ID: 409814 [Multi-domain]  Cd Length: 80  Bit Score: 42.93  E-value: 1.34e-05
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|...
gi 2244986492  19 FVGQIPRSWSEKELKELFEPYGAVYQINVLRDRSQNppqSKGCCFVTFYTRKAALEAQNALHN 81
Cdd:cd12380     5 YVKNFGEDVDDDELKELFEKYGKITSAKVMKDDSGK---SKGFGFVNFENHEAAQKAVEELNG 64
RRM_SRSF2_SRSF8 cd12311
RNA recognition motif (RRM) found in serine/arginine-rich splicing factor SRSF2, SRSF8 and ...
121-177 1.37e-05

RNA recognition motif (RRM) found in serine/arginine-rich splicing factor SRSF2, SRSF8 and similar proteins; This subfamily corresponds to the RRM of SRSF2 and SRSF8. SRSF2, also termed protein PR264, or splicing component, 35 kDa (splicing factor SC35 or SC-35), is a prototypical SR protein that plays important roles in the alternative splicing of pre-mRNA. It is also involved in transcription elongation by directly or indirectly mediating the recruitment of elongation factors to the C-terminal domain of polymerase II. SRSF2 is exclusively localized in the nucleus and is restricted to nuclear processes. It contains a single N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), followed by a C-terminal RS domain rich in serine-arginine dipeptides. The RRM is responsible for the specific recognition of 5'-SSNG-3' (S=C/G) RNA. In the regulation of alternative splicing events, it specifically binds to cis-regulatory elements on the pre-mRNA. The RS domain modulates SRSF2 activity through phosphorylation, directly contacts RNA, and promotes protein-protein interactions with the spliceosome. SRSF8, also termed SRP46 or SFRS2B, is a novel mammalian SR splicing factor encoded by a PR264/SC35 functional retropseudogene. SRSF8 is localized in the nucleus and does not display the same activity as PR264/SC35. It functions as an essential splicing factor in complementing a HeLa cell S100 extract deficient in SR proteins. Like SRSF2, SRSF8 contains a single N-terminal RRM and a C-terminal RS domain.


Pssm-ID: 409751 [Multi-domain]  Cd Length: 73  Bit Score: 43.03  E-value: 1.37e-05
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....*...
gi 2244986492 121 ENDIRVMFSPFGQIEECRILRGP-DGLSRGCAFVTFSTRAMAQNAIKAMHqSQTMEGC 177
Cdd:cd12311    12 PDDLRRVFEKYGEVGDVYIPRDRyTRESRGFAFVRFYDKRDAEDAIDAMD-GAELDGR 68
RRM1_MSI1 cd12759
RNA recognition motif 1 (RRM1) found in RNA-binding protein Musashi homolog 1 (Musashi-1) and ...
109-159 1.38e-05

RNA recognition motif 1 (RRM1) found in RNA-binding protein Musashi homolog 1 (Musashi-1) and similar proteins; This subgroup corresponds to the RRM1 of Musashi-1. The mammalian MSI1 gene encoding Musashi-1 (also termed Msi1) is a neural RNA-binding protein putatively expressed in central nervous system (CNS) stem cells and neural progenitor cells and associated with asymmetric divisions in neural progenitor cells. Musashi-1 is evolutionarily conserved from invertebrates to vertebrates. It is a homolog of Drosophila Musashi and Xenopus laevis nervous system-specific RNP protein-1 (Nrp-1). Musashi-1 has been implicated in the maintenance of the stem-cell state, differentiation, and tumorigenesis. It translationally regulates the expression of a mammalian numb gene by binding to the 3'-untranslated region of mRNA of Numb, encoding a membrane-associated inhibitor of Notch signaling, and further influences neural development. Moreover, it represses translation by interacting with the poly(A)-binding protein and competes for binding of the eukaryotic initiation factor-4G (eIF-4G). Musashi-1 contains two conserved N-terminal tandem RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), along with other domains of unknown function.


Pssm-ID: 241203 [Multi-domain]  Cd Length: 77  Bit Score: 43.07  E-value: 1.38e-05
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|..
gi 2244986492 109 KLFIGMVSKKCNENDIRVMFSPFGQIEECRILRGP-DGLSRGCAFVTFSTRA 159
Cdd:cd12759     2 KMFIGGLSWQTTQEGLREYFGQFGEVKECLVMRDPlTKRSRGFGFVTFMDQA 53
RRM2_MSSP2 cd12474
RNA recognition motif 2 (RRM2) found in vertebrate single-stranded DNA-binding protein MSSP-2; ...
110-187 1.48e-05

RNA recognition motif 2 (RRM2) found in vertebrate single-stranded DNA-binding protein MSSP-2; This subgroup corresponds to the RRM2 of MSSP-2, also termed RNA-binding motif, single-stranded-interacting protein 2 (RBMS2), or suppressor of CDC2 with RNA-binding motif 3 (SCR3). MSSP-2 is a double- and single-stranded DNA binding protein that belongs to the c-myc single-strand binding proteins (MSSP) family. It specifically recognizes the sequence T(C/A)TT, and stimulates DNA replication in the system using SV40 DNA. MSSP-2 is identical with Scr3, a human protein which complements the defect of cdc2 kinase in Schizosaccharomyces pombe. MSSP-2 has been implied in regulating DNA replication, transcription, apoptosis induction, and cell-cycle movement, via the interaction with C-MYC, the product of protooncogene c-myc. MSSP-2 contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), both of which are responsible for the specific DNA binding activity as well as induction of apoptosis.


Pssm-ID: 409904 [Multi-domain]  Cd Length: 86  Bit Score: 43.10  E-value: 1.48e-05
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2244986492 110 LFIGMVSKKCNENDIRVMFSPFGQIEECRILRGPDGLSRGCAFVTFSTRAMAQNAI-----KAMHQSQTMEGCSSPIVVK 184
Cdd:cd12474     3 LYISNLPLSMDEQELESMLKPFGQVISTRILRDANGTSRGVGFARMESTEKCEAIIthfngKYIKTPPGVPAPTEPLLCK 82

                  ...
gi 2244986492 185 FAD 187
Cdd:cd12474    83 FAD 85
RRM_DAZL cd12672
RNA recognition motif (RRM) found in vertebrate deleted in azoospermia-like (DAZL) proteins; ...
110-166 1.60e-05

RNA recognition motif (RRM) found in vertebrate deleted in azoospermia-like (DAZL) proteins; This subgroup corresponds to the RRM of DAZL, also termed SPGY-like-autosomal, encoded by the autosomal homolog of DAZ gene, DAZL. It is ancestral to the deleted in azoospermia (DAZ) protein. DAZL is germ-cell-specific RNA-binding protein that contains a RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a DAZ motif, a protein-protein interaction domain. Although their specific biochemical functions remain to be investigated, DAZL proteins may interact with poly(A)-binding proteins (PABPs), and act as translational activators of specific mRNAs during gametogenesis.


Pssm-ID: 410073 [Multi-domain]  Cd Length: 82  Bit Score: 42.85  E-value: 1.60e-05
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....*..
gi 2244986492 110 LFIGMVSKKCNENDIRVMFSPFGQIEECRILRGPDGLSRGCAFVTFSTRAMAQNAIK 166
Cdd:cd12672     8 VFVGGIDIRMDENEIRSFFARYGSVKEVKIITDRTGVSKGYGFVSFYDDVDIQKIVE 64
RRM2_MSSP1 cd12473
RNA recognition motif 2 (RRM2) found in vertebrate single-stranded DNA-binding protein MSSP-1; ...
110-187 1.66e-05

RNA recognition motif 2 (RRM2) found in vertebrate single-stranded DNA-binding protein MSSP-1; This subgroup corresponds to the RRM2 of MSSP-1, also termed RNA-binding motif, single-stranded-interacting protein 1 (RBMS1), or suppressor of CDC2 with RNA-binding motif 2 (SCR2). MSSP-1 is a double- and single-stranded DNA binding protein that belongs to the c-myc single-strand binding proteins (MSSP) family. It specifically recognizes the sequence CT(A/T)(A/T)T, and stimulates DNA replication in the system using SV40 DNA. MSSP-1 is identical with Scr2, a human protein which complements the defect of cdc2 kinase in Schizosaccharomyces pombe. MSSP-1 has been implied in regulating DNA replication, transcription, apoptosis induction, and cell-cycle movement, via the interaction with c-MYC, the product of protooncogene c-myc. MSSP-1 contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), both of which are responsible for the specific DNA binding activity as well as induction of apoptosis.


Pssm-ID: 409903 [Multi-domain]  Cd Length: 85  Bit Score: 43.11  E-value: 1.66e-05
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2244986492 110 LFIGMVSKKCNENDIRVMFSPFGQIEECRILRGPDGLSRGCAFVTFSTRAMAQNAIKAMHQS--QTMEGCSS---PIVVK 184
Cdd:cd12473     3 LYISNLPLSMDEQELENMLKPFGQVISTRILRDSSGTSRGVGFARMESTEKCEAVISHFNGKfiKTPPGVSApaePLLCK 82

                  ...
gi 2244986492 185 FAD 187
Cdd:cd12473    83 FAD 85
RRM_SR140 cd12223
RNA recognition motif (RRM) found in U2-associated protein SR140 and similar proteins; This ...
18-82 1.68e-05

RNA recognition motif (RRM) found in U2-associated protein SR140 and similar proteins; This subgroup corresponds to the RRM of SR140 (also termed U2 snRNP-associated SURP motif-containing protein orU2SURP, or 140 kDa Ser/Arg-rich domain protein) which is a putative splicing factor mainly found in higher eukaryotes. Although it is initially identified as one of the 17S U2 snRNP-associated proteins, the molecular and physiological function of SR140 remains unclear. SR140 contains an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), a SWAP/SURP domain that is found in a number of pre-mRNA splicing factors in the middle region, and a C-terminal arginine/serine-rich domain (RS domain).


Pssm-ID: 409670 [Multi-domain]  Cd Length: 84  Bit Score: 43.05  E-value: 1.68e-05
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 2244986492  18 MFVGQIPRSWSEKELKELFEPYGAVYQINVLRDRSQNPPQSKG-CCFVTFYTRKAALEAQNALHNI 82
Cdd:cd12223     4 LYVGNLPPSVTEEVLLREFGRFGPLASVKIMWPRTEEERRRNRnCGFVAFMSRADAERAMRELNGK 69
RRM1_RBM34 cd12394
RNA recognition motif 1 (RRM1) found in RNA-binding protein 34 (RBM34) and similar proteins; ...
108-168 1.71e-05

RNA recognition motif 1 (RRM1) found in RNA-binding protein 34 (RBM34) and similar proteins; This subfamily corresponds to the RRM1 of RBM34, a putative RNA-binding protein containing two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). Although the function of RBM34 remains unclear currently, its RRM domains may participate in mRNA processing. RBM34 may act as an mRNA processing-related protein.


Pssm-ID: 409828 [Multi-domain]  Cd Length: 91  Bit Score: 42.97  E-value: 1.71e-05
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 2244986492 108 RKLFIGMVSKKCNENDIRVMFSPFGQIEECR---ILRGPDGLSRG---------------CAFVTFSTRAMAQNAIKAM 168
Cdd:cd12394     1 RTVFVGNLPVTVKKKALKKLFKEFGKIESVRfrsVAVANPKLPKKvavikkkfhpkrdsmNAYVVFKEEESAQKALKLN 79
RRM2_hnRNPA_like cd12328
RNA recognition motif 2 (RRM2) found in heterogeneous nuclear ribonucleoprotein A subfamily; ...
109-155 1.72e-05

RNA recognition motif 2 (RRM2) found in heterogeneous nuclear ribonucleoprotein A subfamily; This subfamily corresponds to the RRM2 of hnRNP A0, hnRNP A1, hnRNP A2/B1, hnRNP A3 and similar proteins. hnRNP A0 is a low abundance hnRNP protein that has been implicated in mRNA stability in mammalian cells. It has been identified as the substrate for MAPKAP-K2 and may be involved in the lipopolysaccharide (LPS)-induced post-transcriptional regulation of tumor necrosis factor-alpha (TNF-alpha), cyclooxygenase 2 (COX-2) and macrophage inflammatory protein 2 (MIP-2). hnRNP A1 is an abundant eukaryotic nuclear RNA-binding protein that may modulate splice site selection in pre-mRNA splicing. hnRNP A2/B1 is an RNA trafficking response element-binding protein that interacts with the hnRNP A2 response element (A2RE). Many mRNAs, such as myelin basic protein (MBP), myelin-associated oligodendrocytic basic protein (MOBP), carboxyanhydrase II (CAII), microtubule-associated protein tau, and amyloid precursor protein (APP) are trafficked by hnRNP A2/B1. hnRNP A3 is also a RNA trafficking response element-binding protein that participates in the trafficking of A2RE-containing RNA. The hnRNP A subfamily is characterized by two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), followed by a long glycine-rich region at the C-terminus.


Pssm-ID: 409766 [Multi-domain]  Cd Length: 73  Bit Score: 42.64  E-value: 1.72e-05
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|....*...
gi 2244986492 109 KLFIGMVSKKCNENDIRVMFSPFGQIEECRILRGPD-GLSRGCAFVTF 155
Cdd:cd12328     1 KLFVGGLKEDVEEEDLREYFSQFGKVESVEIVTDKEtGKKRGFAFVTF 48
RRM1_MEI2_like cd12524
RNA recognition motif 1 (RRM1) found in plant Mei2-like proteins; This subgroup corresponds to ...
18-88 1.74e-05

RNA recognition motif 1 (RRM1) found in plant Mei2-like proteins; This subgroup corresponds to the RRM1 of Mei2-like proteins that represent an ancient eukaryotic RNA-binding proteins family. Their corresponding Mei2-like genes appear to have arisen early in eukaryote evolution, been lost from some lineages such as Saccharomyces cerevisiae and metazoans, and diversified in the plant lineage. The plant Mei2-like genes may function in cell fate specification during development, rather than as stimulators of meiosis. Members in this family contain three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The C-terminal RRM (RRM3) is unique to Mei2-like proteins and it is highly conserved between plants and fungi. Up to date, the intracellular localization, RNA target(s), cellular interactions and phosphorylation states of Mei2-like proteins in plants remain unclear.


Pssm-ID: 409944 [Multi-domain]  Cd Length: 77  Bit Score: 42.65  E-value: 1.74e-05
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 2244986492  18 MFVGQIPRSWSEKELKELFEPYGAVYQINVLrdrsqnpPQSKGCCFVTFYTRKAALEAQNALHNiKTLPGM 88
Cdd:cd12524     4 LFVRNINSSVEDEELRALFEQFGEIRTLYTA-------CKHRGFIMVSYYDIRAAQSAKRALQG-TELGGR 66
RRM2_RBM15B cd12556
RNA recognition motif 2 (RRM2) found in putative RNA binding motif protein 15B (RBM15B) from ...
96-168 1.75e-05

RNA recognition motif 2 (RRM2) found in putative RNA binding motif protein 15B (RBM15B) from vertebrate; This subgroup corresponds to the RRM2 of RBM15B, also termed one twenty-two 3 (OTT3), a paralog of RNA binding motif protein 15 (RBM15), also known as One-twenty two protein 1 (OTT1). Like RBM15, RBM15B has post-transcriptional regulatory activity. It is a nuclear protein sharing with RBM15 the association with the splicing factor compartment and the nuclear envelope as well as the binding to mRNA export factors NXF1 and Aly/REF. RBM15B belongs to the Spen (split end) protein family, which shares a domain architecture comprising of three N-terminal RNA recognition motifs (RRMs), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a C-terminal SPOC (Spen paralog and ortholog C-terminal) domain.


Pssm-ID: 409972 [Multi-domain]  Cd Length: 85  Bit Score: 42.98  E-value: 1.75e-05
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 2244986492  96 PADSEKSNavedRKLFIGMVSKKCNENDIRVMFSPFGQIEECRILRGPDGLSRGCAFVTFSTRAMAQNAIKAM 168
Cdd:cd12556     1 PEDDQRAT----RNLFIGNLDHNVSEVELRRAFEKYGIIEEVVIKRPARGQGGAYAFLKFQNLDMAHRAKVAM 69
RRM2_RIM4_like cd12454
RNA recognition motif 2 (RRM2) found in yeast meiotic activator RIM4 and similar proteins; ...
105-187 1.92e-05

RNA recognition motif 2 (RRM2) found in yeast meiotic activator RIM4 and similar proteins; This subfamily corresponds to the RRM2 of RIM4, also termed regulator of IME2 protein 4, a putative RNA binding protein that is expressed at elevated levels early in meiosis. It functions as a meiotic activator required for both the IME1- and IME2-dependent pathways of meiotic gene expression, as well as early events of meiosis, such as meiotic division and recombination, in Saccharomyces cerevisiae. RIM4 contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The family also includes a putative RNA-binding protein termed multicopy suppressor of sporulation protein Msa1. It is a putative RNA-binding protein encoded by a novel gene, msa1, from the fission yeast Schizosaccharomyces pombe. Msa1 may be involved in the inhibition of sexual differentiation by controlling the expression of Ste11-regulated genes, possibly through the pheromone-signaling pathway. Like RIM4, Msa1 also contains two RRMs, both of which are essential for the function of Msa1.


Pssm-ID: 409888 [Multi-domain]  Cd Length: 80  Bit Score: 42.84  E-value: 1.92e-05
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2244986492 105 VEDRKLFIGMVSKKCNENDIRVMFSPFGQIEECRILRGPDGLSrGCAFVTFSTRAMAQNAIKAMHQSQTMEgcsSPIVVK 184
Cdd:cd12454     1 IDKLSIFVGQLDPKTTDSELFRRFSKYGKIVDCKLIKRPEPVN-AFAFLRFESEEAAEAAVEEENHSEFLN---KQIRVQ 76

                  ...
gi 2244986492 185 FAD 187
Cdd:cd12454    77 KRE 79
RRM_NRD1_SEB1_like cd12331
RNA recognition motif (RRM) found in Saccharomyces cerevisiae protein Nrd1, ...
105-170 2.02e-05

RNA recognition motif (RRM) found in Saccharomyces cerevisiae protein Nrd1, Schizosaccharomyces pombe Rpb7-binding protein seb1 and similar proteins; This subfamily corresponds to the RRM of Nrd1 and Seb1. Nrd1 is a novel heterogeneous nuclear ribonucleoprotein (hnRNP)-like RNA-binding protein encoded by gene NRD1 (for nuclear pre-mRNA down-regulation) from yeast S. cerevisiae. It is implicated in 3' end formation of small nucleolar and small nuclear RNAs transcribed by polymerase II, and plays a critical role in pre-mRNA metabolism. Nrd1 contains an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), a short arginine-, serine-, and glutamate-rich segment similar to the regions rich in RE and RS dipeptides (RE/RS domains) in many metazoan splicing factors, and a proline- and glutamine-rich C-terminal domain (P+Q domain) similar to domains found in several yeast hnRNPs. Disruption of NRD1 gene is lethal to yeast cells. Its N-terminal domain is sufficient for viability, which may facilitate interactions with RNA polymerase II where Nrd1 may function as an auxiliary factor. By contrast, the RRM, RE/RS domains, and P+Q domain are dispensable. Seb1 is an RNA-binding protein encoded by gene seb1 (for seven binding) from fission yeast S. pombe. It is essential for cell viability and bound directly to Rpb7 subunit of RNA polymerase II. Seb1 is involved in processing of polymerase II transcripts. It also contains one RRM motif and a region rich in arginine-serine dipeptides (RS domain).


Pssm-ID: 409768 [Multi-domain]  Cd Length: 79  Bit Score: 42.55  E-value: 2.02e-05
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 2244986492 105 VEDRKLFIGMVSKKCNENDIRVMFSPFGQIEECrILRGpdglSRGCAFVTFSTRAMAQNAIKAMHQ 170
Cdd:cd12331     1 VYSRTLFIGGVTLNMKEWDLRSVFKRFGEVQSV-ILNN----SRRHAFVKMYSRHEAENALQAMEK 61
RRM1_RBM4 cd12606
RNA recognition motif 1 (RRM1) found in vertebrate RNA-binding protein 4 (RBM4); This subgroup ...
16-83 2.11e-05

RNA recognition motif 1 (RRM1) found in vertebrate RNA-binding protein 4 (RBM4); This subgroup corresponds to the RRM1 of RBM4, a ubiquitously expressed splicing factor that has two isoforms, RBM4A (also known as Lark homolog) and RBM4B (also known as RBM30), which are very similar in structure and sequence. RBM4 may function as a translational regulator of stress-associated mRNAs and also plays a role in micro-RNA-mediated gene regulation. RBM4 contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), a CCHC-type zinc finger, and three alanine-rich regions within their C-terminal regions. The C-terminal region may be crucial for nuclear localization and protein-protein interaction. The RRMs, in combination with the C-terminal region, are responsible for the splicing function of RBM4.


Pssm-ID: 410018 [Multi-domain]  Cd Length: 67  Bit Score: 42.10  E-value: 2.11e-05
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 2244986492  16 IKMFVGQIPRSWSEKELKELFEPYGAVYQINVLRDRSqnppqskgccFVTFYTRKAALEAQNALHNIK 83
Cdd:cd12606     1 VKLFIGNLPREATEEEIRSLFEQYGKVTECDIIKNYG----------FVHMEDKSAADEAIRNLHHYK 58
RRM3_RBM19 cd12567
RNA recognition motif 3 (RRM3) found in RNA-binding protein 19 (RBM19) and similar proteins; ...
106-170 2.14e-05

RNA recognition motif 3 (RRM3) found in RNA-binding protein 19 (RBM19) and similar proteins; This subgroup corresponds to the RRM3 of RBM19, also termed RNA-binding domain-1 (RBD-1), which is a nucleolar protein conserved in eukaryotes. It is involved in ribosome biogenesis by processing rRNA. In addition, it is essential for preimplantation development. RBM19 has a unique domain organization containing 6 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409983 [Multi-domain]  Cd Length: 79  Bit Score: 42.38  E-value: 2.14e-05
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 2244986492 106 EDRKLFIGMVSKKCNENDIRVMFSPFGQIEECRIlrgP-DGLSR---GCAFVTFstrAMAQNAIKAMHQ 170
Cdd:cd12567     1 ESGRLFVRNLPYTCTEEDLEKLFSKYGPLSEVHF---PiDSLTKkpkGFAFVTY---MIPEHAVKAYAE 63
RRM2_SART3 cd12392
RNA recognition motif 2 (RRM2) found in squamous cell carcinoma antigen recognized by T-cells ...
106-168 2.19e-05

RNA recognition motif 2 (RRM2) found in squamous cell carcinoma antigen recognized by T-cells 3 (SART3) and similar proteins; This subfamily corresponds to the RRM2 of SART3, also termed Tat-interacting protein of 110 kDa (Tip110), is an RNA-binding protein expressed in the nucleus of the majority of proliferating cells, including normal cells and malignant cells, but not in normal tissues except for the testes and fetal liver. It is involved in the regulation of mRNA splicing probably via its complex formation with RNA-binding protein with a serine-rich domain (RNPS1), a pre-mRNA-splicing factor. SART3 has also been identified as a nuclear Tat-interacting protein that regulates Tat transactivation activity through direct interaction and functions as an important cellular factor for HIV-1 gene expression and viral replication. In addition, SART3 is required for U6 snRNP targeting to Cajal bodies. It binds specifically and directly to the U6 snRNA, interacts transiently with the U6 and U4/U6 snRNPs, and promotes the reassembly of U4/U6 snRNPs after splicing in vitro. SART3 contains an N-terminal half-a-tetratricopeptide repeat (HAT)-rich domain, a nuclearlocalization signal (NLS) domain, and two C-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409826 [Multi-domain]  Cd Length: 81  Bit Score: 42.70  E-value: 2.19e-05
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|...
gi 2244986492 106 EDRKLFIGMVSKKCNENDIRVMFSPFGQIEECRILRGPDGLSRGCAFVTFSTRAMAQNAIKAM 168
Cdd:cd12392     1 EKNKLFVKGLPFSCTKEELEELFKQHGTVKDVRLVTYRNGKPKGLAYVEYENEADASQAVLKT 63
RRM_Aly_REF_like cd12418
RNA recognition motif (RRM) found in the Aly/REF family; This subfamily corresponds to the RRM ...
120-184 2.25e-05

RNA recognition motif (RRM) found in the Aly/REF family; This subfamily corresponds to the RRM of Aly/REF family which includes THO complex subunit 4 (THOC4, also termed Aly/REF), S6K1 Aly/REF-like target (SKAR, also termed PDIP3 or PDIP46) and similar proteins. THOC4 is an mRNA transporter protein with a well conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). It is involved in RNA transportation from the nucleus, and was initially identified as a transcription coactivator of LEF-1 and AML-1 for the TCRalpha enhancer function. In addition, THOC4 specifically binds to rhesus (RH) promoter in erythroid, and might be a novel transcription cofactor for erythroid-specific genes. SKAR shows high sequence homology with THOC4 and possesses one RRM as well. SKAR is widely expressed and localizes to the nucleus. It may be a critical player in the function of S6K1 in cell and organism growth control by binding the activated, hyperphosphorylated form of S6K1 but not S6K2. Furthermore, SKAR functions as a protein partner of the p50 subunit of DNA polymerase delta. In addition, SKAR may have particular importance in pancreatic beta cell size determination and insulin secretion.


Pssm-ID: 409852 [Multi-domain]  Cd Length: 75  Bit Score: 42.18  E-value: 2.25e-05
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 2244986492 120 NENDIRVMFSPFGQIEECRILRGPDGLSRGCAFVTFSTRAMAQNAIKAMHqSQTMEGcsSPIVVK 184
Cdd:cd12418    13 TEEDLRELFGRVGPVKSVKINYDRSGRSTGTAYVVFERPEDAEKAIKQFD-GVLLDG--QPMKVE 74
RRM1_RBM28_like cd12413
RNA recognition motif 1 (RRM1) found in RNA-binding protein 28 (RBM28) and similar proteins; ...
17-98 2.29e-05

RNA recognition motif 1 (RRM1) found in RNA-binding protein 28 (RBM28) and similar proteins; This subfamily corresponds to the RRM1 of RBM28 and Nop4p. RBM28 is a specific nucleolar component of the spliceosomal small nuclear ribonucleoproteins (snRNPs), possibly coordinating their transition through the nucleolus. It specifically associates with U1, U2, U4, U5, and U6 small nuclear RNAs (snRNAs), and may play a role in the maturation of both small nuclear and ribosomal RNAs. RBM28 has four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and an extremely acidic region between RRM2 and RRM3. The family also includes nucleolar protein 4 (Nop4p or Nop77p) encoded by YPL043W from Saccharomyces cerevisiae. It is an essential nucleolar protein involved in processing and maturation of 27S pre-rRNA and biogenesis of 60S ribosomal subunits. Nop4p also contains four RRMs.


Pssm-ID: 409847 [Multi-domain]  Cd Length: 79  Bit Score: 42.58  E-value: 2.29e-05
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2244986492  17 KMFVGQIPRSWSEKELKELFEPYGAVYQINVLRDRsqNPPQSKGCCFVTFytrkaALE--AQNALHNIKTLPGMHHPIQM 94
Cdd:cd12413     1 TLFVRNLPYDTTDEQLEELFSDVGPVKRCFVVKDK--GKDKCRGFGYVTF-----ALAedAQRALEEVKGKKFGGRKIKV 73

                  ....
gi 2244986492  95 KPAD 98
Cdd:cd12413    74 ELAK 77
RRM_SCAF8 cd12462
RNA recognition motif (RRM) found in SR-related and CTD-associated factor 8 (SCAF8) and ...
110-186 2.46e-05

RNA recognition motif (RRM) found in SR-related and CTD-associated factor 8 (SCAF8) and similar proteins; This subgroup corresponds to the RRM of SCAF8 (also termed CDC5L complex-associated protein 7, or RNA-binding motif protein 16, or CTD-binding SR-like protein RA8), a nuclear matrix protein that interacts specifically with a highly serine-phosphorylated form of the carboxy-terminal domain (CTD) of the largest subunit of RNA polymerase II (pol II). The pol II CTD plays a role in coupling transcription and pre-mRNA processing. SCAF8 co-localizes primarily with transcription sites that are enriched in nuclear matrix fraction, which is known to contain proteins involved in pre-mRNA processing. Thus, SCAF8 may play a direct role in coupling with both, transcription and pre-mRNA processing, processes. SCAF8, together with SCAF4, represents a new class of SCAFs (SR-like CTD-associated factors). They contain a conserved N-terminal CTD-interacting domain (CID), an atypical RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and serine/arginine-rich motifs.


Pssm-ID: 409895 [Multi-domain]  Cd Length: 79  Bit Score: 42.37  E-value: 2.46e-05
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 2244986492 110 LFIGMVSKKCNENDIRVMFSPFGQIEECRILRgpdglSRGCAFVTFSTRAMAQNAIKAMHQSQTMEGCSspiVVKFA 186
Cdd:cd12462     5 LWVGQVDKKATQQDLTNLFEEFGQIESINMIP-----PRGCAYVCMVHRQDAYRALQKLSTGSFKIGSK---IIKIA 73
RRM smart00360
RNA recognition motif;
401-430 2.60e-05

RNA recognition motif;


Pssm-ID: 214636 [Multi-domain]  Cd Length: 73  Bit Score: 42.20  E-value: 2.60e-05
                           10        20        30
                   ....*....|....*....|....*....|
gi 2244986492  401 GFVSYDNPVSAQAAIQAMNGFQIGMKRLKV 430
Cdd:smart00360  44 AFVEFESEEDAEKALEALNGKELDGRPLKV 73
RRM3_Hu cd12377
RNA recognition motif 3 (RRM3) found in the Hu proteins family; This subfamily corresponds to ...
18-82 2.62e-05

RNA recognition motif 3 (RRM3) found in the Hu proteins family; This subfamily corresponds to the RRM3 of the Hu proteins family which represent a group of RNA-binding proteins involved in diverse biological processes. Since the Hu proteins share high homology with the Drosophila embryonic lethal abnormal vision (ELAV) protein, the Hu family is sometimes referred to as the ELAV family. Drosophila ELAV is exclusively expressed in neurons and is required for the correct differentiation and survival of neurons in flies. The neuronal members of the Hu family include Hu-antigen B (HuB or ELAV-2 or Hel-N1), Hu-antigen C (HuC or ELAV-3 or PLE21), and Hu-antigen D (HuD or ELAV-4), which play important roles in neuronal differentiation, plasticity and memory. HuB is also expressed in gonads. Hu-antigen R (HuR or ELAV-1 or HuA) is the ubiquitously expressed Hu family member. It has a variety of biological functions mostly related to the regulation of cellular response to DNA damage and other types of stress. Hu proteins perform their cytoplasmic and nuclear molecular functions by coordinately regulating functionally related mRNAs. In the cytoplasm, Hu proteins recognize and bind to AU-rich RNA elements (AREs) in the 3' untranslated regions (UTRs) of certain target mRNAs, such as GAP-43, vascular epithelial growth factor (VEGF), the glucose transporter GLUT1, eotaxin and c-fos, and stabilize those ARE-containing mRNAs. They also bind and regulate the translation of some target mRNAs, such as neurofilament M, GLUT1, and p27. In the nucleus, Hu proteins function as regulators of polyadenylation and alternative splicing. Each Hu protein contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an ARE. RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions.


Pssm-ID: 409811 [Multi-domain]  Cd Length: 76  Bit Score: 42.31  E-value: 2.62e-05
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 2244986492  18 MFVGQIPRSWSEKELKELFEPYGAVYQINVLRDRSQNppQSKGCCFVTF--YTrkaalEAQNALHNI 82
Cdd:cd12377     2 IFVYNLAPDADESLLWQLFGPFGAVQNVKIIRDFTTN--KCKGYGFVTMtnYD-----EAAVAIASL 61
RRM1_U1A_like cd12246
RNA recognition motif 1 (RRM1) found in the U1A/U2B"/SNF protein family; This subfamily ...
110-170 2.84e-05

RNA recognition motif 1 (RRM1) found in the U1A/U2B"/SNF protein family; This subfamily corresponds to the RRM1 of U1A/U2B"/SNF protein family which contains Drosophila sex determination protein SNF and its two mammalian counterparts, U1 small nuclear ribonucleoprotein A (U1 snRNP A or U1-A or U1A) and U2 small nuclear ribonucleoprotein B" (U2 snRNP B" or U2B"), all of which consist of two RNA recognition motifs (RRMs), connected by a variable, flexible linker. SNF is an RNA-binding protein found in the U1 and U2 snRNPs of Drosophila where it is essential in sex determination and possesses a novel dual RNA binding specificity. SNF binds with high affinity to both Drosophila U1 snRNA stem-loop II (SLII) and U2 snRNA stem-loop IV (SLIV). It can also bind to poly(U) RNA tracts flanking the alternatively spliced Sex-lethal (Sxl) exon, as does Drosophila Sex-lethal protein (SXL). U1A is an RNA-binding protein associated with the U1 snRNP, a small RNA-protein complex involved in pre-mRNA splicing. U1A binds with high affinity and specificity to stem-loop II (SLII) of U1 snRNA. It is predominantly a nuclear protein that shuttles between the nucleus and the cytoplasm independently of interactions with U1 snRNA. Moreover, U1A may be involved in RNA 3'-end processing, specifically cleavage, splicing and polyadenylation, through interacting with a large number of non-snRNP proteins. U2B", initially identified to bind to stem-loop IV (SLIV) at the 3' end of U2 snRNA, is a unique protein that comprises of the U2 snRNP. Additional research indicates U2B" binds to U1 snRNA stem-loop II (SLII) as well and shows no preference for SLIV or SLII on the basis of binding affinity. Moreover, U2B" does not require an auxiliary protein for binding to RNA, and its nuclear transport is independent of U2 snRNA binding.


Pssm-ID: 409692 [Multi-domain]  Cd Length: 78  Bit Score: 42.14  E-value: 2.84e-05
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 2244986492 110 LFIGMVSKKCNENDIRV----MFSPFGQIEECRILRGPdgLSRGCAFVTFSTRAMAQNAIKAMHQ 170
Cdd:cd12246     2 LYINNLNEKIKKDELKRslyaLFSQFGPVLDIVASKSL--KMRGQAFVVFKDVESATNALRALQG 64
RRM2_SART3 cd12392
RNA recognition motif 2 (RRM2) found in squamous cell carcinoma antigen recognized by T-cells ...
17-75 2.85e-05

RNA recognition motif 2 (RRM2) found in squamous cell carcinoma antigen recognized by T-cells 3 (SART3) and similar proteins; This subfamily corresponds to the RRM2 of SART3, also termed Tat-interacting protein of 110 kDa (Tip110), is an RNA-binding protein expressed in the nucleus of the majority of proliferating cells, including normal cells and malignant cells, but not in normal tissues except for the testes and fetal liver. It is involved in the regulation of mRNA splicing probably via its complex formation with RNA-binding protein with a serine-rich domain (RNPS1), a pre-mRNA-splicing factor. SART3 has also been identified as a nuclear Tat-interacting protein that regulates Tat transactivation activity through direct interaction and functions as an important cellular factor for HIV-1 gene expression and viral replication. In addition, SART3 is required for U6 snRNP targeting to Cajal bodies. It binds specifically and directly to the U6 snRNA, interacts transiently with the U6 and U4/U6 snRNPs, and promotes the reassembly of U4/U6 snRNPs after splicing in vitro. SART3 contains an N-terminal half-a-tetratricopeptide repeat (HAT)-rich domain, a nuclearlocalization signal (NLS) domain, and two C-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409826 [Multi-domain]  Cd Length: 81  Bit Score: 42.32  E-value: 2.85e-05
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....*....
gi 2244986492  17 KMFVGQIPRSWSEKELKELFEPYGAVYQINVLRDRSQNPpqsKGCCFVTFYTRKAALEA 75
Cdd:cd12392     4 KLFVKGLPFSCTKEELEELFKQHGTVKDVRLVTYRNGKP---KGLAYVEYENEADASQA 59
RRM1_Hu_like cd12375
RNA recognition motif 1 (RRM1) found in the Hu proteins family, Drosophila sex-lethal (SXL), ...
110-173 2.97e-05

RNA recognition motif 1 (RRM1) found in the Hu proteins family, Drosophila sex-lethal (SXL), and similar proteins; This subfamily corresponds to the RRM1 of Hu proteins and SXL. The Hu proteins family represents a group of RNA-binding proteins involved in diverse biological processes. Since the Hu proteins share high homology with the Drosophila embryonic lethal abnormal vision (ELAV) protein, the Hu family is sometimes referred to as the ELAV family. Drosophila ELAV is exclusively expressed in neurons and is required for the correct differentiation and survival of neurons in flies. The neuronal members of the Hu family include Hu-antigen B (HuB or ELAV-2 or Hel-N1), Hu-antigen C (HuC or ELAV-3 or PLE21), and Hu-antigen D (HuD or ELAV-4), which play important roles in neuronal differentiation, plasticity and memory. HuB is also expressed in gonads. Hu-antigen R (HuR or ELAV-1 or HuA) is ubiquitously expressed Hu family member. It has a variety of biological functions mostly related to the regulation of cellular response to DNA damage and other types of stress. Hu proteins perform their cytoplasmic and nuclear molecular functions by coordinately regulating functionally related mRNAs. In the cytoplasm, Hu proteins recognize and bind to AU-rich RNA elements (AREs) in the 3' untranslated regions (UTRs) of certain target mRNAs, such as GAP-43, vascular epithelial growth factor (VEGF), the glucose transporter GLUT1, eotaxin and c-fos, and stabilize those ARE-containing mRNAs. They also bind and regulate the translation of some target mRNAs, such as neurofilament M, GLUT1, and p27. In the nucleus, Hu proteins function as regulators of polyadenylation and alternative splicing. Each Hu protein contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an ARE. RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions. This family also includes the sex-lethal protein (SXL) from Drosophila melanogaster. SXL governs sexual differentiation and X chromosome dosage compensation in flies. It induces female-specific alternative splicing of the transformer (tra) pre-mRNA by binding to the tra uridine-rich polypyrimidine tract at the non-sex-specific 3' splice site during the sex-determination process. SXL binds to its own pre-mRNA and promotes female-specific alternative splicing. It contains an N-terminal Gly/Asn-rich domain that may be responsible for the protein-protein interaction, and tandem RRMs that show high preference to bind single-stranded, uridine-rich target RNA transcripts.


Pssm-ID: 409810 [Multi-domain]  Cd Length: 76  Bit Score: 42.01  E-value: 2.97e-05
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 2244986492 110 LFIGMVSKKCNENDIRVMFSPFGQIEECRILRGPD-GLSRGCAFVTFSTRAMAQNAIKAMHQSQT 173
Cdd:cd12375     2 LIVNYLPQSMTQEELRSLFGAIGPIESCKLVRDKItGQSLGYGFVNYRDPNDARKAINTLNGLDL 66
RRM1_PSRP2_like cd21609
RNA recognition motif 1 (RRM1) found in chloroplastic plastid-specific 30S ribosomal protein 2 ...
109-172 3.15e-05

RNA recognition motif 1 (RRM1) found in chloroplastic plastid-specific 30S ribosomal protein 2 (PSRP-2) and similar proteins; PSRP-2, also called chloroplastic 30S ribosomal protein 2, or chloroplastic small ribosomal subunit protein cS22, is a component of the chloroplast ribosome (chloro-ribosome), a dedicated translation machinery responsible for the synthesis of chloroplast genome-encoded proteins, including proteins of the transcription and translation machinery and components of the photosynthetic apparatus. It binds single strand DNA (ssDNA) and RNA in vitro. It exhibits RNA chaperone activity and regulates negatively resistance responses to abiotic stresses during seed germination (e.g. salt, dehydration, and low temperature) and seedling growth (e.g. salt). The family also includes Nicotiana sylvestris chloroplastic 33 kDa ribonucleoprotein (NsCP33) and Arabidopsis thaliana chloroplastic 31 kDa ribonucleoprotein (AtCP31A). NsCP33 may be involved in splicing and/or processing of chloroplast RNA's. AtCP31A, also called RNA-binding protein 1/2/3 (AtRBP33), or RNA-binding protein CP31A, or RNA-binding protein RNP-T, or RNA-binding protein cp31, is required for specific RNA editing events in chloroplasts and stabilizes specific chloroplast mRNAs, as well as for normal chloroplast development under cold stress conditions by stabilizing transcripts of numerous mRNAs under these conditions. CP31A may modulate telomere replication through RNA binding domains. Members in this family contain two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The model corresponds to the first RRM motif.


Pssm-ID: 410188 [Multi-domain]  Cd Length: 80  Bit Score: 42.02  E-value: 3.15e-05
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 2244986492 109 KLFIGMVSKKCNENDIRVMFSPFGQIEECRILRGPD-GLSRGCAFVTFSTRAMAQNAIKAMHQSQ 172
Cdd:cd21609     1 RLYVGNIPRNVTSEELAKIFEEAGTVEIAEVMYDRYtGRSRGFGFVTMGSVEDAKAAIEKLNGTE 65
RRM2_RBM45 cd12367
RNA recognition motif 2 (RRM2) found in RNA-binding protein 45 (RBM45) and similar proteins; ...
109-187 3.22e-05

RNA recognition motif 2 (RRM2) found in RNA-binding protein 45 (RBM45) and similar proteins; This subfamily corresponds to the RRM2 of RBM45, also termed developmentally-regulated RNA-binding protein 1 (DRB1), a new member of RNA recognition motif (RRM)-type neural RNA-binding proteins, which expresses under spatiotemporal control. It is encoded by gene drb1 that is expressed in neurons, not in glial cells. RBM45 predominantly localizes in cytoplasm of cultured cells and specifically binds to poly(C) RNA. It could play an important role during neurogenesis. RBM45 carries four RRMs, also known as RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409802 [Multi-domain]  Cd Length: 74  Bit Score: 41.98  E-value: 3.22e-05
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2244986492 109 KLFIgMVSKKCNENDIRVMFSPFGQIEECRILRGPD-GLSRGCAFVTFstramaqnaIKAMHQSQTMEGCSSPIVVKFAD 187
Cdd:cd12367     3 RLFV-VIPKSYTEEDLREKFKEFGDIEYCSIVKDKNtGESKGFGYVKF---------LKPSQAALAIENCDRSFKAVLAE 72
RRM_RNPS1 cd12365
RNA recognition motif (RRM) found in RNA-binding protein with serine-rich domain 1 (RNPS1) and ...
110-172 3.29e-05

RNA recognition motif (RRM) found in RNA-binding protein with serine-rich domain 1 (RNPS1) and similar proteins; This subfamily corresponds to the RRM of RNPS1 and its eukaryotic homologs. RNPS1, also termed RNA-binding protein prevalent during the S phase, or SR-related protein LDC2, was originally characterized as a general pre-mRNA splicing activator, which activates both constitutive and alternative splicing of pre-mRNA in vitro.It has been identified as a protein component of the splicing-dependent mRNP complex, or exon-exon junction complex (EJC), and is directly involved in mRNA surveillance. Furthermore, RNPS1 is a splicing regulator whose activator function is controlled in part by CK2 (casein kinase II) protein kinase phosphorylation. It can also function as a squamous-cell carcinoma antigen recognized by T cells-3 (SART3)-binding protein, and is involved in the regulation of mRNA splicing. RNPS1 contains an N-terminal serine-rich (S) domain, a central RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and the C-terminal arginine/serine/proline-rich (RS/P) domain.


Pssm-ID: 409800 [Multi-domain]  Cd Length: 73  Bit Score: 41.77  E-value: 3.29e-05
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....
gi 2244986492 110 LFIGMVSKKCNENDIRVMFSPFGQIEECRILRGP-DGLSRGCAFVTFSTRAMAQNAIKAMHQSQ 172
Cdd:cd12365     1 LHVGKLTRNVTKDHLKEIFSVYGTVKNVDLPIDRePNLPRGYAYVEFESPEDAEKAIKHMDGGQ 64
RRM1_PUF60 cd12370
RNA recognition motif 1 (RRM1) found in (U)-binding-splicing factor PUF60 and similar proteins; ...
17-76 3.39e-05

RNA recognition motif 1 (RRM1) found in (U)-binding-splicing factor PUF60 and similar proteins; This subfamily corresponds to the RRM1 of PUF60, also termed FUSE-binding protein-interacting repressor (FBP-interacting repressor or FIR), or Ro-binding protein 1 (RoBP1), or Siah-binding protein 1 (Siah-BP1). PUF60 is an essential splicing factor that functions as a poly-U RNA-binding protein required to reconstitute splicing in depleted nuclear extracts. Its function is enhanced through interaction with U2 auxiliary factor U2AF65. PUF60 also controls human c-myc gene expression by binding and inhibiting the transcription factor far upstream sequence element (FUSE)-binding-protein (FBP), an activator of c-myc promoters. PUF60 contains two central RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a C-terminal U2AF (U2 auxiliary factor) homology motifs (UHM) that harbors another RRM and binds to tryptophan-containing linear peptide motifs (UHM ligand motifs, ULMs) in several nuclear proteins. Research indicates that PUF60 binds FUSE as a dimer, and only the first two RRM domains participate in the single-stranded DNA recognition.


Pssm-ID: 409805 [Multi-domain]  Cd Length: 76  Bit Score: 42.02  E-value: 3.39e-05
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|
gi 2244986492  17 KMFVGQIPRSWSEKELKELFEPYGAVYQINVLRDRSQNppQSKGCCFVTFYTRKAALEAQ 76
Cdd:cd12370     2 RVYVGSIYFELGEDTIRQAFAPFGPIKSIDMSWDPVTM--KHKGFAFVEYEVPEAAQLAL 59
RRM_RBMX_like cd12382
RNA recognition motif (RRM) found in heterogeneous nuclear ribonucleoprotein G (hnRNP G), Y ...
17-66 3.44e-05

RNA recognition motif (RRM) found in heterogeneous nuclear ribonucleoprotein G (hnRNP G), Y chromosome RNA recognition motif 1 (hRBMY), testis-specific heterogeneous nuclear ribonucleoprotein G-T (hnRNP G-T) and similar proteins; This subfamily corresponds to the RRM domain of hnRNP G, also termed glycoprotein p43 or RBMX, an RNA-binding motif protein located on the X chromosome. It is expressed ubiquitously and has been implicated in the splicing control of several pre-mRNAs. Moreover, hnRNP G may function as a regulator of transcription for SREBP-1c and GnRH1. Research has shown that hnRNP G may also act as a tumor-suppressor since it upregulates the Txnip gene and promotes the fidelity of DNA end-joining activity. In addition, hnRNP G appears to play a critical role in proper neural development of zebrafish and frog embryos. The family also includes several paralogs of hnRNP G, such as hRBMY and hnRNP G-T (also termed RNA-binding motif protein, X-linked-like-2). Both, hRBMY and hnRNP G-T, are exclusively expressed in testis and critical for male fertility. Like hnRNP G, hRBMY and hnRNP G-T interact with factors implicated in the regulation of pre-mRNA splicing, such as hTra2-beta1 and T-STAR. Although members in this family share a high conserved N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), they appear to recognize different RNA targets. For instance, hRBMY interacts specifically with a stem-loop structure in which the loop is formed by the sequence CA/UCAA. In contrast, hnRNP G associates with single stranded RNA sequences containing a CCA/C motif. In addition to the RRM, hnRNP G contains a nascent transcripts targeting domain (NTD) in the middle region and a novel auxiliary RNA-binding domain (RBD) in its C-terminal region. The C-terminal RBD exhibits distinct RNA binding specificity, and would play a critical role in the regulation of alternative splicing by hnRNP G.


Pssm-ID: 409816 [Multi-domain]  Cd Length: 80  Bit Score: 42.01  E-value: 3.44e-05
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|
gi 2244986492  17 KMFVGQIPRSWSEKELKELFEPYGAVYQINVLRDRSQNppQSKGCCFVTF 66
Cdd:cd12382     3 KLFIGGLNTETNEKALEAVFGKYGRIVEVLLMKDRETN--KSRGFAFVTF 50
RRM2_MRD1 cd12566
RNA recognition motif 2 (RRM2) found in yeast multiple RNA-binding domain-containing protein 1 ...
106-167 3.68e-05

RNA recognition motif 2 (RRM2) found in yeast multiple RNA-binding domain-containing protein 1 (MRD1) and similar proteins; This subgroup corresponds to the RRM2 of MRD1 which is encoded by a novel yeast gene MRD1 (multiple RNA-binding domain). It is well-conserved in yeast and its homologs exist in all eukaryotes. MRD1 is present in the nucleolus and the nucleoplasm. It interacts with the 35 S precursor rRNA (pre-rRNA) and U3 small nucleolar RNAs (snoRNAs). It is essential for the initial processing at the A0-A2 cleavage sites in the 35 S pre-rRNA. MRD1 contains 5 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), which may play an important structural role in organizing specific rRNA processing events.


Pssm-ID: 409982 [Multi-domain]  Cd Length: 79  Bit Score: 42.02  E-value: 3.68e-05
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|...
gi 2244986492 106 EDRKLFIGMVSKKCNENDIRVMFSPFGQIEECRI-LRGPDGLSRGCAFVTFstrAMAQNAIKA 167
Cdd:cd12566     1 ETGRLFLRNLPYSTKEDDLQKLFSKFGEVSEVHVpIDKKTKKSKGFAYVLF---LDPEDAVQA 60
RRM1_TDP43 cd12321
RNA recognition motif 1 (RRM1) found in TAR DNA-binding protein 43 (TDP-43) and similar ...
118-176 3.99e-05

RNA recognition motif 1 (RRM1) found in TAR DNA-binding protein 43 (TDP-43) and similar proteins; This subfamily corresponds to the RRM1 of TDP-43 (also termed TARDBP), a ubiquitously expressed pathogenic protein whose normal function and abnormal aggregation are directly linked to the genetic disease cystic fibrosis, and two neurodegenerative disorders: frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). TDP-43 binds both DNA and RNA, and has been implicated in transcriptional repression, pre-mRNA splicing and translational regulation. TDP-43 is a dimeric protein with two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a C-terminal glycine-rich domain. The RRMs are responsible for DNA and RNA binding; they bind to TAR DNA and RNA sequences with UG-repeats. The glycine-rich domain can interact with the hnRNP family proteins to form the hnRNP-rich complex involved in splicing inhibition. It is also essential for the cystic fibrosis transmembrane conductance regulator (CFTR) exon 9-skipping activity.


Pssm-ID: 409760 [Multi-domain]  Cd Length: 74  Bit Score: 41.62  E-value: 3.99e-05
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|
gi 2244986492 118 KCNENDIRVMFSPFGQIEECRILRGPD-GLSRGCAFVTFstrAMAQNAIKAMHQSQTMEG 176
Cdd:cd12321    10 KTTEQDLKEYFSTFGEVLMVQVKKDPKtGRSKGFGFVRF---ASYETQVKVLSQRHMIDG 66
RRM_RBM24_RBM38_like cd12384
RNA recognition motif (RRM) found in eukaryotic RNA-binding protein RBM24, RBM38 and similar ...
108-166 4.33e-05

RNA recognition motif (RRM) found in eukaryotic RNA-binding protein RBM24, RBM38 and similar proteins; This subfamily corresponds to the RRM of RBM24 and RBM38 from vertebrate, SUPpressor family member SUP-12 from Caenorhabditis elegans and similar proteins. Both, RBM24 and RBM38, are preferentially expressed in cardiac and skeletal muscle tissues. They regulate myogenic differentiation by controlling the cell cycle in a p21-dependent or -independent manner. RBM24, also termed RNA-binding region-containing protein 6, interacts with the 3'-untranslated region (UTR) of myogenin mRNA and regulates its stability in C2C12 cells. RBM38, also termed CLL-associated antigen KW-5, or HSRNASEB, or RNA-binding region-containing protein 1(RNPC1), or ssDNA-binding protein SEB4, is a direct target of the p53 family. It is required for maintaining the stability of the basal and stress-induced p21 mRNA by binding to their 3'-UTRs. It also binds the AU-/U-rich elements in p63 3'-UTR and regulates p63 mRNA stability and activity. SUP-12 is a novel tissue-specific splicing factor that controls muscle-specific splicing of the ADF/cofilin pre-mRNA in C. elegans. All family members contain a conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 409818 [Multi-domain]  Cd Length: 76  Bit Score: 41.59  E-value: 4.33e-05
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|
gi 2244986492 108 RKLFIGMVSKKCNENDIRVMFSPFGQIEECRILRGPD-GLSRGCAFVTFSTRAMAQNAIK 166
Cdd:cd12384     1 TKIFVGGLPYHTTDDSLREYFEQFGEIEEAVVITDRQtGKSRGYGFVTMADREAAERACK 60
RRM2_CoAA cd12609
RNA recognition motif 2 (RRM2) found in vertebrate RRM-containing coactivator activator ...
109-169 4.42e-05

RNA recognition motif 2 (RRM2) found in vertebrate RRM-containing coactivator activator/modulator (CoAA); This subgroup corresponds to the RRM2 of CoAA, also termed RNA-binding protein 14 (RBM14), or paraspeckle protein 2 (PSP2), or synaptotagmin-interacting protein (SYT-interacting protein), a heterogeneous nuclear ribonucleoprotein (hnRNP)-like protein identified as a nuclear receptor coactivator. It mediates transcriptional coactivation and RNA splicing effects in a promoter-preferential manner and is enhanced by thyroid hormone receptor-binding protein (TRBP). CoAA contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a TRBP-interacting domain. It stimulates transcription through its interactions with coactivators, such as TRBP and CREB-binding protein CBP/p300, via the TRBP-interacting domain and interaction with an RNA-containing complex, such as DNA-dependent protein kinase-poly(ADP-ribose) polymerase complexes, via the RRMs.


Pssm-ID: 410021 [Multi-domain]  Cd Length: 68  Bit Score: 41.37  E-value: 4.42e-05
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|.
gi 2244986492 109 KLFIGMVSKKCNENDIRVMFSPFGQIEECRILrgpdglsRGCAFVTFSTRAMAQNAIKAMH 169
Cdd:cd12609     2 KIFVGNVSATCTSDELRGLFEEFGRVVECDKV-------KDYAFVHMEREEEALAAIEALN 55
RRM1_p54nrb_like cd12332
RNA recognition motif 1 (RRM1) found in the p54nrb/PSF/PSP1 family; This subfamily corresponds ...
109-164 4.64e-05

RNA recognition motif 1 (RRM1) found in the p54nrb/PSF/PSP1 family; This subfamily corresponds to the RRM1 of the p54nrb/PSF/PSP1 family, including 54 kDa nuclear RNA- and DNA-binding protein (p54nrb or NonO or NMT55), polypyrimidine tract-binding protein (PTB)-associated-splicing factor (PSF or POMp100), paraspeckle protein 1 (PSP1 or PSPC1), which are ubiquitously expressed and are conserved in vertebrates. p54nrb is a multi-functional protein involved in numerous nuclear processes including transcriptional regulation, splicing, DNA unwinding, nuclear retention of hyperedited double-stranded RNA, viral RNA processing, control of cell proliferation, and circadian rhythm maintenance. PSF is also a multi-functional protein that binds RNA, single-stranded DNA (ssDNA), double-stranded DNA (dsDNA) and many factors, and mediates diverse activities in the cell. PSP1 is a novel nucleolar factor that accumulates within a new nucleoplasmic compartment, termed paraspeckles, and diffusely distributes in the nucleoplasm. The cellular function of PSP1 remains unknown currently. This subfamily also includes some p54nrb/PSF/PSP1 homologs from invertebrate species, such as the Drosophila melanogaster gene no-ontransient A (nonA) encoding puff-specific protein Bj6 (also termed NONA) and Chironomus tentans hrp65 gene encoding protein Hrp65. D. melanogaster NONA is involved in eye development and behavior, and may play a role in circadian rhythm maintenance, similar to vertebrate p54nrb. C. tentans Hrp65 is a component of nuclear fibers associated with ribonucleoprotein particles in transit from the gene to the nuclear pore. All family members contain a DBHS domain (for Drosophila behavior, human splicing), which comprises two conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a charged protein-protein interaction module. PSF has an additional large N-terminal domain that differentiates it from other family members.


Pssm-ID: 409769 [Multi-domain]  Cd Length: 71  Bit Score: 41.51  E-value: 4.64e-05
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....*.
gi 2244986492 109 KLFIGMVSKKCNENDIRVMFSPFGQIEECRILRGpdglsRGCAFVTFSTRAMAQNA 164
Cdd:cd12332     3 RLFVGNLPNDITEEEFKELFQKYGEVSEVFLNKG-----KGFGFIRLDTRANAEAA 53
RRM_NIFK_like cd12307
RNA recognition motif in nucleolar protein interacting with the FHA domain of pKI-67 (NIFK) ...
19-81 4.73e-05

RNA recognition motif in nucleolar protein interacting with the FHA domain of pKI-67 (NIFK) and similar proteins; This subgroup corresponds to the RRM of NIFK and Nop15p. NIFK, also termed MKI67 FHA domain-interacting nucleolar phosphoprotein, or nucleolar phosphoprotein Nopp34, is a putative RNA-binding protein interacting with the forkhead associated (FHA) domain of pKi-67 antigen in a mitosis-specific and phosphorylation-dependent manner. It is nucleolar in interphase but associates with condensed mitotic chromosomes. This family also includes Saccharomyces cerevisiae YNL110C gene encoding ribosome biogenesis protein 15 (Nop15p), also termed nucleolar protein 15. Both, NIFK and Nop15p, contain an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 409748 [Multi-domain]  Cd Length: 74  Bit Score: 41.41  E-value: 4.73e-05
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|...
gi 2244986492  19 FVGQIPRSWSEKELKELFEPYGAVyqINVLRDRSQNPPQSKGCCFVTFYTRKAALEAQNALHN 81
Cdd:cd12307     3 YIGHLPHGFYEPELRKYFSQFGTV--TRLRLSRSKKTGKSKGYAFVEFEDPEVAKIVAETMNN 63
RRM_1 pfam00076
RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic ...
397-429 4.82e-05

RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic of an RNA binding protein. RRMs are found in a variety of RNA binding proteins, including various hnRNP proteins, proteins implicated in regulation of alternative splicing, and protein components of snRNPs. The motif also appears in a few single stranded DNA binding proteins. The RRM structure consists of four strands and two helices arranged in an alpha/beta sandwich, with a third helix present during RNA binding in some cases The C-terminal beta strand (4th strand) and final helix are hard to align and have been omitted in the SEED alignment The LA proteins have an N terminal rrm which is included in the seed. There is a second region towards the C terminus that has some features characteriztic of a rrm but does not appear to have the important structural core of a rrm. The LA proteins are one of the main autoantigens in Systemic lupus erythematosus (SLE), an autoimmune disease.


Pssm-ID: 425453 [Multi-domain]  Cd Length: 70  Bit Score: 41.06  E-value: 4.82e-05
                          10        20        30
                  ....*....|....*....|....*....|...
gi 2244986492 397 SQKEGFVSYDNPVSAQAAIQAMNGFQIGMKRLK 429
Cdd:pfam00076  38 SKGFAFVEFEDEEDAEKAIEALNGKELGGRELK 70
RRM_DAZL cd12672
RNA recognition motif (RRM) found in vertebrate deleted in azoospermia-like (DAZL) proteins; ...
18-67 4.84e-05

RNA recognition motif (RRM) found in vertebrate deleted in azoospermia-like (DAZL) proteins; This subgroup corresponds to the RRM of DAZL, also termed SPGY-like-autosomal, encoded by the autosomal homolog of DAZ gene, DAZL. It is ancestral to the deleted in azoospermia (DAZ) protein. DAZL is germ-cell-specific RNA-binding protein that contains a RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a DAZ motif, a protein-protein interaction domain. Although their specific biochemical functions remain to be investigated, DAZL proteins may interact with poly(A)-binding proteins (PABPs), and act as translational activators of specific mRNAs during gametogenesis.


Pssm-ID: 410073 [Multi-domain]  Cd Length: 82  Bit Score: 41.69  E-value: 4.84e-05
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|
gi 2244986492  18 MFVGQIPRSWSEKELKELFEPYGAVYQINVLRDRSQnppQSKGCCFVTFY 67
Cdd:cd12672     8 VFVGGIDIRMDENEIRSFFARYGSVKEVKIITDRTG---VSKGYGFVSFY 54
RRM_SLIRP cd12242
RNA recognition motif (RRM) found in SRA stem-loop-interacting RNA-binding protein (SLIRP) and ...
17-83 4.97e-05

RNA recognition motif (RRM) found in SRA stem-loop-interacting RNA-binding protein (SLIRP) and similar proteins; This subfamily corresponds to the RRM of SLIRP, a widely expressed small steroid receptor RNA activator (SRA) binding protein, which binds to STR7, a functional substructure of SRA. SLIRP is localized predominantly to the mitochondria and plays a key role in modulating several nuclear receptor (NR) pathways. It functions as a co-repressor to repress SRA-mediated nuclear receptor coactivation. It modulates SHARP- and SKIP-mediated co-regulation of NR activity. SLIRP contains an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), which is required for SLIRP's corepression activities.


Pssm-ID: 409688 [Multi-domain]  Cd Length: 73  Bit Score: 41.18  E-value: 4.97e-05
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 2244986492  17 KMFVGQIPRSWSEKELKELFEPYGAVYQINVLRDRSQNppQSKGCCFVTFytrkaalEAQNALHNIK 83
Cdd:cd12242     1 KLFVSNLPWTTGSSELKEYFSQFGKVKRCNLPFDKETG--FHKGFGFVSF-------ENEDGLRNAL 58
RRM_SF3B14 cd12241
RNA recognition motif (RRM) found in pre-mRNA branch site protein p14 (SF3B14) and similar ...
18-82 4.97e-05

RNA recognition motif (RRM) found in pre-mRNA branch site protein p14 (SF3B14) and similar proteins; This subfamily corresponds to the RRM of SF3B14 (also termed p14), a 14 kDa protein subunit of SF3B which is a multiprotein complex that is an integral part of the U2 small nuclear ribonucleoprotein (snRNP) and the U11/U12 di-snRNP. SF3B is essential for the accurate excision of introns from pre-messenger RNA and has been involved in the recognition of the pre-mRNA's branch site within the major and minor spliceosomes. SF3B14 associates directly with another SF3B subunit called SF3B155. It is also present in both U2- and U12-dependent spliceosomes and may contribute to branch site positioning in both the major and minor spliceosome. Moreover, SF3B14 interacts directly with the pre-mRNA branch adenosine early in spliceosome assembly and within the fully assembled spliceosome. SF3B14 contains one well conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 409687 [Multi-domain]  Cd Length: 77  Bit Score: 41.45  E-value: 4.97e-05
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 2244986492  18 MFVGQIPRSWSEKELKELFEPYGAVYQInvlrdRSQNPPQSKGCCFVTFytrKAALEAQNALHNI 82
Cdd:cd12241     5 LYVRNLPYKISSEELYDLFGKYGAIRQI-----RIGNTKETRGTAFVVY---EDIFDAKNACDHL 61
RRM1_hnRNPA3 cd12763
RNA recognition motif 1 (RRM1) found in heterogeneous nuclear ribonucleoprotein A3 (hnRNP A3) ...
108-167 5.22e-05

RNA recognition motif 1 (RRM1) found in heterogeneous nuclear ribonucleoprotein A3 (hnRNP A3) and similar proteins; This subgroup corresponds to the RRM1 of hnRNP A3 which is a novel RNA trafficking response element-binding protein that interacts with the hnRNP A2 response element (A2RE) independently of hnRNP A2 and participates in the trafficking of A2RE-containing RNA. hnRNP A3 can shuttle between the nucleus and the cytoplasm. It contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), followed by a long glycine-rich region at the C-terminus.


Pssm-ID: 410156 [Multi-domain]  Cd Length: 81  Bit Score: 41.58  E-value: 5.22e-05
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|.
gi 2244986492 108 RKLFIGMVSKKCNENDIRVMFSPFGQIEECRILRGPD-GLSRGCAFVTFSTRAMAQNAIKA 167
Cdd:cd12763     3 RKLFIGGLSFETTDDSLREHFEQWGTLTDCVVMRDPQtKRSRGFGFVTYSCVEEVDAAMSA 63
RRM1_MEI2_like cd12524
RNA recognition motif 1 (RRM1) found in plant Mei2-like proteins; This subgroup corresponds to ...
108-169 5.23e-05

RNA recognition motif 1 (RRM1) found in plant Mei2-like proteins; This subgroup corresponds to the RRM1 of Mei2-like proteins that represent an ancient eukaryotic RNA-binding proteins family. Their corresponding Mei2-like genes appear to have arisen early in eukaryote evolution, been lost from some lineages such as Saccharomyces cerevisiae and metazoans, and diversified in the plant lineage. The plant Mei2-like genes may function in cell fate specification during development, rather than as stimulators of meiosis. Members in this family contain three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The C-terminal RRM (RRM3) is unique to Mei2-like proteins and it is highly conserved between plants and fungi. Up to date, the intracellular localization, RNA target(s), cellular interactions and phosphorylation states of Mei2-like proteins in plants remain unclear.


Pssm-ID: 409944 [Multi-domain]  Cd Length: 77  Bit Score: 41.49  E-value: 5.23e-05
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 2244986492 108 RKLFIGMVSKKCNENDIRVMFSPFGQIE----ECRilrgpdglSRGCAFVTF-STRAmAQNAIKAMH 169
Cdd:cd12524     2 RTLFVRNINSSVEDEELRALFEQFGEIRtlytACK--------HRGFIMVSYyDIRA-AQSAKRALQ 59
RRM1_p54nrb_like cd12332
RNA recognition motif 1 (RRM1) found in the p54nrb/PSF/PSP1 family; This subfamily corresponds ...
17-83 5.32e-05

RNA recognition motif 1 (RRM1) found in the p54nrb/PSF/PSP1 family; This subfamily corresponds to the RRM1 of the p54nrb/PSF/PSP1 family, including 54 kDa nuclear RNA- and DNA-binding protein (p54nrb or NonO or NMT55), polypyrimidine tract-binding protein (PTB)-associated-splicing factor (PSF or POMp100), paraspeckle protein 1 (PSP1 or PSPC1), which are ubiquitously expressed and are conserved in vertebrates. p54nrb is a multi-functional protein involved in numerous nuclear processes including transcriptional regulation, splicing, DNA unwinding, nuclear retention of hyperedited double-stranded RNA, viral RNA processing, control of cell proliferation, and circadian rhythm maintenance. PSF is also a multi-functional protein that binds RNA, single-stranded DNA (ssDNA), double-stranded DNA (dsDNA) and many factors, and mediates diverse activities in the cell. PSP1 is a novel nucleolar factor that accumulates within a new nucleoplasmic compartment, termed paraspeckles, and diffusely distributes in the nucleoplasm. The cellular function of PSP1 remains unknown currently. This subfamily also includes some p54nrb/PSF/PSP1 homologs from invertebrate species, such as the Drosophila melanogaster gene no-ontransient A (nonA) encoding puff-specific protein Bj6 (also termed NONA) and Chironomus tentans hrp65 gene encoding protein Hrp65. D. melanogaster NONA is involved in eye development and behavior, and may play a role in circadian rhythm maintenance, similar to vertebrate p54nrb. C. tentans Hrp65 is a component of nuclear fibers associated with ribonucleoprotein particles in transit from the gene to the nuclear pore. All family members contain a DBHS domain (for Drosophila behavior, human splicing), which comprises two conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a charged protein-protein interaction module. PSF has an additional large N-terminal domain that differentiates it from other family members.


Pssm-ID: 409769 [Multi-domain]  Cd Length: 71  Bit Score: 41.13  E-value: 5.32e-05
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 2244986492  17 KMFVGQIPRSWSEKELKELFEPYGAVYQINVlrdrsqnpPQSKGCCFVTFYTRKAALEAQNALHNIK 83
Cdd:cd12332     3 RLFVGNLPNDITEEEFKELFQKYGEVSEVFL--------NKGKGFGFIRLDTRANAEAAKAELDGTP 61
RRM1_RBM47 cd12485
RNA recognition motif 1 (RRM1) found in vertebrate RNA-binding protein 47 (RBM47); This ...
109-179 5.36e-05

RNA recognition motif 1 (RRM1) found in vertebrate RNA-binding protein 47 (RBM47); This subgroup corresponds to the RRM1 of RBM47, a putative RNA-binding protein that shows high sequence homology with heterogeneous nuclear ribonucleoprotein R (hnRNP R) and heterogeneous nuclear ribonucleoprotein Q (hnRNP Q). Its biological function remains unclear. Like hnRNP R and hnRNP Q, RBM47 contains two well-defined and one degenerated RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 240929 [Multi-domain]  Cd Length: 78  Bit Score: 41.49  E-value: 5.36e-05
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 2244986492 109 KLFIGMVSKKCNENDIRVMFSPFGQIEECRILRGPDGLSRGCAFVTFSTRAMAQNAIKAMHQSQTMEG-----CSS 179
Cdd:cd12485     3 EVFVGKIPRDVYEDELVPVFESVGRIYEMRLMMDFDGKNRGYAFVMYTQKHEAKRAVRELNNYEIRPGrllgvCCS 78
RRM1_Crp79 cd21619
RNA recognition motif 1 (RRM1) found in Schizosaccharomyces pombe mRNA export factor Crp79 and ...
108-167 5.54e-05

RNA recognition motif 1 (RRM1) found in Schizosaccharomyces pombe mRNA export factor Crp79 and similar proteins; Crp79, also called meiotic expression up-regulated protein 5 (Mug5), or polyadenylate-binding protein crp79, or PABP, or poly(A)-binding protein, is an auxiliary mRNA export factor that binds the poly(A) tail of mRNA and is involved in the export of mRNA from the nucleus to the cytoplasm. Members in this family contain three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The model corresponds to the first RRM motif.


Pssm-ID: 410198 [Multi-domain]  Cd Length: 78  Bit Score: 41.36  E-value: 5.54e-05
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|...
gi 2244986492 108 RKLFIGMVSKKCNENDIRVMFSPFGQIEECRILR---GPDGLSRGCAFVTFSTRAMAQNAIKA 167
Cdd:cd21619     2 NTIYVGNIDMTINEDALEKIFSRYGQVESVRRPPihtDKADRTTGFGFIKYTDAESAERAMQQ 64
RRM_CIRBP_RBM3 cd12449
RNA recognition motif (RRM) found in cold inducible RNA binding protein (CIRBP), RNA binding ...
17-87 5.55e-05

RNA recognition motif (RRM) found in cold inducible RNA binding protein (CIRBP), RNA binding motif protein 3 (RBM3) and similar proteins; This subfamily corresponds to the RRM domain of two structurally related heterogenous nuclear ribonucleoproteins, CIRBP (also termed CIRP or A18 hnRNP) and RBM3 (also termed RNPL), both of which belong to a highly conserved cold shock proteins family. The cold shock proteins can be induced after exposure to a moderate cold-shock and other cellular stresses such as UV radiation and hypoxia. CIRBP and RBM3 may function in posttranscriptional regulation of gene expression by binding to different transcripts, thus allowing the cell to response rapidly to environmental signals. However, the kinetics and degree of cold induction are different between CIRBP and RBM3. Tissue distribution of their expression is different. CIRBP and RBM3 may be differentially regulated under physiological and stress conditions and may play distinct roles in cold responses of cells. CIRBP, also termed glycine-rich RNA-binding protein CIRP, is localized in the nucleus and mediates the cold-induced suppression of cell cycle progression. CIRBP also binds DNA and possibly serves as a chaperone that assists in the folding/unfolding, assembly/disassembly and transport of various proteins. RBM3 may enhance global protein synthesis and the formation of active polysomes while reducing the levels of ribonucleoprotein complexes containing microRNAs. RBM3 may also serve to prevent the loss of muscle mass by its ability to decrease cell death. Furthermore, RBM3 may be essential for cell proliferation and mitosis. Both, CIRBP and RBM3, contain an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), that is involved in RNA binding, and C-terminal glycine-rich domain (RGG motif) that probably enhances RNA-binding via protein-protein and/or protein-RNA interactions. Like CIRBP, RBM3 can also bind to both RNA and DNA via its RRM domain.


Pssm-ID: 409883 [Multi-domain]  Cd Length: 80  Bit Score: 41.31  E-value: 5.55e-05
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 2244986492  17 KMFVGQIPRSWSEKELKELFEPYGAVYQINVLRDRSQNppQSKGCCFVTFytrKAALEAQNALH--NIKTLPG 87
Cdd:cd12449     2 KLFVGGLSFDTNEQSLEEVFSKYGQISEVVVVKDRETQ--RSRGFGFVTF---ENPDDAKDAMMamNGKSLDG 69
RRM_NRD1_SEB1_like cd12331
RNA recognition motif (RRM) found in Saccharomyces cerevisiae protein Nrd1, ...
18-95 5.88e-05

RNA recognition motif (RRM) found in Saccharomyces cerevisiae protein Nrd1, Schizosaccharomyces pombe Rpb7-binding protein seb1 and similar proteins; This subfamily corresponds to the RRM of Nrd1 and Seb1. Nrd1 is a novel heterogeneous nuclear ribonucleoprotein (hnRNP)-like RNA-binding protein encoded by gene NRD1 (for nuclear pre-mRNA down-regulation) from yeast S. cerevisiae. It is implicated in 3' end formation of small nucleolar and small nuclear RNAs transcribed by polymerase II, and plays a critical role in pre-mRNA metabolism. Nrd1 contains an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), a short arginine-, serine-, and glutamate-rich segment similar to the regions rich in RE and RS dipeptides (RE/RS domains) in many metazoan splicing factors, and a proline- and glutamine-rich C-terminal domain (P+Q domain) similar to domains found in several yeast hnRNPs. Disruption of NRD1 gene is lethal to yeast cells. Its N-terminal domain is sufficient for viability, which may facilitate interactions with RNA polymerase II where Nrd1 may function as an auxiliary factor. By contrast, the RRM, RE/RS domains, and P+Q domain are dispensable. Seb1 is an RNA-binding protein encoded by gene seb1 (for seven binding) from fission yeast S. pombe. It is essential for cell viability and bound directly to Rpb7 subunit of RNA polymerase II. Seb1 is involved in processing of polymerase II transcripts. It also contains one RRM motif and a region rich in arginine-serine dipeptides (RS domain).


Pssm-ID: 409768 [Multi-domain]  Cd Length: 79  Bit Score: 41.39  E-value: 5.88e-05
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 2244986492  18 MFVGQIPRSWSEKELKELFEPYGAVYQINVLRDRSQnppqskgcCFVTFYTRKaalEAQNALHNIKTLPGMHHPIQMK 95
Cdd:cd12331     6 LFIGGVTLNMKEWDLRSVFKRFGEVQSVILNNSRRH--------AFVKMYSRH---EAENALQAMEKVPDGDLPLRTR 72
RRM1_hnRNPR cd12482
RNA recognition motif 1 (RRM1) found in vertebrate heterogeneous nuclear ribonucleoprotein R ...
109-166 6.02e-05

RNA recognition motif 1 (RRM1) found in vertebrate heterogeneous nuclear ribonucleoprotein R (hnRNP R); This subgroup corresponds to the RRM1 of hnRNP R, which is a ubiquitously expressed nuclear RNA-binding protein that specifically binds mRNAs with a preference for poly(U) stretches. Upon binding of RNA, hnRNP R forms oligomers, most probably dimers. hnRNP R has been implicated in mRNA processing and mRNA transport, and also acts as a regulator to modify binding to ribosomes and RNA translation. It is predominantly located in axons of motor neurons and to a much lower degree in sensory axons. In axons of motor neurons, it also functions as a cytosolic protein and interacts with wild type of survival motor neuron (SMN) proteins directly, further providing a molecular link between SMN and the spliceosome. Moreover, hnRNP R plays an important role in neural differentiation and development, and in retinal development and light-elicited cellular activities. hnRNP R contains an acidic auxiliary N-terminal region, followed by two well defined and one degenerated RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a C-terminal RGG motif; it binds RNA through its RRM domains.


Pssm-ID: 409909 [Multi-domain]  Cd Length: 79  Bit Score: 41.11  E-value: 6.02e-05
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....*....
gi 2244986492 109 KLFIGMVSKKCNENDIRVMFSPFGQIEECRILRGP-DGLSRGCAFVTFSTRAMAQNAIK 166
Cdd:cd12482     3 EVFVGKIPRDLYEDELVPLFEKAGPIWDLRLMMDPlSGQNRGYAFITFCNKEAAQEAVK 61
RRM3_CELF3_4_5_6 cd12639
RNA recognition motif 2 (RRM2) found in CUGBP Elav-like family member CELF-3, CELF-4, CELF-5, ...
13-77 6.10e-05

RNA recognition motif 2 (RRM2) found in CUGBP Elav-like family member CELF-3, CELF-4, CELF-5, CELF-6 and similar proteins; This subgroup corresponds to the RRM3 of CELF-3, CELF-4, CELF-5, and CELF-6, all of which belong to the CUGBP1 and ETR-3-like factors (CELF) or BRUNOL (Bruno-like) family of RNA-binding proteins that display dual nuclear and cytoplasmic localizations and have been implicated in the regulation of pre-mRNA splicing and in the control of mRNA translation and deadenylation. CELF-3, expressed in brain and testis only, is also known as bruno-like protein 1 (BRUNOL-1), or CAG repeat protein 4, or CUG-BP- and ETR-3-like factor 3, or embryonic lethal abnormal vision (ELAV)-type RNA-binding protein 1 (ETR-1), or expanded repeat domain protein CAG/CTG 4, or trinucleotide repeat-containing gene 4 protein (TNRC4). It plays an important role in the pathogenesis of tauopathies. CELF-3 contains three highly conserved RNA recognition motifs (RRMs), also known as RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains): two consecutive RRMs (RRM1 and RRM2) situated in the N-terminal region followed by a linker region and the third RRM (RRM3) close to the C-terminus of the protein.The effect of CELF-3 on tau splicing is mediated mainly by the RNA-binding activity of RRM2. The divergent linker region might mediate the interaction of CELF-3 with other proteins regulating its activity or involved in target recognition. CELF-4, highly expressed throughout the brain and in glandular tissues, moderately expressed in heart, skeletal muscle, and liver, is also known as bruno-like protein 4 (BRUNOL-4), or CUG-BP- and ETR-3-like factor 4. Like CELF-3, CELF-4 also contains three highly conserved RRMs. The splicing activation or repression activity of CELF-4 on some specific substrates is mediated by its RRM1/RRM2. Both, RRM1 and RRM2 of CELF-4, can activate cardiac troponin T (cTNT) exon 5 inclusion. CELF-5, expressed in brain, is also known as bruno-like protein 5 (BRUNOL-5), or CUG-BP- and ETR-3-like factor 5. Although its biological role remains unclear, CELF-5 shares same domain architecture with CELF-3. CELF-6, strongly expressed in kidney, brain, and testis, is also known as bruno-like protein 6 (BRUNOL-6), or CUG-BP- and ETR-3-like factor 6. It activates exon inclusion of a cardiac troponin T minigene in transient transfection assays in an muscle-specific splicing enhancer (MSE)-dependent manner and can activate inclusion via multiple copies of a single element, MSE2. CELF-6 also promotes skipping of exon 11 of insulin receptor, a known target of CELF activity that is expressed in kidney. In addition to three highly conserved RRMs, CELF-6 also possesses numerous potential phosphorylation sites, a potential nuclear localization signal (NLS) at the C terminus, and an alanine-rich region within the divergent linker region.


Pssm-ID: 241083 [Multi-domain]  Cd Length: 79  Bit Score: 41.38  E-value: 6.10e-05
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 2244986492  13 PDAIKMFVGQIPRSWSEKELKELFEPYGAVYQINVLRDRSQNppQSKGCCFVTF---YTRKAALEAQN 77
Cdd:cd12639     2 PEGCNLFIYHLPQEFGDAELMQMFLPFGNVISAKVFVDRATN--QSKCFGFVSFdnpASAQAAIQAMN 67
RRM2_DAZAP1 cd12327
RNA recognition motif 2 (RRM2) found in Deleted in azoospermia-associated protein 1 (DAZAP1) ...
17-82 6.21e-05

RNA recognition motif 2 (RRM2) found in Deleted in azoospermia-associated protein 1 (DAZAP1) and similar proteins; This subfamily corresponds to the RRM2 of DAZAP1 or DAZ-associated protein 1, also termed proline-rich RNA binding protein (Prrp), a multi-functional ubiquitous RNA-binding protein expressed most abundantly in the testis and essential for normal cell growth, development, and spermatogenesis. DAZAP1 is a shuttling protein whose acetylated is predominantly nuclear and the nonacetylated form is in cytoplasm. DAZAP1 also functions as a translational regulator that activates translation in an mRNA-specific manner. DAZAP1 was initially identified as a binding partner of Deleted in Azoospermia (DAZ). It also interacts with numerous hnRNPs, including hnRNP U, hnRNP U like-1, hnRNPA1, hnRNPA/B, and hnRNP D, suggesting DAZAP1 might associate and cooperate with hnRNP particles to regulate adenylate-uridylate-rich elements (AU-rich element or ARE)-containing mRNAs. DAZAP1 contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a C-terminal proline-rich domain.


Pssm-ID: 409765 [Multi-domain]  Cd Length: 80  Bit Score: 41.33  E-value: 6.21e-05
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 2244986492  17 KMFVGQIPRSWSEKELKELFEPYGAVYQINVLRDrsQNPPQSKGCCFVTFYTRKAALEAQNA-LHNI 82
Cdd:cd12327     4 KVFVGGIPHNCGETELRDYFKRYGVVTEVVMMYD--AEKQRSRGFGFITFEDEQSVDQAVNMhFHDI 68
RRM1_hnRNPA_hnRNPD_like cd12325
RNA recognition motif 1 (RRM1) found in heterogeneous nuclear ribonucleoprotein hnRNP A and ...
18-82 6.45e-05

RNA recognition motif 1 (RRM1) found in heterogeneous nuclear ribonucleoprotein hnRNP A and hnRNP D subfamilies and similar proteins; This subfamily corresponds to the RRM1 in the hnRNP A subfamily which includes hnRNP A0, hnRNP A1, hnRNP A2/B1, hnRNP A3 and similar proteins. hnRNP A0 is a low abundance hnRNP protein that has been implicated in mRNA stability in mammalian cells. hnRNP A1 is an abundant eukaryotic nuclear RNA-binding protein that may modulate splice site selection in pre-mRNA splicing. hnRNP A2/B1 is an RNA trafficking response element-binding protein that interacts with the hnRNP A2 response element (A2RE). hnRNP A3 is also a RNA trafficking response element-binding protein that participates in the trafficking of A2RE-containing RNA. The hnRNP A subfamily is characterized by two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), followed by a long glycine-rich region at the C-terminus. The hnRNP D subfamily includes hnRNP D0, hnRNP A/B, hnRNP DL and similar proteins. hnRNP D0 is a UUAG-specific nuclear RNA binding protein that may be involved in pre-mRNA splicing and telomere elongation. hnRNP A/B is an RNA unwinding protein with a high affinity for G- followed by U-rich regions. hnRNP A/B has also been identified as an APOBEC1-binding protein that interacts with apolipoprotein B (apoB) mRNA transcripts around the editing site and thus, plays an important role in apoB mRNA editing. hnRNP DL (or hnRNP D-like) is a dual functional protein that possesses DNA- and RNA-binding properties. It has been implicated in mRNA biogenesis at the transcriptional and post-transcriptional levels. All members in this subfamily contain two putative RRMs and a glycine- and tyrosine-rich C-terminus. The family also contains DAZAP1 (Deleted in azoospermia-associated protein 1), RNA-binding protein Musashi homolog Musashi-1, Musashi-2 and similar proteins. They all harbor two RRMs.


Pssm-ID: 409763 [Multi-domain]  Cd Length: 72  Bit Score: 40.97  E-value: 6.45e-05
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 2244986492  18 MFVGQIprSW--SEKELKELFEPYGAVYQINVLRDRSQNppQSKGCCFVTFYTRKAALEAQNAL-HNI 82
Cdd:cd12325     1 LFVGGL--SWetTEESLREYFSKYGEVVDCVVMKDPATG--RSRGFGFVTFKDPSSVDAVLAARpHTL 64
RRM6_RBM19 cd12571
RNA recognition motif 6 (RRM6) found in RNA-binding protein 19 (RBM19) and similar proteins; ...
109-176 6.62e-05

RNA recognition motif 6 (RRM6) found in RNA-binding protein 19 (RBM19) and similar proteins; This subgroup corresponds to the RRM6 of RBM19, also termed RNA-binding domain-1 (RBD-1), which is a nucleolar protein conserved in eukaryotes. It is involved in ribosome biogenesis by processing rRNA. In addition, it is essential for preimplantation development. RBM19 has a unique domain organization containing 6 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409985 [Multi-domain]  Cd Length: 79  Bit Score: 41.26  E-value: 6.62e-05
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2244986492 109 KLFIGMVSKKCNENDIRVMFSPFGQIEECRILRGPDGLS--RGCAFVTFSTRAMAQNAIKAMHQSQTMEG 176
Cdd:cd12571     2 KILVRNIPFQATVKEVRELFSTFGELKTVRLPKKMGGTGqhRGFGFVDFITKQDAKRAFDALCHSTHLYG 71
RRM2_MRN1 cd12523
RNA recognition motif 2 (RRM2) found in RNA-binding protein MRN1 and similar proteins; This ...
108-170 6.70e-05

RNA recognition motif 2 (RRM2) found in RNA-binding protein MRN1 and similar proteins; This subgroup corresponds to the RRM2 of MRN1, also termed multicopy suppressor of RSC-NHP6 synthetic lethality protein 1, or post-transcriptional regulator of 69 kDa, which is a RNA-binding protein found in yeast. Although its specific biological role remains unclear, MRN1 might be involved in translational regulation. Members in this family contain four copies of conserved RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 409943 [Multi-domain]  Cd Length: 78  Bit Score: 41.27  E-value: 6.70e-05
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|...
gi 2244986492 108 RKLFIGMVSKKCNENDIRVMFSPFGQIEECRILRgpdglSRGCAFVTFstrAMAQNAIKAMHQ 170
Cdd:cd12523     4 RNVYLGNLPESITEEELREDLEKFGPIDQIKIVK-----EKNIAFVHF---LSIANAIKVVTT 58
RRM2_hnRNPA2B1 cd12581
RNA recognition motif 2 (RRM2) found in heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNP ...
17-66 6.82e-05

RNA recognition motif 2 (RRM2) found in heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNP A2/B1) and similar proteins; This subgroup corresponds to the RRM2 of hnRNP A2/B1, an RNA trafficking response element-binding protein that interacts with the hnRNP A2 response element (A2RE). Many mRNAs, such as myelin basic protein (MBP), myelin-associated oligodendrocytic basic protein (MOBP), carboxyanhydrase II (CAII), microtubule-associated protein tau, and amyloid precursor protein (APP) are trafficked by hnRNP A2/B1. hnRNP A2/B1 also functions as a splicing factor that regulates alternative splicing of the tumor suppressors, such as BIN1, WWOX, the antiapoptotic proteins c-FLIP and caspase-9B, the insulin receptor (IR), and the RON proto-oncogene among others. Overexpression of hnRNP A2/B1 has been described in many cancers. It functions as a nuclear matrix protein involving in RNA synthesis and the regulation of cellular migration through alternatively splicing pre-mRNA. It may play a role in tumor cell differentiation. hnRNP A2/B1 contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), followed by a long glycine-rich region at the C-terminus.


Pssm-ID: 409995 [Multi-domain]  Cd Length: 80  Bit Score: 41.12  E-value: 6.82e-05
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|
gi 2244986492  17 KMFVGQIPRSWSEKELKELFEPYGAVYQINVLRDRSQNppQSKGCCFVTF 66
Cdd:cd12581     2 KLFVGGIKEDTEEHHLRDYFEEYGKIDTIEIITDRQSG--KKRGFGFVTF 49
RRM5_RBM19_like cd12318
RNA recognition motif 5 (RRM5) found in RNA-binding protein 19 (RBM19 or RBD-1) and similar ...
28-95 7.44e-05

RNA recognition motif 5 (RRM5) found in RNA-binding protein 19 (RBM19 or RBD-1) and similar proteins; This subfamily corresponds to the RRM5 of RBM19 and RRM4 of MRD1. RBM19, also termed RNA-binding domain-1 (RBD-1), is a nucleolar protein conserved in eukaryotes involved in ribosome biogenesis by processing rRNA and is essential for preimplantation development. It has a unique domain organization containing 6 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409757 [Multi-domain]  Cd Length: 80  Bit Score: 41.06  E-value: 7.44e-05
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 2244986492  28 SEKELKELFEPYGAVYQINVLRDRSQ-NPPQSKGCCFVTFYTRKAALEAQNALHNiKTLPGmhHPIQMK 95
Cdd:cd12318    13 TEEALKKHFEKCGPIRSVTIAKKKDPkGPLLSMGYGFVEFKSPEAAQKALKQLQG-TVLDG--HALELK 78
RRM1_CoAA cd12608
RNA recognition motif 1 (RRM1) found in vertebrate RRM-containing coactivator activator ...
109-169 7.80e-05

RNA recognition motif 1 (RRM1) found in vertebrate RRM-containing coactivator activator/modulator (CoAA); This subgroup corresponds to the RRM1 of CoAA, also termed RNA-binding protein 14 (RBM14), or paraspeckle protein 2 (PSP2), or synaptotagmin-interacting protein (SYT-interacting protein), a heterogeneous nuclear ribonucleoprotein (hnRNP)-like protein identified as a nuclear receptor coactivator. It mediates transcriptional coactivation and RNA splicing effects in a promoter-preferential manner and is enhanced by thyroid hormone receptor-binding protein (TRBP). CoAA contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a TRBP-interacting domain. It stimulates transcription through its interactions with coactivators, such as TRBP and CREB-binding protein CBP/p300, via the TRBP-interacting domain and interaction with an RNA-containing complex, such as DNA-dependent protein kinase-poly(ADP-ribose) polymerase complexes, via the RRMs.


Pssm-ID: 410020 [Multi-domain]  Cd Length: 69  Bit Score: 40.56  E-value: 7.80e-05
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|.
gi 2244986492 109 KLFIGMVSKKCNENDIRVMFSPFGQIEECRILrgpdglsRGCAFVTFSTRAMAQNAIKAMH 169
Cdd:cd12608     2 KIFVGNVDEDTSQEELSALFEPYGAVLSCAVM-------KQFAFVHMRGEAAADRAIRELN 55
RRM2_hnRNPA0 cd12579
RNA recognition motif 2 (RRM2) found in heterogeneous nuclear ribonucleoprotein A0 (hnRNP A0) ...
109-165 8.94e-05

RNA recognition motif 2 (RRM2) found in heterogeneous nuclear ribonucleoprotein A0 (hnRNP A0) and similar proteins; This subgroup corresponds to the RRM2 of hnRNP A0, a low abundance hnRNP protein that has been implicated in mRNA stability in mammalian cells. It has been identified as the substrate for MAPKAP-K2 and may be involved in the lipopolysaccharide (LPS)-induced post-transcriptional regulation of tumor necrosis factor-alpha (TNF-alpha), cyclooxygenase 2 (COX-2) and macrophage inflammatory protein 2 (MIP-2). hnRNP A0 contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), followed by a long glycine-rich region at the C-terminus.


Pssm-ID: 409993 [Multi-domain]  Cd Length: 80  Bit Score: 40.97  E-value: 8.94e-05
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....*...
gi 2244986492 109 KLFIGMVSKKCNENDIRVMFSPFGQIEECRILRGPD-GLSRGCAFVTFSTRAMAQNAI 165
Cdd:cd12579     1 KLFVGGLKGDVGEGDLVEHFSQFGTVEKVEVIADKDtGKKRGFGFVYFEDHDSADKAA 58
RRM1_RBM39_like cd12283
RNA recognition motif 1 (RRM1) found in vertebrate RNA-binding protein 39 (RBM39) and similar ...
19-69 9.55e-05

RNA recognition motif 1 (RRM1) found in vertebrate RNA-binding protein 39 (RBM39) and similar proteins; This subfamily corresponds to the RRM1 of RNA-binding protein 39 (RBM39), RNA-binding protein 23 (RBM23) and similar proteins. RBM39 (also termed HCC1) is a nuclear autoantigen that contains an N-terminal arginine/serine rich (RS) motif and three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). An octapeptide sequence called the RS-ERK motif is repeated six times in the RS region of RBM39. Although the cellular function of RBM23 remains unclear, it shows high sequence homology to RBM39 and contains two RRMs. It may possibly function as a pre-mRNA splicing factor.


Pssm-ID: 409725 [Multi-domain]  Cd Length: 73  Bit Score: 40.68  E-value: 9.55e-05
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|.
gi 2244986492  19 FVGQIPRSWSEKELKELFEPYGAVYQINVLRDRsqNPPQSKGCCFVTFYTR 69
Cdd:cd12283     3 FVMQLSLKARERDLYEFFSKAGKVRDVRLIMDR--NSRRSKGVAYVEFYDV 51
RRM_PPARGC1A_like cd12357
RNA recognition motif (RRM) found in the peroxisome proliferator-activated receptor gamma ...
106-169 9.60e-05

RNA recognition motif (RRM) found in the peroxisome proliferator-activated receptor gamma coactivator 1A (PGC-1alpha) family of regulated coactivators; This subfamily corresponds to the RRM of PGC-1alpha, PGC-1beta, and PGC-1-related coactivator (PRC), which serve as mediators between environmental or endogenous signals and the transcriptional machinery governing mitochondrial biogenesis. They play an important integrative role in the control of respiratory gene expression through interacting with a number of transcription factors, such as NRF-1, NRF-2, ERR, CREB and YY1. All family members are multi-domain proteins containing the N-terminal activation domain, an LXXLL coactivator signature, a tetrapeptide motif (DHDY) responsible for HCF binding, and an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). In contrast to PGC-1alpha and PRC, PGC-1beta possesses two glutamic/aspartic acid-rich acidic domains, but lacks most of the arginine/serine (SR)-rich domain that is responsible for the regulation of RNA processing.


Pssm-ID: 409793 [Multi-domain]  Cd Length: 91  Bit Score: 40.87  E-value: 9.60e-05
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....
gi 2244986492 106 EDRKLFIGMVSKKCNENDIRVMFSPFGQIEECRILRGPDGLSRGcaFVTFSTRAMAQNAIKAMH 169
Cdd:cd12357     1 ERRVVYVGKLEQDTTRSELRRRFEVFGEIEECTVHFRERGDKYG--FVTYRYSEDAFLALENGH 62
RRM3_RBM19 cd12567
RNA recognition motif 3 (RRM3) found in RNA-binding protein 19 (RBM19) and similar proteins; ...
17-79 1.04e-04

RNA recognition motif 3 (RRM3) found in RNA-binding protein 19 (RBM19) and similar proteins; This subgroup corresponds to the RRM3 of RBM19, also termed RNA-binding domain-1 (RBD-1), which is a nucleolar protein conserved in eukaryotes. It is involved in ribosome biogenesis by processing rRNA. In addition, it is essential for preimplantation development. RBM19 has a unique domain organization containing 6 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409983 [Multi-domain]  Cd Length: 79  Bit Score: 40.45  E-value: 1.04e-04
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|...
gi 2244986492  17 KMFVGQIPRSWSEKELKELFEPYGAVYQINVLRDRSQNPPqsKGCCFVTFYTRKAALEAQNAL 79
Cdd:cd12567     4 RLFVRNLPYTCTEEDLEKLFSKYGPLSEVHFPIDSLTKKP--KGFAFVTYMIPEHAVKAYAEL 64
RRM1_Nop4p cd12674
RNA recognition motif 1 (RRM1) found in yeast nucleolar protein 4 (Nop4p) and similar proteins; ...
18-87 1.04e-04

RNA recognition motif 1 (RRM1) found in yeast nucleolar protein 4 (Nop4p) and similar proteins; This subgroup corresponds to the RRM1 of Nop4p (also known as Nop77p), encoded by YPL043W from Saccharomyces cerevisiae. It is an essential nucleolar protein involved in processing and maturation of 27S pre-rRNA and biogenesis of 60S ribosomal subunits. Nop4p has four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 410075 [Multi-domain]  Cd Length: 80  Bit Score: 40.53  E-value: 1.04e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2244986492  18 MFVGQIPRSWSEKELKELFEPYGAVYQINVLRDrSQNPpQSKGCCFVTFYTRKAALEAQNALHNiKTLPG 87
Cdd:cd12674     3 LFVRNLPFDVTLESLTDFFSDIGPVKHAVVVTD-PETK-KSRGYGFVSFSTHDDAEEALAKLKN-RKLSG 69
RRM2_HuD cd12774
RNA recognition motif 2 (RRM2) found in vertebrate Hu-antigen D (HuD); This subgroup ...
18-97 1.06e-04

RNA recognition motif 2 (RRM2) found in vertebrate Hu-antigen D (HuD); This subgroup corresponds to the RRM2 of HuD, also termed ELAV-like protein 4 (ELAV-4), or paraneoplastic encephalomyelitis antigen HuD, one of the neuronal members of the Hu family. The neuronal Hu proteins play important roles in neuronal differentiation, plasticity and memory. HuD has been implicated in various aspects of neuronal function, such as the commitment and differentiation of neuronal precursors as well as synaptic remodeling in mature neurons. HuD also functions as an important regulator of mRNA expression in neurons by interacting with AU-rich RNA element (ARE) and stabilizing multiple transcripts. Moreover, HuD regulates the nuclear processing/stability of N-myc pre-mRNA in neuroblastoma cells and also regulates the neurite elongation and morphological differentiation. HuD specifically binds poly(A) RNA. Like other Hu proteins, HuD contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an ARE. RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions.


Pssm-ID: 410167 [Multi-domain]  Cd Length: 84  Bit Score: 40.86  E-value: 1.06e-04
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2244986492  18 MFVGQIPRSWSEKELKELFEPYGAVYQINVLRDrsQNPPQSKGCCFVTFYTRKAALEAQNALHNIKTlPGMHHPIQMKPA 97
Cdd:cd12774     8 LYVSGLPKTMTQKELEQLFSQYGRIITSRILVD--QVTGVSRGVGFIRFDKRIEAEEAIKGLNGQKP-SGATEPITVKFA 84
RRM5_RBM19_like cd12318
RNA recognition motif 5 (RRM5) found in RNA-binding protein 19 (RBM19 or RBD-1) and similar ...
110-172 1.12e-04

RNA recognition motif 5 (RRM5) found in RNA-binding protein 19 (RBM19 or RBD-1) and similar proteins; This subfamily corresponds to the RRM5 of RBM19 and RRM4 of MRD1. RBM19, also termed RNA-binding domain-1 (RBD-1), is a nucleolar protein conserved in eukaryotes involved in ribosome biogenesis by processing rRNA and is essential for preimplantation development. It has a unique domain organization containing 6 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409757 [Multi-domain]  Cd Length: 80  Bit Score: 40.67  E-value: 1.12e-04
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 2244986492 110 LFIGMVSKKCNENDIRVMFSPFGQIEECRILRGPD----GLSRGCAFVTFSTRAMAQNAIKAMHQSQ 172
Cdd:cd12318     3 LFVKNLNFKTTEEALKKHFEKCGPIRSVTIAKKKDpkgpLLSMGYGFVEFKSPEAAQKALKQLQGTV 69
RRM2_RBM45 cd12367
RNA recognition motif 2 (RRM2) found in RNA-binding protein 45 (RBM45) and similar proteins; ...
17-81 1.14e-04

RNA recognition motif 2 (RRM2) found in RNA-binding protein 45 (RBM45) and similar proteins; This subfamily corresponds to the RRM2 of RBM45, also termed developmentally-regulated RNA-binding protein 1 (DRB1), a new member of RNA recognition motif (RRM)-type neural RNA-binding proteins, which expresses under spatiotemporal control. It is encoded by gene drb1 that is expressed in neurons, not in glial cells. RBM45 predominantly localizes in cytoplasm of cultured cells and specifically binds to poly(C) RNA. It could play an important role during neurogenesis. RBM45 carries four RRMs, also known as RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409802 [Multi-domain]  Cd Length: 74  Bit Score: 40.44  E-value: 1.14e-04
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 2244986492  17 KMFVgQIPRSWSEKELKELFEPYGAVYQINVLRDRsqNPPQSKGCCFVTFYtrKAALEAQnALHN 81
Cdd:cd12367     3 RLFV-VIPKSYTEEDLREKFKEFGDIEYCSIVKDK--NTGESKGFGYVKFL--KPSQAAL-AIEN 61
RRM2_Hrp1p cd12330
RNA recognition motif 2 (RRM2) found in yeast nuclear polyadenylated RNA-binding protein 4 ...
109-169 1.17e-04

RNA recognition motif 2 (RRM2) found in yeast nuclear polyadenylated RNA-binding protein 4 (Hrp1p or Nab4p) and similar proteins; This subfamily corresponds to the RRM1 of Hrp1p and similar proteins. Hrp1p or Nab4p, also termed cleavage factor IB (CFIB), is a sequence-specific trans-acting factor that is essential for mRNA 3'-end formation in yeast Saccharomyces cerevisiae. It can be UV cross-linked to RNA and specifically recognizes the (UA)6 RNA element required for both, the cleavage and poly(A) addition steps. Moreover, Hrp1p can shuttle between the nucleus and the cytoplasm, and play an additional role in the export of mRNAs to the cytoplasm. Hrp1p also interacts with Rna15p and Rna14p, two components of CF1A. In addition, Hrp1p functions as a factor directly involved in modulating the activity of the nonsense-mediated mRNA decay (NMD) pathway; it binds specifically to a downstream sequence element (DSE)-containing RNA and interacts with Upf1p, a component of the surveillance complex, further triggering the NMD pathway. Hrp1p contains two central RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and an arginine-glycine-rich region harboring repeats of the sequence RGGF/Y.


Pssm-ID: 409767 [Multi-domain]  Cd Length: 78  Bit Score: 40.38  E-value: 1.17e-04
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|...
gi 2244986492 109 KLFIGMVSKKCNENDIRVMFSPFGQIEECRILRGPD-GLSRGCAFVTFSTRAMAQNAI-KAMH 169
Cdd:cd12330     1 KIFVGGLAPDVTEEEFKEYFEQFGTVVDAVVMLDHDtGRSRGFGFVTFDSESAVEKVLsKGFH 63
RRM2_Nop13p_fungi cd12397
RNA recognition motif 2 (RRM2) found in yeast nucleolar protein 13 (Nop13p) and similar ...
110-172 1.26e-04

RNA recognition motif 2 (RRM2) found in yeast nucleolar protein 13 (Nop13p) and similar proteins; This subfamily corresponds to the RRM2 of Nop13p encoded by YNL175c from Saccharomyces cerevisiae. It shares high sequence similarity with nucleolar protein 12 (Nop12p). Both Nop12p and Nop13p are not essential for growth. However, unlike Nop12p that is localized to the nucleolus, Nop13p localizes primarily to the nucleolus but is also present in the nucleoplasm to a lesser extent. Nop13p contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409831 [Multi-domain]  Cd Length: 76  Bit Score: 40.12  E-value: 1.26e-04
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....
gi 2244986492 110 LFIGMVSKKCNENDIRVMFSPFGQIEECRILRGPD-GLSRGCAFVTFSTRAMAQNAIKAMHQSQ 172
Cdd:cd12397     1 LFVGNLSFETTEEDLRKHFAPAGKIRKVRMATFEDsGKCKGFAFVDFKEIESATNAVKGPINHS 64
RRM_TRA2 cd12363
RNA recognition motif (RRM) found in transformer-2 protein homolog TRA2-alpha, TRA2-beta and ...
28-80 1.34e-04

RNA recognition motif (RRM) found in transformer-2 protein homolog TRA2-alpha, TRA2-beta and similar proteins; This subfamily corresponds to the RRM of two mammalian homologs of Drosophila transformer-2 (Tra2), TRA2-alpha, TRA2-beta (also termed SFRS10), and similar proteins found in eukaryotes. TRA2-alpha is a 40-kDa serine/arginine-rich (SR) protein that specifically binds to gonadotropin-releasing hormone (GnRH) exonic splicing enhancer on exon 4 (ESE4) and is necessary for enhanced GnRH pre-mRNA splicing. It strongly stimulates GnRH intron A excision in a dose-dependent manner. In addition, TRA2-alpha can interact with either 9G8 or SRp30c, which may also be crucial for ESE-dependent GnRH pre-mRNA splicing. TRA2-beta is a serine/arginine-rich (SR) protein that controls the pre-mRNA alternative splicing of the calcitonin/calcitonin gene-related peptide (CGRP), the survival motor neuron 1 (SMN1) protein and the tau protein. Both, TRA2-alpha and TRA2-beta, contains a well conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), flanked by the N- and C-terminal arginine/serine (RS)-rich regions.


Pssm-ID: 409798 [Multi-domain]  Cd Length: 80  Bit Score: 40.29  E-value: 1.34e-04
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|...
gi 2244986492  28 SEKELKELFEPYGAVYQINVLRDRSQNppQSKGCCFVTFYTRKAALEAQNALH 80
Cdd:cd12363    14 TERDLREVFSRYGPIEKVQVVYDQQTG--RSRGFGFVYFESVEDAKEAKERLN 64
RRM3_hnRNPR_like cd12251
RNA recognition motif 3 (RRM3) found in heterogeneous nuclear ribonucleoprotein R (hnRNP R) ...
18-87 1.34e-04

RNA recognition motif 3 (RRM3) found in heterogeneous nuclear ribonucleoprotein R (hnRNP R) and similar proteins; This subfamily corresponds to the RRM3 in hnRNP R, hnRNP Q, and APOBEC-1 complementation factor (ACF). hnRNP R is a ubiquitously expressed nuclear RNA-binding protein that specifically bind mRNAs with a preference for poly(U) stretches and has been implicated in mRNA processing and mRNA transport, and also acts as a regulator to modify binding to ribosomes and RNA translation. hnRNP Q is also a ubiquitously expressed nuclear RNA-binding protein. It has been identified as a component of the spliceosome complex, as well as a component of the apobec-1 editosome, and has been implicated in the regulation of specific mRNA transport. ACF is an RNA-binding subunit of a core complex that interacts with apoB mRNA to facilitate C to U RNA editing. It may also act as an apoB mRNA recognition factor and chaperone and play a key role in cell growth and differentiation. This family also includes two functionally unknown RNA-binding proteins, RBM46 and RBM47. All members contain three conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409697 [Multi-domain]  Cd Length: 72  Bit Score: 39.92  E-value: 1.34e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2244986492  18 MFVGQIPRSWSEKELKELFEPYGAVYQINVLRDRsqnppqskgcCFVTFYTRKAALEAQNALhNIKTLPG 87
Cdd:cd12251     4 LYVRNLMLSTTEEKLRELFSEYGKVERVKKIKDY----------AFVHFEERDDAVKAMEEM-NGKELEG 62
RRM3_I_PABPs cd12380
RNA recognition motif 3 (RRM3) found found in type I polyadenylate-binding proteins; This ...
401-430 1.38e-04

RNA recognition motif 3 (RRM3) found found in type I polyadenylate-binding proteins; This subfamily corresponds to the RRM3 of type I poly(A)-binding proteins (PABPs), highly conserved proteins that bind to the poly(A) tail present at the 3' ends of most eukaryotic mRNAs. They have been implicated in the regulation of poly(A) tail length during the polyadenylation reaction, translation initiation, mRNA stabilization by influencing the rate of deadenylation and inhibition of mRNA decapping. The family represents type I polyadenylate-binding proteins (PABPs), including polyadenylate-binding protein 1 (PABP-1 or PABPC1), polyadenylate-binding protein 3 (PABP-3 or PABPC3), polyadenylate-binding protein 4 (PABP-4 or APP-1 or iPABP), polyadenylate-binding protein 5 (PABP-5 or PABPC5), polyadenylate-binding protein 1-like (PABP-1-like or PABPC1L), polyadenylate-binding protein 1-like 2 (PABPC1L2 or RBM32), polyadenylate-binding protein 4-like (PABP-4-like or PABPC4L), yeast polyadenylate-binding protein, cytoplasmic and nuclear (PABP or ACBP-67), and similar proteins. PABP-1 is an ubiquitously expressed multifunctional protein that may play a role in 3' end formation of mRNA, translation initiation, mRNA stabilization, protection of poly(A) from nuclease activity, mRNA deadenylation, inhibition of mRNA decapping, and mRNP maturation. Although PABP-1 is thought to be a cytoplasmic protein, it is also found in the nucleus. PABP-1 may be involved in nucleocytoplasmic trafficking and utilization of mRNP particles. PABP-1 contains four copies of RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), a less well conserved linker region, and a proline-rich C-terminal conserved domain (CTD). PABP-3 is a testis-specific poly(A)-binding protein specifically expressed in round spermatids. It is mainly found in mammalian and may play an important role in the testis-specific regulation of mRNA homeostasis. PABP-3 shows significant sequence similarity to PABP-1. However, it binds to poly(A) with a lower affinity than PABP-1. PABP-1 possesses an A-rich sequence in its 5'-UTR and allows binding of PABP and blockage of translation of its own mRNA. In contrast, PABP-3 lacks the A-rich sequence in its 5'-UTR. PABP-4 is an inducible poly(A)-binding protein (iPABP) that is primarily localized to the cytoplasm. It shows significant sequence similarity to PABP-1 as well. The RNA binding properties of PABP-1 and PABP-4 appear to be identical. PABP-5 is encoded by PABPC5 gene within the X-specific subinterval, and expressed in fetal brain and in a range of adult tissues in mammalian, such as ovary and testis. It may play an important role in germ cell development. Moreover, unlike other PABPs, PABP-5 contains only four RRMs, but lacks both the linker region and the CTD. PABP-1-like and PABP-1-like 2 are the orthologs of PABP-1. PABP-4-like is the ortholog of PABP-5. Their cellular functions remain unclear. The family also includes the yeast PABP, a conserved poly(A) binding protein containing poly(A) tails that can be attached to the 3'-ends of mRNAs. The yeast PABP and its homologs may play important roles in the initiation of translation and in mRNA decay. Like vertebrate PABP-1, the yeast PABP contains four RRMs, a linker region, and a proline-rich CTD as well. The first two RRMs are mainly responsible for specific binding to poly(A). The proline-rich region may be involved in protein-protein interactions.


Pssm-ID: 409814 [Multi-domain]  Cd Length: 80  Bit Score: 40.23  E-value: 1.38e-04
                          10        20        30
                  ....*....|....*....|....*....|
gi 2244986492 401 GFVSYDNPVSAQAAIQAMNGFQIGMKRLKV 430
Cdd:cd12380    45 GFVNFENHEAAQKAVEELNGKELNGKKLYV 74
RRM3_TIA1 cd12621
RNA recognition motif 3 (RRM3) found in nucleolysin TIA-1 isoform p40 (p40-TIA-1) and similar ...
110-176 1.45e-04

RNA recognition motif 3 (RRM3) found in nucleolysin TIA-1 isoform p40 (p40-TIA-1) and similar proteins; This subgroup corresponds to the RRM3 of p40-TIA-1, the 40-kDa isoform of T-cell-restricted intracellular antigen-1 (TIA-1) and a cytotoxic granule-associated RNA-binding protein mainly found in the granules of cytotoxic lymphocytes. TIA-1 can be phosphorylated by a serine/threonine kinase that is activated during Fas-mediated apoptosis, and function as the granule component responsible for inducing apoptosis in cytolytic lymphocyte (CTL) targets. It is composed of three N-terminal highly homologous RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a glutamine-rich C-terminal auxiliary domain containing a lysosome-targeting motif. TIA-1 interacts with RNAs containing short stretches of uridylates and its RRM2 can mediate the specific binding to uridylate-rich RNAs.


Pssm-ID: 410032 [Multi-domain]  Cd Length: 72  Bit Score: 40.04  E-value: 1.45e-04
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 2244986492 110 LFIGMVSKKCNENDIRVMFSPFGQIEECRILrgPDglsRGCAFVTFSTRAMAQNAIKAMHQSqTMEG 176
Cdd:cd12621     3 VYCGGVTSGLTEQLMRQTFSPFGQIMEIRVF--PD---KGYSFVRFNSHESAAHAIVSVNGT-TIEG 63
RRM3_Prp24 cd12298
RNA recognition motif 3 in fungal pre-messenger RNA splicing protein 24 (Prp24) and similar ...
17-79 1.46e-04

RNA recognition motif 3 in fungal pre-messenger RNA splicing protein 24 (Prp24) and similar proteins; This subfamily corresponds to the RRM3 of Prp24, also termed U4/U6 snRNA-associated-splicing factor PRP24 (U4/U6 snRNP), an RNA-binding protein with four well conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). It facilitates U6 RNA base-pairing with U4 RNA during spliceosome assembly. Prp24 specifically binds free U6 RNA primarily with RRMs 1 and 2 and facilitates pairing of U6 RNA bases with U4 RNA bases. Additionally, it may also be involved in dissociation of the U4/U6 complex during spliceosome activation.


Pssm-ID: 409739 [Multi-domain]  Cd Length: 78  Bit Score: 39.94  E-value: 1.46e-04
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....
gi 2244986492  17 KMFVGQIPRSWSEKELKELFEPYGAVYQINVLRDRSQNPPQSKGCC-FVTFytrKAALEAQNAL 79
Cdd:cd12298     2 EIRVRNLDFELDEEALRGIFEKFGEIESINIPKKQKNRKGRHNNGFaFVTF---EDADSAESAL 62
RRM2_MSSP1 cd12473
RNA recognition motif 2 (RRM2) found in vertebrate single-stranded DNA-binding protein MSSP-1; ...
18-93 1.67e-04

RNA recognition motif 2 (RRM2) found in vertebrate single-stranded DNA-binding protein MSSP-1; This subgroup corresponds to the RRM2 of MSSP-1, also termed RNA-binding motif, single-stranded-interacting protein 1 (RBMS1), or suppressor of CDC2 with RNA-binding motif 2 (SCR2). MSSP-1 is a double- and single-stranded DNA binding protein that belongs to the c-myc single-strand binding proteins (MSSP) family. It specifically recognizes the sequence CT(A/T)(A/T)T, and stimulates DNA replication in the system using SV40 DNA. MSSP-1 is identical with Scr2, a human protein which complements the defect of cdc2 kinase in Schizosaccharomyces pombe. MSSP-1 has been implied in regulating DNA replication, transcription, apoptosis induction, and cell-cycle movement, via the interaction with c-MYC, the product of protooncogene c-myc. MSSP-1 contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), both of which are responsible for the specific DNA binding activity as well as induction of apoptosis.


Pssm-ID: 409903 [Multi-domain]  Cd Length: 85  Bit Score: 40.41  E-value: 1.67e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 2244986492  18 MFVGQIPRSWSEKELKELFEPYGAVYQINVLRDRSQNppqSKGCCFVTFYTRKAAlEAQNALHN---IKTLPGMHHPIQ 93
Cdd:cd12473     3 LYISNLPLSMDEQELENMLKPFGQVISTRILRDSSGT---SRGVGFARMESTEKC-EAVISHFNgkfIKTPPGVSAPAE 77
RRM1_MEI2_fungi cd12525
RNA recognition motif 1 (RRM1) found in fungal Mei2-like proteins; This subgroup corresponds ...
18-79 1.73e-04

RNA recognition motif 1 (RRM1) found in fungal Mei2-like proteins; This subgroup corresponds to the RRM1 of fungal Mei2-like proteins. The Mei2 protein is an essential component of the switch from mitotic to meiotic growth in the fission yeast Schizosaccharomyces pombe. It is an RNA-binding protein that contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). In the nucleus, S. pombe Mei2 stimulates meiosis upon binding a specific non-coding RNA through its C-terminal RRM motif.


Pssm-ID: 409945 [Multi-domain]  Cd Length: 91  Bit Score: 40.46  E-value: 1.73e-04
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|..
gi 2244986492  18 MFVGQIPRSWSEKELKELFEPYGAVYQINVlrdRSQnppQSKGCCFVTFYTRKAALEAQNAL 79
Cdd:cd12525    10 LKVTGVPKDVSTSNLKEIFEKMGDVKGIFV---KKL---LSKGIVIVSFHDLRQAIKAYKDL 65
RRM1_SF2_plant_like cd12599
RNA recognition motif 1 (RRM1) found in plant pre-mRNA-splicing factor SF2 and similar ...
17-80 1.91e-04

RNA recognition motif 1 (RRM1) found in plant pre-mRNA-splicing factor SF2 and similar proteins; This subgroup corresponds to the RRM1 of SF2, also termed SR1 protein, a plant serine/arginine (SR)-rich phosphoprotein similar to the mammalian splicing factor SF2/ASF. It promotes splice site switching in mammalian nuclear extracts. SF2 contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), followed by a C-terminal domain rich in proline, serine and lysine residues (PSK domain), a composition reminiscent of histones. This PSK domain harbors a putative phosphorylation site for the mitotic kinase cyclin/p34cdc2.


Pssm-ID: 410011 [Multi-domain]  Cd Length: 72  Bit Score: 39.73  E-value: 1.91e-04
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....
gi 2244986492  17 KMFVGQIPRSWSEKELKELFEPYGAVYQINVlrdrsQNPPQSKGCCFVTFytrKAALEAQNALH 80
Cdd:cd12599     1 RVYVGNLPMDIREREVEDLFSKYGPVVSIDL-----KIPPRPPAYAFVEF---EDARDAEDAIR 56
RRM_CSTF2_CSTF2T cd12671
RNA recognition motif (RRM) found in cleavage stimulation factor subunit 2 (CSTF2), cleavage ...
18-79 1.97e-04

RNA recognition motif (RRM) found in cleavage stimulation factor subunit 2 (CSTF2), cleavage stimulation factor subunit 2 tau variant (CSTF2T) and similar proteins; This subgroup corresponds to the RRM domain of CSTF2, its tau variant and eukaryotic homologs. CSTF2, also termed cleavage stimulation factor 64 kDa subunit (CstF64), is the vertebrate conterpart of yeast mRNA 3'-end-processing protein RNA15. It is expressed in all somatic tissues and is one of three cleavage stimulatory factor (CstF) subunits required for polyadenylation. CstF64 contains an N-terminal RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), a CstF77-binding domain, a repeated MEARA helical region and a conserved C-terminal domain reported to bind the transcription factor PC-4. During polyadenylation, CstF interacts with the pre-mRNA through the RRM of CstF64 at U- or GU-rich sequences within 10 to 30 nucleotides downstream of the cleavage site. CSTF2T, also termed tauCstF64, is a paralog of the X-linked cleavage stimulation factor CstF64 protein that supports polyadenylation in most somatic cells. It is expressed during meiosis and subsequent haploid differentiation in a more limited set of tissues and cell types, largely in meiotic and postmeiotic male germ cells, and to a lesser extent in brain. The loss of CSTF2T will cause male infertility, as it is necessary for spermatogenesis and fertilization. Moreover, CSTF2T is required for expression of genes involved in morphological differentiation of spermatids, as well as for genes having products that function during interaction of motile spermatozoa with eggs. It promotes germ cell-specific patterns of polyadenylation by using its RRM to bind to different sequence elements downstream of polyadenylation sites than does CstF64.


Pssm-ID: 410072 [Multi-domain]  Cd Length: 85  Bit Score: 39.80  E-value: 1.97e-04
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|..
gi 2244986492  18 MFVGQIPRSWSEKELKELFEPYGAVYQINVLRDRSQNPPqsKGCCFVTFYTRKAALEAQNAL 79
Cdd:cd12671     9 VFVGNIPYEATEEQLKDIFSEVGPVVSFRLVYDRETGKP--KGYGFCEYQDQETALSAMRNL 68
RRM1_RBM4 cd12606
RNA recognition motif 1 (RRM1) found in vertebrate RNA-binding protein 4 (RBM4); This subgroup ...
109-170 2.06e-04

RNA recognition motif 1 (RRM1) found in vertebrate RNA-binding protein 4 (RBM4); This subgroup corresponds to the RRM1 of RBM4, a ubiquitously expressed splicing factor that has two isoforms, RBM4A (also known as Lark homolog) and RBM4B (also known as RBM30), which are very similar in structure and sequence. RBM4 may function as a translational regulator of stress-associated mRNAs and also plays a role in micro-RNA-mediated gene regulation. RBM4 contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), a CCHC-type zinc finger, and three alanine-rich regions within their C-terminal regions. The C-terminal region may be crucial for nuclear localization and protein-protein interaction. The RRMs, in combination with the C-terminal region, are responsible for the splicing function of RBM4.


Pssm-ID: 410018 [Multi-domain]  Cd Length: 67  Bit Score: 39.41  E-value: 2.06e-04
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|..
gi 2244986492 109 KLFIGMVSKKCNENDIRVMFSPFGQIEECRILrgpdglsRGCAFVTFSTRAMAQNAIKAMHQ 170
Cdd:cd12606     2 KLFIGNLPREATEEEIRSLFEQYGKVTECDII-------KNYGFVHMEDKSAADEAIRNLHH 56
RRM_snRNP70 cd12236
RNA recognition motif (RRM) found in U1 small nuclear ribonucleoprotein 70 kDa (U1-70K) and ...
108-169 2.07e-04

RNA recognition motif (RRM) found in U1 small nuclear ribonucleoprotein 70 kDa (U1-70K) and similar proteins; This subfamily corresponds to the RRM of U1-70K, also termed snRNP70, a key component of the U1 snRNP complex, which is one of the key factors facilitating the splicing of pre-mRNA via interaction at the 5' splice site, and is involved in regulation of polyadenylation of some viral and cellular genes, enhancing or inhibiting efficient poly(A) site usage. U1-70K plays an essential role in targeting the U1 snRNP to the 5' splice site through protein-protein interactions with regulatory RNA-binding splicing factors, such as the RS protein ASF/SF2. Moreover, U1-70K protein can specifically bind to stem-loop I of the U1 small nuclear RNA (U1 snRNA) contained in the U1 snRNP complex. It also mediates the binding of U1C, another U1-specific protein, to the U1 snRNP complex. U1-70K contains a conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), followed by an adjacent glycine-rich region at the N-terminal half, and two serine/arginine-rich (SR) domains at the C-terminal half. The RRM is responsible for the binding of stem-loop I of U1 snRNA molecule. Additionally, the most prominent immunodominant region that can be recognized by auto-antibodies from autoimmune patients may be located within the RRM. The SR domains are involved in protein-protein interaction with SR proteins that mediate 5' splice site recognition. For instance, the first SR domain is necessary and sufficient for ASF/SF2 Binding. The family also includes Drosophila U1-70K that is an essential splicing factor required for viability in flies, but its SR domain is dispensable. The yeast U1-70k doesn't contain easily recognizable SR domains and shows low sequence similarity in the RRM region with other U1-70k proteins and therefore not included in this family. The RRM domain is dispensable for yeast U1-70K function.


Pssm-ID: 409682 [Multi-domain]  Cd Length: 91  Bit Score: 39.91  E-value: 2.07e-04
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|...
gi 2244986492 108 RKLFIGMVSKKCNENDIRVMFSPFGQIEECRILRGP-DGLSRGCAFVTFSTRAMAQNAIKAMH 169
Cdd:cd12236     2 KTLFVARLSYDTTESKLRREFEKYGPIKRVRLVRDKkTGKSRGYAFIEFEHERDMKAAYKHAD 64
RRM2_RBM15 cd12555
RNA recognition motif 2 (RRM2) found in vertebrate RNA binding motif protein 15 (RBM15); This ...
107-168 2.34e-04

RNA recognition motif 2 (RRM2) found in vertebrate RNA binding motif protein 15 (RBM15); This subgroup corresponds to the RRM2 of RBM15, also termed one-twenty two protein 1 (OTT1), conserved in eukaryotes, a novel mRNA export factor and component of the NXF1 pathway. It binds to NXF1 and serves as receptor for the RNA export element RTE. It also possesses mRNA export activity and can facilitate the access of DEAD-box protein DBP5 to mRNA at the nuclear pore complex (NPC). RBM15 belongs to the Spen (split end) protein family, which contain three N-terminal RNA recognition motifs (RRMs), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a C-terminal SPOC (Spen paralog and ortholog C-terminal) domain. This family also includes a RBM15-MKL1 (OTT-MAL) fusion protein that RBM15 is N-terminally fused to megakaryoblastic leukemia 1 protein (MKL1) at the C-terminus in a translocation involving chromosome 1 and 22, resulting in acute megakaryoblastic leukemia. The fusion protein could interact with the mRNA export machinery. Although it maintains the specific transactivator function of MKL1, the fusion protein cannot activate RTE-mediated mRNA expression and has lost the post-transcriptional activator function of RBM15. However, it has transdominant suppressor function contributing to its oncogenic properties.


Pssm-ID: 409971 [Multi-domain]  Cd Length: 87  Bit Score: 39.84  E-value: 2.34e-04
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|..
gi 2244986492 107 DRKLFIGMVSKKCNENDIRVMFSPFGQIEECRILRGPDGLSRGCAFVTFSTRAMAQNAIKAM 168
Cdd:cd12555     7 NRTLFLGNLDITVTENDLRRAFDRFGVITEVDIKRPGRGQTSTYGFLKFENLDMAHRAKLAM 68
RRM1_hnRNPAB cd12757
RNA recognition motif 1 (RRM1) found in heterogeneous nuclear ribonucleoprotein A/B (hnRNP A/B) ...
109-155 2.56e-04

RNA recognition motif 1 (RRM1) found in heterogeneous nuclear ribonucleoprotein A/B (hnRNP A/B) and similar proteins; This subgroup corresponds to the RRM1 of hnRNP A/B, also termed APOBEC1-binding protein 1 (ABBP-1), which is an RNA unwinding protein with a high affinity for G- followed by U-rich regions. hnRNP A/B has also been identified as an APOBEC1-binding protein that interacts with apolipoprotein B (apoB) mRNA transcripts around the editing site and thus plays an important role in apoB mRNA editing. hnRNP A/B contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), followed by a long C-terminal glycine-rich domain that contains a potential ATP/GTP binding loop.


Pssm-ID: 410151 [Multi-domain]  Cd Length: 80  Bit Score: 39.57  E-value: 2.56e-04
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|....*...
gi 2244986492 109 KLFIGMVSKKCNENDIRVMFSPFGQIEECRILRGPD-GLSRGCAFVTF 155
Cdd:cd12757     6 KMFVGGLSWDTSKKDLKDYFTKFGEVVDCTIKMDPNtGRSRGFGFILF 53
RRM_SNP1_like cd21615
RNA recognition motif (RRM) found in Saccharomyces cerevisiae U1 small nuclear ...
9-78 2.61e-04

RNA recognition motif (RRM) found in Saccharomyces cerevisiae U1 small nuclear ribonucleoprotein SNP1 and similar proteins; SNP1, also called U1 snRNP protein SNP1, or U1 small nuclear ribonucleoprotein 70 kDa homolog, or U1 70K, or U1 snRNP 70 kDa homolog, interacts with mRNA and is involved in nuclear mRNA splicing. It is a component of the spliceosome, where it is associated with snRNP U1 by binding stem loop I of U1 snRNA. Members in this family contain an N-terminal U1snRNP70 domain and an RNA recognition motif (RRM), also called RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 410194 [Multi-domain]  Cd Length: 118  Bit Score: 40.37  E-value: 2.61e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 2244986492   9 DQPDP-----DAIK-MFVGQIPRSWSEKELKELFEPYGAVYQINVLRDRSQNppQSKGCCFVTFytrKAALEAQNA 78
Cdd:cd21615     6 PEEDPhiadgDPYKtLFVGRLDYSLTELELQKKFSKFGEIEKIRIVRDKETG--KSRGYAFIVF---KSESDAKNA 76
PLN03134 PLN03134
glycine-rich RNA-binding protein 4; Provisional
109-168 2.69e-04

glycine-rich RNA-binding protein 4; Provisional


Pssm-ID: 178680 [Multi-domain]  Cd Length: 144  Bit Score: 41.18  E-value: 2.69e-04
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|.
gi 2244986492 109 KLFIGMVSKKCNENDIRVMFSPFGQIEECRILRGPD-GLSRGCAFVTFSTRAMAQNAIKAM 168
Cdd:PLN03134   36 KLFIGGLSWGTDDASLRDAFAHFGDVVDAKVIVDREtGRSRGFGFVNFNDEGAATAAISEM 96
RRM_HP0827_like cd12399
RNA recognition motif (RRM) found in Helicobacter pylori HP0827 protein and similar proteins; ...
110-174 2.69e-04

RNA recognition motif (RRM) found in Helicobacter pylori HP0827 protein and similar proteins; This subfamily corresponds to the RRM of H. pylori HP0827, a putative ssDNA-binding protein 12rnp2 precursor, containing one RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). The ssDNA binding may be important in activation of HP0827.


Pssm-ID: 409833 [Multi-domain]  Cd Length: 75  Bit Score: 39.43  E-value: 2.69e-04
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 2244986492 110 LFIGMVSKKCNENDIRVMFSPFGQIEECRI-LRGPDGLSRGCAFVTFSTRAMAQNAIKAMHQSQTM 174
Cdd:cd12399     1 LYVGNLPYSASEEQLKSLFGQFGAVFDVKLpMDRETKRPRGFGFVELQEEESAEKAIAKLDGTDFM 66
RRM2_MEI2_EAR1_like cd12276
RNA recognition motif 2 (RRM2) found in Mei2-like proteins and terminal EAR1-like proteins; ...
28-80 2.82e-04

RNA recognition motif 2 (RRM2) found in Mei2-like proteins and terminal EAR1-like proteins; This subfamily corresponds to the RRM2 of Mei2-like proteins from plant and fungi, terminal EAR1-like proteins from plant, and other eukaryotic homologs. Mei2-like proteins represent an ancient eukaryotic RNA-binding proteins family whose corresponding Mei2-like genes appear to have arisen early in eukaryote evolution, been lost from some lineages such as Saccharomyces cerevisiae and metazoans, and diversified in the plant lineage. The plant Mei2-like genes may function in cell fate specification during development, rather than as stimulators of meiosis. In the fission yeast Schizosaccharomyces pombe, the Mei2 protein is an essential component of the switch from mitotic to meiotic growth. S. pombe Mei2 stimulates meiosis in the nucleus upon binding a specific non-coding RNA. The terminal EAR1-like protein 1 and 2 (TEL1 and TEL2) are mainly found in land plants. They may play a role in the regulation of leaf initiation. All members in this family are putative RNA-binding proteins carrying three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). In addition to the RRMs, the terminal EAR1-like proteins also contain TEL characteristic motifs that allow sequence and putative functional discrimination between them and Mei2-like proteins.


Pssm-ID: 409718 [Multi-domain]  Cd Length: 71  Bit Score: 39.16  E-value: 2.82e-04
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|...
gi 2244986492  28 SEKELKELFEPYGAVYQInvlRDRSQNPPQskgcCFVTFYTRKAALEAQNALH 80
Cdd:cd12276    14 SNDELKSLFSKFGEIKEI---RPTPDKPSQ----KFVEFYDVRDAEAALDGLN 59
RRM1_Mug28 cd21620
RNA recognition motif 1 (RRM1) found in Schizosaccharomyces pombe meiotically up-regulated ...
107-177 2.93e-04

RNA recognition motif 1 (RRM1) found in Schizosaccharomyces pombe meiotically up-regulated gene 28 protein (Mug28) and similar proteins; Mug28 is a meiosis-specific protein that regulates spore wall formation. Members in this family contain three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The model corresponds to the first RRM motif.


Pssm-ID: 410199 [Multi-domain]  Cd Length: 84  Bit Score: 39.41  E-value: 2.93e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 2244986492 107 DRKLFIGMVSKKCNENDIRVMFSPFGQIEECRIL------RGPDGLSRGCAFVTFSTRAMAQNAIKAMHqSQTMEGC 177
Cdd:cd21620     1 ERSLYVGNLPQTCQSEDLIILFEPYGNVCGAHIAsrkkvkVSWVKPSKLFAFVEFETKEAATTAIVLLN-GITYMGC 76
RRM2_MSI cd12323
RNA recognition motif 2 (RRM2) found in RNA-binding protein Musashi homologs Musashi-1, ...
109-155 2.98e-04

RNA recognition motif 2 (RRM2) found in RNA-binding protein Musashi homologs Musashi-1, Musashi-2 and similar proteins; This subfamily corresponds to the RRM2.in Musashi-1 (also termed Msi1), a neural RNA-binding protein putatively expressed in central nervous system (CNS) stem cells and neural progenitor cells, and associated with asymmetric divisions in neural progenitor cells. It is evolutionarily conserved from invertebrates to vertebrates. Musashi-1 is a homolog of Drosophila Musashi and Xenopus laevis nervous system-specific RNP protein-1 (Nrp-1). It has been implicated in the maintenance of the stem-cell state, differentiation, and tumorigenesis. It translationally regulates the expression of a mammalian numb gene by binding to the 3'-untranslated region of mRNA of Numb, encoding a membrane-associated inhibitor of Notch signaling, and further influences neural development. Moreover, Musashi-1 represses translation by interacting with the poly(A)-binding protein and competes for binding of the eukaryotic initiation factor-4G (eIF-4G). Musashi-2 (also termed Msi2) has been identified as a regulator of the hematopoietic stem cell (HSC) compartment and of leukemic stem cells after transplantation of cells with loss and gain of function of the gene. It influences proliferation and differentiation of HSCs and myeloid progenitors, and further modulates normal hematopoiesis and promotes aggressive myeloid leukemia. Both, Musashi-1 and Musashi-2, contain two conserved N-terminal tandem RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), along with other domains of unknown function.


Pssm-ID: 240769 [Multi-domain]  Cd Length: 74  Bit Score: 39.34  E-value: 2.98e-04
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|...
gi 2244986492 109 KLFIGMVSKKCNENDIRVMFSPFGQIEECRIL------RgpdglSRGCAFVTF 155
Cdd:cd12323     1 KIFVGGLSANTTEDDVKKYFSQFGKVEDAMLMfdkqtnR-----HRGFGFVTF 48
RRM_NCBP2 cd12240
RNA recognition motif (RRM) found in nuclear cap-binding protein subunit 2 (CBP20) and similar ...
110-172 3.02e-04

RNA recognition motif (RRM) found in nuclear cap-binding protein subunit 2 (CBP20) and similar proteins; This subfamily corresponds to the RRM of CBP20, also termed nuclear cap-binding protein subunit 2 (NCBP2), or cell proliferation-inducing gene 55 protein, or NCBP-interacting protein 1 (NIP1). CBP20 is the small subunit of the nuclear cap binding complex (CBC), which is a conserved eukaryotic heterodimeric protein complex binding to 5'-capped polymerase II transcripts and plays a central role in the maturation of pre-mRNA and uracil-rich small nuclear RNA (U snRNA). CBP20 is most likely responsible for the binding of capped RNA. It contains an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and interacts with the second and third domains of CBP80, the large subunit of CBC.


Pssm-ID: 409686 [Multi-domain]  Cd Length: 78  Bit Score: 39.09  E-value: 3.02e-04
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 2244986492 110 LFIGMVSKKCNENDIRVMFSPFGQIEecRILRGPDGLSR---GCAFVTFSTRAMAQNAIKAMHQSQ 172
Cdd:cd12240     1 LYVGNLSFYTTEEQIYELFSKCGDIK--RIIMGLDKFKKtpcGFCFVEYYSREDAENAVKYLNGTK 64
RRM1_Crp79 cd21619
RNA recognition motif 1 (RRM1) found in Schizosaccharomyces pombe mRNA export factor Crp79 and ...
18-82 3.08e-04

RNA recognition motif 1 (RRM1) found in Schizosaccharomyces pombe mRNA export factor Crp79 and similar proteins; Crp79, also called meiotic expression up-regulated protein 5 (Mug5), or polyadenylate-binding protein crp79, or PABP, or poly(A)-binding protein, is an auxiliary mRNA export factor that binds the poly(A) tail of mRNA and is involved in the export of mRNA from the nucleus to the cytoplasm. Members in this family contain three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The model corresponds to the first RRM motif.


Pssm-ID: 410198 [Multi-domain]  Cd Length: 78  Bit Score: 39.43  E-value: 3.08e-04
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 2244986492  18 MFVGQIPRSWSEKELKELFEPYGAVYQINVLRDRSQNPPQSKGCCFVTFYTRKAALEAQNALHNI 82
Cdd:cd21619     4 IYVGNIDMTINEDALEKIFSRYGQVESVRRPPIHTDKADRTTGFGFIKYTDAESAERAMQQADGI 68
RRM2_hnRNPA1 cd12580
RNA recognition motif 2 (RRM2) found in heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) ...
17-66 3.15e-04

RNA recognition motif 2 (RRM2) found in heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) and similar proteins; This subgroup corresponds to the RRM2 of hnRNP A1, also termed helix-destabilizing protein, or single-strand RNA-binding protein, or hnRNP core protein A1, an abundant eukaryotic nuclear RNA-binding protein that may modulate splice site selection in pre-mRNA splicing. hnRNP A1 has been characterized as a splicing silencer, often acting in opposition to an activating hnRNP H. It silences exons when bound to exonic elements in the alternatively spliced transcripts of c-src, HIV, GRIN1, and beta-tropomyosin. hnRNP A1 can shuttle between the nucleus and the cytoplasm. Thus, it may be involved in transport of cellular RNAs, including the packaging of pre-mRNA into hnRNP particles and transport of poly A+ mRNA from the nucleus to the cytoplasm. The cytoplasmic hnRNP A1 has high affinity with AU-rich elements, whereas the nuclear hnRNP A1 has high affinity with a polypyrimidine stretch bordered by AG at the 3' ends of introns. hnRNP A1 is also involved in the replication of an RNA virus, such as mouse hepatitis virus (MHV), through an interaction with the transcription-regulatory region of viral RNA. Moreover, hnRNP A1, together with the scaffold protein septin 6, serves as host proteins to form a complex with NS5b and viral RNA, and further play important roles in the replication of Hepatitis C virus (HCV). hnRNP A1 contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), followed by a long glycine-rich region at the C-terminus. The RRMs of hnRNP A1 play an important role in silencing the exon and the glycine-rich domain is responsible for protein-protein interactions.


Pssm-ID: 409994 [Multi-domain]  Cd Length: 77  Bit Score: 39.18  E-value: 3.15e-04
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|
gi 2244986492  17 KMFVGQIPRSWSEKELKELFEPYGAVYQINVLRDRSQNppQSKGCCFVTF 66
Cdd:cd12580     2 KIFVGGIKEDTEEHHLRDYFEQYGKIEVIEIMTDRGSG--KKRGFAFVTF 49
RRM2_NGR1_NAM8_like cd12613
RNA recognition motif 2 (RRM2) found in yeast negative growth regulatory protein NGR1, yeast ...
110-169 3.17e-04

RNA recognition motif 2 (RRM2) found in yeast negative growth regulatory protein NGR1, yeast protein NAM8 and similar proteins; This subgroup corresponds to the RRM2 of NGR1 and NAM8. NGR1, also termed RNA-binding protein RBP1, is a putative glucose-repressible protein that binds both, RNA and single-stranded DNA (ssDNA), in yeast. It may function in regulating cell growth in early log phase, possibly through its participation in RNA metabolism. NGR1 contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), followed by a glutamine-rich stretch that may be involved in transcriptional activity. In addition, NGR1 has an asparagine-rich region near the carboxyl terminus which also harbors a methionine-rich region. The family also includes protein NAM8, which is a putative RNA-binding protein that acts as a suppressor of mitochondrial splicing deficiencies when overexpressed in yeast. It may be a non-essential component of the mitochondrial splicing machinery. Like NGR1, NAM8 contains two RRMs.


Pssm-ID: 410025 [Multi-domain]  Cd Length: 80  Bit Score: 39.42  E-value: 3.17e-04
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|..
gi 2244986492 110 LFIGMVSKKCNENDIRVMF-SPFGQIEECRILRGP-DGLSRGCAFVTFSTRAMAQNAIKAMH 169
Cdd:cd12613     4 IFVGDLSPTTNESDLVSLFqSRFPSCKSAKIMTDPvTGVSRGYGFVRFSDENDQQRALIEMQ 65
RRM_PPIE cd12347
RNA recognition motif (RRM) found in cyclophilin-33 (Cyp33) and similar proteins; This ...
110-171 3.68e-04

RNA recognition motif (RRM) found in cyclophilin-33 (Cyp33) and similar proteins; This subfamily corresponds to the RRM of Cyp33, also termed peptidyl-prolyl cis-trans isomerase E (PPIase E), or cyclophilin E, or rotamase E. Cyp33 is a nuclear RNA-binding cyclophilin with an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a C-terminal PPIase domain. Cyp33 possesses RNA-binding activity and preferentially binds to polyribonucleotide polyA and polyU, but hardly to polyG and polyC. It binds specifically to mRNA, which can stimulate its PPIase activity. Moreover, Cyp33 interacts with the third plant homeodomain (PHD3) zinc finger cassette of the mixed lineage leukemia (MLL) proto-oncoprotein and a poly-A RNA sequence through its RRM domain. It further mediates downregulation of the expression of MLL target genes HOXC8, HOXA9, CDKN1B, and C-MYC, in a proline isomerase-dependent manner. Cyp33 also possesses a PPIase activity that catalyzes cis-trans isomerization of the peptide bond preceding a proline, which has been implicated in the stimulation of folding and conformational changes in folded and unfolded proteins. The PPIase activity can be inhibited by the immunosuppressive drug cyclosporin A.


Pssm-ID: 409783 [Multi-domain]  Cd Length: 75  Bit Score: 38.74  E-value: 3.68e-04
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|...
gi 2244986492 110 LFIGMVSKKCNENDIRVMFSPFGQIEECRILRGPD-GLSRGCAFVTFSTRAMAQNAIKAMHQS 171
Cdd:cd12347     1 LYVGGLAEEVDEKVLHAAFIPFGDIVDIQIPLDYEtEKHRGFAFVEFEEAEDAAAAIDNMNES 63
RRM_G3BP1 cd12463
RNA recognition motif (RRM) found in ras GTPase-activating protein-binding protein 1 (G3BP1) ...
13-47 3.68e-04

RNA recognition motif (RRM) found in ras GTPase-activating protein-binding protein 1 (G3BP1) and similar proteins; This subgroup corresponds to the RRM of G3BP1, also termed ATP-dependent DNA helicase VIII (DH VIII), or GAP SH3 domain-binding protein 1, which has been identified as a phosphorylation-dependent endoribonuclease that interacts with the SH3 domain of RasGAP, a multi-functional protein controlling Ras activity. The acidic RasGAP binding domain of G3BP1 harbors an arsenite-regulated phosphorylation site and dominantly inhibits stress granule (SG) formation. G3BP1 also contains an N-terminal nuclear transfer factor 2 (NTF2)-like domain, an RNA recognition motif (RRM domain), and an Arg-Gly-rich region (RGG-rich region, or arginine methylation motif). The RRM domain and RGG-rich region are canonically associated with RNA binding. G3BP1 co-immunoprecipitates with mRNAs. It binds to and cleaves the 3'-untranslated region (3'-UTR) of the c-myc mRNA in a phosphorylation-dependent manner. Thus, G3BP1 may play a role in coupling extra-cellular stimuli to mRNA stability. It has been shown that G3BP1 is a novel Dishevelled-associated protein that is methylated upon Wnt3a stimulation and that arginine methylation of G3BP1 regulates both Ctnnb1 mRNA and canonical Wnt/beta-catenin signaling. Furthermore, G3BP1 can be associated with the 3'-UTR of beta-F1 mRNA in cytoplasmic RNA-granules, demonstrating that G3BP1 may specifically repress the translation of the transcript.


Pssm-ID: 409896 [Multi-domain]  Cd Length: 80  Bit Score: 39.08  E-value: 3.68e-04
                          10        20        30
                  ....*....|....*....|....*....|....*
gi 2244986492  13 PDAIKMFVGQIPRSWSEKELKELFEPYGAVYQINV 47
Cdd:cd12463     1 PDSHQLFVGNLPHDVDKSELKEFFQGYGNVVELRI 35
RRM_NCBP2 cd12240
RNA recognition motif (RRM) found in nuclear cap-binding protein subunit 2 (CBP20) and similar ...
18-83 3.71e-04

RNA recognition motif (RRM) found in nuclear cap-binding protein subunit 2 (CBP20) and similar proteins; This subfamily corresponds to the RRM of CBP20, also termed nuclear cap-binding protein subunit 2 (NCBP2), or cell proliferation-inducing gene 55 protein, or NCBP-interacting protein 1 (NIP1). CBP20 is the small subunit of the nuclear cap binding complex (CBC), which is a conserved eukaryotic heterodimeric protein complex binding to 5'-capped polymerase II transcripts and plays a central role in the maturation of pre-mRNA and uracil-rich small nuclear RNA (U snRNA). CBP20 is most likely responsible for the binding of capped RNA. It contains an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and interacts with the second and third domains of CBP80, the large subunit of CBC.


Pssm-ID: 409686 [Multi-domain]  Cd Length: 78  Bit Score: 39.09  E-value: 3.71e-04
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 2244986492  18 MFVGQIPRSWSEKELKELFEPYGAVYQINVLRDRSQNPPQskGCCFVTFYTRKAALEAQNALHNIK 83
Cdd:cd12240     1 LYVGNLSFYTTEEQIYELFSKCGDIKRIIMGLDKFKKTPC--GFCFVEYYSREDAENAVKYLNGTK 64
RRM2_hnRNPA2B1 cd12581
RNA recognition motif 2 (RRM2) found in heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNP ...
108-155 3.76e-04

RNA recognition motif 2 (RRM2) found in heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNP A2/B1) and similar proteins; This subgroup corresponds to the RRM2 of hnRNP A2/B1, an RNA trafficking response element-binding protein that interacts with the hnRNP A2 response element (A2RE). Many mRNAs, such as myelin basic protein (MBP), myelin-associated oligodendrocytic basic protein (MOBP), carboxyanhydrase II (CAII), microtubule-associated protein tau, and amyloid precursor protein (APP) are trafficked by hnRNP A2/B1. hnRNP A2/B1 also functions as a splicing factor that regulates alternative splicing of the tumor suppressors, such as BIN1, WWOX, the antiapoptotic proteins c-FLIP and caspase-9B, the insulin receptor (IR), and the RON proto-oncogene among others. Overexpression of hnRNP A2/B1 has been described in many cancers. It functions as a nuclear matrix protein involving in RNA synthesis and the regulation of cellular migration through alternatively splicing pre-mRNA. It may play a role in tumor cell differentiation. hnRNP A2/B1 contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), followed by a long glycine-rich region at the C-terminus.


Pssm-ID: 409995 [Multi-domain]  Cd Length: 80  Bit Score: 39.20  E-value: 3.76e-04
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|....*....
gi 2244986492 108 RKLFIGMVSKKCNENDIRVMFSPFGQIEECRILRGPD-GLSRGCAFVTF 155
Cdd:cd12581     1 KKLFVGGIKEDTEEHHLRDYFEEYGKIDTIEIITDRQsGKKRGFGFVTF 49
RRM2_hnRPDL cd12585
RNA recognition motif 2 (RRM2) found in heterogeneous nuclear ribonucleoprotein D-like (hnRNP ...
17-66 4.09e-04

RNA recognition motif 2 (RRM2) found in heterogeneous nuclear ribonucleoprotein D-like (hnRNP DL) and similar proteins; This subgroup corresponds to the RRM2 of hnRNP DL (or hnRNP D-like), also termed AU-rich element RNA-binding factor, or JKT41-binding protein (protein laAUF1 or JKTBP), is a dual functional protein that possesses DNA- and RNA-binding properties. It has been implicated in mRNA biogenesis at the transcriptional and post-transcriptional levels. hnRNP DL binds single-stranded DNA (ssDNA) or double-stranded DNA (dsDNA) in a non-sequencespecific manner, and interacts with poly(G) and poly(A) tenaciously. It contains two putative two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a glycine- and tyrosine-rich C-terminus.


Pssm-ID: 409998 [Multi-domain]  Cd Length: 75  Bit Score: 38.83  E-value: 4.09e-04
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|
gi 2244986492  17 KMFVGQIPRSWSEKELKELFEPYGAVYQINVLRDRSQNppQSKGCCFVTF 66
Cdd:cd12585     1 KVFVGGLSPDTSEEQIKEYFGAFGEIENIELPMDTKTN--ERRGFCFITY 48
RRM_eIF3B cd12278
RNA recognition motif (RRM) found in eukaryotic translation initiation factor 3 subunit B ...
128-169 4.25e-04

RNA recognition motif (RRM) found in eukaryotic translation initiation factor 3 subunit B (eIF-3B) and similar proteins; This subfamily corresponds to the RRM domain in eukaryotic translation initiation factor 3 (eIF-3), a large multisubunit complex that plays a central role in the initiation of translation by binding to the 40 S ribosomal subunit and promoting the binding of methionyl-tRNAi and mRNA. eIF-3B, also termed eIF-3 subunit 9, or Prt1 homolog, eIF-3-eta, eIF-3 p110, or eIF-3 p116, is the major scaffolding subunit of eIF-3. It interacts with eIF-3 subunits A, G, I, and J. eIF-3B contains an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), which is involved in the interaction with eIF-3J. The interaction between eIF-3B and eIF-3J is crucial for the eIF-3 recruitment to the 40 S ribosomal subunit. eIF-3B also binds directly to domain III of the internal ribosome-entry site (IRES) element of hepatitis-C virus (HCV) RNA through its N-terminal RRM, which may play a critical role in both cap-dependent and cap-independent translation. Additional research has shown that eIF-3B may function as an oncogene in glioma cells and can be served as a potential therapeutic target for anti-glioma therapy. This family also includes the yeast homolog of eIF-3 subunit B (eIF-3B, also termed PRT1 or eIF-3 p90) that interacts with the yeast homologs of eIF-3 subunits A(TIF32), G(TIF35), I(TIF34), J(HCR1), and E(Pci8). In yeast, eIF-3B (PRT1) contains an N-terminal RRM that is directly involved in the interaction with eIF-3A (TIF32) and eIF-3J (HCR1). In contrast to its human homolog, yeast eIF-3B (PRT1) may have potential to bind its total RNA through its RRM domain.


Pssm-ID: 409720 [Multi-domain]  Cd Length: 84  Bit Score: 39.10  E-value: 4.25e-04
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|....
gi 2244986492 128 FSPFGQIEE--CRILRGPDGLSRGCAFVTFSTRAMAQNAIKAMH 169
Cdd:cd12278    28 FSKFGSGKIvgIYMPVDETGKTKGFAFVEYATPEEAKKAVKALN 71
RRM2_TIAR cd12617
RNA recognition motif 2 (RRM2) found in nucleolysin TIAR and similar proteins; This subgroup ...
18-79 4.68e-04

RNA recognition motif 2 (RRM2) found in nucleolysin TIAR and similar proteins; This subgroup corresponds to the RRM2 of nucleolysin TIAR, also termed TIA-1-related protein, a cytotoxic granule-associated RNA-binding protein that shows high sequence similarity with 40-kDa isoform of T-cell-restricted intracellular antigen-1 (p40-TIA-1). TIAR is mainly localized in the nucleus of hematopoietic and nonhematopoietic cells. It is translocated from the nucleus to the cytoplasm in response to exogenous triggers of apoptosis. TIAR possesses nucleolytic activity against cytolytic lymphocyte (CTL) target cells. It can trigger DNA fragmentation in permeabilized thymocytes, and thus may function as an effector responsible for inducing apoptosis. TIAR is composed of three N-terminal, highly homologous RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a glutamine-rich C-terminal auxiliary domain containing a lysosome-targeting motif. It interacts with RNAs containing short stretches of uridylates and its RRM2 can mediate the specific binding to uridylate-rich RNAs.


Pssm-ID: 410029 [Multi-domain]  Cd Length: 80  Bit Score: 38.82  E-value: 4.68e-04
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|..
gi 2244986492  18 MFVGQIPRSWSEKELKELFEPYGAVYQINVLRDRSQNppQSKGCCFVTFYTRkaaLEAQNAL 79
Cdd:cd12617     4 VFVGDLSPEITTEDIKSAFAPFGKISDARVVKDMATG--KSKGYGFVSFYNK---LDAENAI 60
RRM1_Mug28 cd21620
RNA recognition motif 1 (RRM1) found in Schizosaccharomyces pombe meiotically up-regulated ...
16-82 4.73e-04

RNA recognition motif 1 (RRM1) found in Schizosaccharomyces pombe meiotically up-regulated gene 28 protein (Mug28) and similar proteins; Mug28 is a meiosis-specific protein that regulates spore wall formation. Members in this family contain three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The model corresponds to the first RRM motif.


Pssm-ID: 410199 [Multi-domain]  Cd Length: 84  Bit Score: 39.03  E-value: 4.73e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2244986492  16 IKMFVGQIPRSWSEKELKELFEPYGAVYQINVLRDRSQNPPQSKGC---CFVTFYTRKAALEAQNALHNI 82
Cdd:cd21620     2 RSLYVGNLPQTCQSEDLIILFEPYGNVCGAHIASRKKVKVSWVKPSklfAFVEFETKEAATTAIVLLNGI 71
RRM3_TIAR cd12620
RNA recognition motif 3 (RRM3) found in nucleolysin TIAR and similar proteins; This subgroup ...
110-176 4.97e-04

RNA recognition motif 3 (RRM3) found in nucleolysin TIAR and similar proteins; This subgroup corresponds to the RRM3 of nucleolysin TIAR, also termed TIA-1-related protein, a cytotoxic granule-associated RNA-binding protein that shows high sequence similarity with 40-kDa isoform of T-cell-restricted intracellular antigen-1 (p40-TIA-1). TIAR is mainly localized in the nucleus of hematopoietic and nonhematopoietic cells. It is translocated from the nucleus to the cytoplasm in response to exogenous triggers of apoptosis. TIAR possesses nucleolytic activity against cytolytic lymphocyte (CTL) target cells. It can trigger DNA fragmentation in permeabilized thymocytes, and thus may function as an effector responsible for inducing apoptosis. TIAR is composed of three N-terminal highly homologous RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a glutamine-rich C-terminal auxiliary domain containing a lysosome-targeting motif. It interacts with RNAs containing short stretches of uridylates and its RRM2 can mediate the specific binding to uridylate-rich RNAs.


Pssm-ID: 241064 [Multi-domain]  Cd Length: 73  Bit Score: 38.46  E-value: 4.97e-04
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 2244986492 110 LFIGMVSKKCNENDIRVMFSPFGQIEECRILrgPDglsRGCAFVTFSTRAMAQNAIKAMHQSqTMEG 176
Cdd:cd12620     3 VYCGGIASGLTEQLMRQTFSPFGQIMEIRVF--PE---KGYSFVRFSTHESAAHAIVSVNGT-TIEG 63
RRM_SCAF8 cd12462
RNA recognition motif (RRM) found in SR-related and CTD-associated factor 8 (SCAF8) and ...
18-79 5.15e-04

RNA recognition motif (RRM) found in SR-related and CTD-associated factor 8 (SCAF8) and similar proteins; This subgroup corresponds to the RRM of SCAF8 (also termed CDC5L complex-associated protein 7, or RNA-binding motif protein 16, or CTD-binding SR-like protein RA8), a nuclear matrix protein that interacts specifically with a highly serine-phosphorylated form of the carboxy-terminal domain (CTD) of the largest subunit of RNA polymerase II (pol II). The pol II CTD plays a role in coupling transcription and pre-mRNA processing. SCAF8 co-localizes primarily with transcription sites that are enriched in nuclear matrix fraction, which is known to contain proteins involved in pre-mRNA processing. Thus, SCAF8 may play a direct role in coupling with both, transcription and pre-mRNA processing, processes. SCAF8, together with SCAF4, represents a new class of SCAFs (SR-like CTD-associated factors). They contain a conserved N-terminal CTD-interacting domain (CID), an atypical RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and serine/arginine-rich motifs.


Pssm-ID: 409895 [Multi-domain]  Cd Length: 79  Bit Score: 38.52  E-value: 5.15e-04
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|..
gi 2244986492  18 MFVGQIPRSWSEKELKELFEPYGAVYQINVLrdrsqnPPqsKGCCFVTFYTRKAALEAQNAL 79
Cdd:cd12462     5 LWVGQVDKKATQQDLTNLFEEFGQIESINMI------PP--RGCAYVCMVHRQDAYRALQKL 58
RRM_NELFE cd12305
RNA recognition motif in negative elongation factor E (NELF-E) and similar proteins; This ...
401-434 5.24e-04

RNA recognition motif in negative elongation factor E (NELF-E) and similar proteins; This subfamily corresponds to the RRM of NELF-E, also termed RNA-binding protein RD. NELF-E is the RNA-binding subunit of cellular negative transcription elongation factor NELF (negative elongation factor) involved in transcriptional regulation of HIV-1 by binding to the stem of the viral transactivation-response element (TAR) RNA which is synthesized by cellular RNA polymerase II at the viral long terminal repeat. NELF is a heterotetrameric protein consisting of NELF A, B, C or the splice variant D, and E. NELF-E contains an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). It plays a role in the control of HIV transcription by binding to TAR RNA. In addition, NELF-E is associated with the NELF-B subunit, probably via a leucine zipper motif.


Pssm-ID: 409746 [Multi-domain]  Cd Length: 75  Bit Score: 38.46  E-value: 5.24e-04
                          10        20        30
                  ....*....|....*....|....*....|....
gi 2244986492 401 GFVSYDNPVSAQAAIQAMNGFQIGMKRLKVQLKR 434
Cdd:cd12305    41 AFVTFEKMESADQAIAELNGTTVEGVQLKVSIAR 74
RRM1_PUF60 cd12370
RNA recognition motif 1 (RRM1) found in (U)-binding-splicing factor PUF60 and similar proteins; ...
109-176 5.29e-04

RNA recognition motif 1 (RRM1) found in (U)-binding-splicing factor PUF60 and similar proteins; This subfamily corresponds to the RRM1 of PUF60, also termed FUSE-binding protein-interacting repressor (FBP-interacting repressor or FIR), or Ro-binding protein 1 (RoBP1), or Siah-binding protein 1 (Siah-BP1). PUF60 is an essential splicing factor that functions as a poly-U RNA-binding protein required to reconstitute splicing in depleted nuclear extracts. Its function is enhanced through interaction with U2 auxiliary factor U2AF65. PUF60 also controls human c-myc gene expression by binding and inhibiting the transcription factor far upstream sequence element (FUSE)-binding-protein (FBP), an activator of c-myc promoters. PUF60 contains two central RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a C-terminal U2AF (U2 auxiliary factor) homology motifs (UHM) that harbors another RRM and binds to tryptophan-containing linear peptide motifs (UHM ligand motifs, ULMs) in several nuclear proteins. Research indicates that PUF60 binds FUSE as a dimer, and only the first two RRM domains participate in the single-stranded DNA recognition.


Pssm-ID: 409805 [Multi-domain]  Cd Length: 76  Bit Score: 38.55  E-value: 5.29e-04
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 2244986492 109 KLFIGMVSKKCNENDIRVMFSPFGQIEECRILRGP-DGLSRGCAFVTFSTRAMAQNAIKAMhQSQTMEG 176
Cdd:cd12370     2 RVYVGSIYFELGEDTIRQAFAPFGPIKSIDMSWDPvTMKHKGFAFVEYEVPEAAQLALEQM-NGVMLGG 69
RRM1_TDP43 cd12321
RNA recognition motif 1 (RRM1) found in TAR DNA-binding protein 43 (TDP-43) and similar ...
17-82 5.65e-04

RNA recognition motif 1 (RRM1) found in TAR DNA-binding protein 43 (TDP-43) and similar proteins; This subfamily corresponds to the RRM1 of TDP-43 (also termed TARDBP), a ubiquitously expressed pathogenic protein whose normal function and abnormal aggregation are directly linked to the genetic disease cystic fibrosis, and two neurodegenerative disorders: frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). TDP-43 binds both DNA and RNA, and has been implicated in transcriptional repression, pre-mRNA splicing and translational regulation. TDP-43 is a dimeric protein with two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a C-terminal glycine-rich domain. The RRMs are responsible for DNA and RNA binding; they bind to TAR DNA and RNA sequences with UG-repeats. The glycine-rich domain can interact with the hnRNP family proteins to form the hnRNP-rich complex involved in splicing inhibition. It is also essential for the cystic fibrosis transmembrane conductance regulator (CFTR) exon 9-skipping activity.


Pssm-ID: 409760 [Multi-domain]  Cd Length: 74  Bit Score: 38.54  E-value: 5.65e-04
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 2244986492  17 KMFVGQIPRSWSEKELKELFEPYGAVYQINVLRDRSQNppQSKGCCFVTFYTRKAALEAQNALHNI 82
Cdd:cd12321     1 DLIVLGLPWKTTEQDLKEYFSTFGEVLMVQVKKDPKTG--RSKGFGFVRFASYETQVKVLSQRHMI 64
RRM_CSTF2_RNA15_like cd12398
RNA recognition motif (RRM) found in cleavage stimulation factor subunit 2 (CSTF2), yeast ...
108-186 5.74e-04

RNA recognition motif (RRM) found in cleavage stimulation factor subunit 2 (CSTF2), yeast ortholog mRNA 3'-end-processing protein RNA15 and similar proteins; This subfamily corresponds to the RRM domain of CSTF2, its tau variant and eukaryotic homologs. CSTF2, also termed cleavage stimulation factor 64 kDa subunit (CstF64), is the vertebrate conterpart of yeast mRNA 3'-end-processing protein RNA15. It is expressed in all somatic tissues and is one of three cleavage stimulatory factor (CstF) subunits required for polyadenylation. CstF64 contains an N-terminal RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), a CstF77-binding domain, a repeated MEARA helical region and a conserved C-terminal domain reported to bind the transcription factor PC-4. During polyadenylation, CstF interacts with the pre-mRNA through the RRM of CstF64 at U- or GU-rich sequences within 10 to 30 nucleotides downstream of the cleavage site. CSTF2T, also termed tauCstF64, is a paralog of the X-linked cleavage stimulation factor CstF64 protein that supports polyadenylation in most somatic cells. It is expressed during meiosis and subsequent haploid differentiation in a more limited set of tissues and cell types, largely in meiotic and postmeiotic male germ cells, and to a lesser extent in brain. The loss of CSTF2T will cause male infertility, as it is necessary for spermatogenesis and fertilization. Moreover, CSTF2T is required for expression of genes involved in morphological differentiation of spermatids, as well as for genes having products that function during interaction of motile spermatozoa with eggs. It promotes germ cell-specific patterns of polyadenylation by using its RRM to bind to different sequence elements downstream of polyadenylation sites than does CstF64. The family also includes yeast ortholog mRNA 3'-end-processing protein RNA15 and similar proteins. RNA15 is a core subunit of cleavage factor IA (CFIA), an essential transcriptional 3'-end processing factor from Saccharomyces cerevisiae. RNA recognition by CFIA is mediated by an N-terminal RRM, which is contained in the RNA15 subunit of the complex. The RRM of RNA15 has a strong preference for GU-rich RNAs, mediated by a binding pocket that is entirely conserved in both yeast and vertebrate RNA15 orthologs.


Pssm-ID: 409832 [Multi-domain]  Cd Length: 77  Bit Score: 38.27  E-value: 5.74e-04
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2244986492 108 RKLFIGMVSKKCNENDIRVMFSPFGQIEECRILRGPD-GLSRGCAFVTFSTRAMAQNAIKAMHQSQTMegcSSPIVVKFA 186
Cdd:cd12398     1 RSVFVGNIPYDATEEQLKEIFSEVGPVVSFRLVTDREtGKPKGYGFCEFRDAETALSAVRNLNGYELN---GRPLRVDFA 77
RRM_NIFK_like cd12307
RNA recognition motif in nucleolar protein interacting with the FHA domain of pKI-67 (NIFK) ...
110-169 5.84e-04

RNA recognition motif in nucleolar protein interacting with the FHA domain of pKI-67 (NIFK) and similar proteins; This subgroup corresponds to the RRM of NIFK and Nop15p. NIFK, also termed MKI67 FHA domain-interacting nucleolar phosphoprotein, or nucleolar phosphoprotein Nopp34, is a putative RNA-binding protein interacting with the forkhead associated (FHA) domain of pKi-67 antigen in a mitosis-specific and phosphorylation-dependent manner. It is nucleolar in interphase but associates with condensed mitotic chromosomes. This family also includes Saccharomyces cerevisiae YNL110C gene encoding ribosome biogenesis protein 15 (Nop15p), also termed nucleolar protein 15. Both, NIFK and Nop15p, contain an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 409748 [Multi-domain]  Cd Length: 74  Bit Score: 38.32  E-value: 5.84e-04
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|.
gi 2244986492 110 LFIGMVSKKCNENDIRVMFSPFGQIEECRILRGPD-GLSRGCAFVTFSTRAMAQNAIKAMH 169
Cdd:cd12307     2 VYIGHLPHGFYEPELRKYFSQFGTVTRLRLSRSKKtGKSKGYAFVEFEDPEVAKIVAETMN 62
RRM_TRA2 cd12363
RNA recognition motif (RRM) found in transformer-2 protein homolog TRA2-alpha, TRA2-beta and ...
120-188 5.98e-04

RNA recognition motif (RRM) found in transformer-2 protein homolog TRA2-alpha, TRA2-beta and similar proteins; This subfamily corresponds to the RRM of two mammalian homologs of Drosophila transformer-2 (Tra2), TRA2-alpha, TRA2-beta (also termed SFRS10), and similar proteins found in eukaryotes. TRA2-alpha is a 40-kDa serine/arginine-rich (SR) protein that specifically binds to gonadotropin-releasing hormone (GnRH) exonic splicing enhancer on exon 4 (ESE4) and is necessary for enhanced GnRH pre-mRNA splicing. It strongly stimulates GnRH intron A excision in a dose-dependent manner. In addition, TRA2-alpha can interact with either 9G8 or SRp30c, which may also be crucial for ESE-dependent GnRH pre-mRNA splicing. TRA2-beta is a serine/arginine-rich (SR) protein that controls the pre-mRNA alternative splicing of the calcitonin/calcitonin gene-related peptide (CGRP), the survival motor neuron 1 (SMN1) protein and the tau protein. Both, TRA2-alpha and TRA2-beta, contains a well conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), flanked by the N- and C-terminal arginine/serine (RS)-rich regions.


Pssm-ID: 409798 [Multi-domain]  Cd Length: 80  Bit Score: 38.36  E-value: 5.98e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2244986492 120 NENDIRVMFSPFGQIEECRI-LRGPDGLSRGCAFVTFSTramAQNAIKAMHQSQTMEGCSSPIVVKFADT 188
Cdd:cd12363    14 TERDLREVFSRYGPIEKVQVvYDQQTGRSRGFGFVYFES---VEDAKEAKERLNGQEIDGRRIRVDYSIT 80
RRM1_hnRNPA0 cd12326
RNA recognition motif 1 (RRM1) found in heterogeneous nuclear ribonucleoprotein A0 (hnRNP A0) ...
109-167 6.25e-04

RNA recognition motif 1 (RRM1) found in heterogeneous nuclear ribonucleoprotein A0 (hnRNP A0) and similar proteins; This subfamily corresponds to the RRM1 of hnRNP A0 which is a low abundance hnRNP protein that has been implicated in mRNA stability in mammalian cells. It has been identified as the substrate for MAPKAP-K2 and may be involved in the lipopolysaccharide (LPS)-induced post-transcriptional regulation of tumor necrosis factor-alpha (TNF-alpha), cyclooxygenase 2 (COX-2) and macrophage inflammatory protein 2 (MIP-2). hnRNP A0 contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), followed by a long glycine-rich region at the C-terminus.


Pssm-ID: 409764 [Multi-domain]  Cd Length: 79  Bit Score: 38.36  E-value: 6.25e-04
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|
gi 2244986492 109 KLFIGMVSKKCNENDIRVMFSPFGQIEECRILRGPD-GLSRGCAFVTFSTRAMAQNAIKA 167
Cdd:cd12326     4 KLFIGGLNVQTTEEGLRAHFEAYGQLTDCVVVVNPQtKRSRCFGFVTYSSAEEADAAMAA 63
RRM1_LARP7 cd12290
RNA recognition motif 1 (RRM1) found in La-related protein 7 (LARP7) and similar proteins; ...
110-182 6.71e-04

RNA recognition motif 1 (RRM1) found in La-related protein 7 (LARP7) and similar proteins; This subfamily corresponds to the RRM1 of LARP7, also termed La ribonucleoprotein domain family member 7, or P-TEFb-interaction protein for 7SK stability (PIP7S), an oligopyrimidine-binding protein that binds to the highly conserved 3'-terminal U-rich stretch (3' -UUU-OH) of 7SK RNA. LARP7 is a stable component of the 7SK small nuclear ribonucleoprotein (7SK snRNP). It intimately associates with all the nuclear 7SK and is required for 7SK stability. LARP7 also acts as a negative transcriptional regulator of cellular and viral polymerase II genes, acting by means of the 7SK snRNP system. It plays an essential role in the inhibition of positive transcription elongation factor b (P-TEFb)-dependent transcription, which has been linked to the global control of cell growth and tumorigenesis. LARP7 contains a La motif (LAM) and an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), at the N-terminal region, which mediates binding to the U-rich 3' terminus of 7SK RNA. LARP7 also carries another putative RRM domain at its C-terminus.


Pssm-ID: 409732 [Multi-domain]  Cd Length: 79  Bit Score: 38.46  E-value: 6.71e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 2244986492 110 LFIGMVSKKCNENDIRVMFSPFGQIEECRILRGPDGL-SRGCAFVTFSTRAMAQNAIKAMHQSQTMEGCSSPIV 182
Cdd:cd12290     2 VYVELLPKNATHEWIEAVFSKYGEVVYVSIPRYKSTGdPKGFAFIEFETSESAQKAVKHFNSPPEARRKPGPFP 75
RRM4_I_PABPs cd12381
RNA recognition motif 4 (RRM4) found in type I polyadenylate-binding proteins; This subfamily ...
16-80 7.40e-04

RNA recognition motif 4 (RRM4) found in type I polyadenylate-binding proteins; This subfamily corresponds to the RRM4 of type I poly(A)-binding proteins (PABPs), highly conserved proteins that bind to the poly(A) tail present at the 3' ends of most eukaryotic mRNAs. They have been implicated in theThe CD corresponds to the RRM. regulation of poly(A) tail length during the polyadenylation reaction, translation initiation, mRNA stabilization by influencing the rate of deadenylation and inhibition of mRNA decapping. The family represents type I polyadenylate-binding proteins (PABPs), including polyadenylate-binding protein 1 (PABP-1 or PABPC1), polyadenylate-binding protein 3 (PABP-3 or PABPC3), polyadenylate-binding protein 4 (PABP-4 or APP-1 or iPABP), polyadenylate-binding protein 5 (PABP-5 or PABPC5), polyadenylate-binding protein 1-like (PABP-1-like or PABPC1L), polyadenylate-binding protein 1-like 2 (PABPC1L2 or RBM32), polyadenylate-binding protein 4-like (PABP-4-like or PABPC4L), yeast polyadenylate-binding protein, cytoplasmic and nuclear (PABP or ACBP-67), and similar proteins. PABP-1 is an ubiquitously expressed multifunctional protein that may play a role in 3' end formation of mRNA, translation initiation, mRNA stabilization, protection of poly(A) from nuclease activity, mRNA deadenylation, inhibition of mRNA decapping, and mRNP maturation. Although PABP-1 is thought to be a cytoplasmic protein, it is also found in the nucleus. PABP-1 may be involved in nucleocytoplasmic trafficking and utilization of mRNP particles. PABP-1 contains four copies of RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), a less well conserved linker region, and a proline-rich C-terminal conserved domain (CTD). PABP-3 is a testis-specific poly(A)-binding protein specifically expressed in round spermatids. It is mainly found in mammalian and may play an important role in the testis-specific regulation of mRNA homeostasis. PABP-3 shows significant sequence similarity to PABP-1. However, it binds to poly(A) with a lower affinity than PABP-1. Moreover, PABP-1 possesses an A-rich sequence in its 5'-UTR and allows binding of PABP and blockage of translation of its own mRNA. In contrast, PABP-3 lacks the A-rich sequence in its 5'-UTR. PABP-4 is an inducible poly(A)-binding protein (iPABP) that is primarily localized to the cytoplasm. It shows significant sequence similarity to PABP-1 as well. The RNA binding properties of PABP-1 and PABP-4 appear to be identical. PABP-5 is encoded by PABPC5 gene within the X-specific subinterval, and expressed in fetal brain and in a range of adult tissues in mammalian, such as ovary and testis. It may play an important role in germ cell development. Moreover, unlike other PABPs, PABP-5 contains only four RRMs, but lacks both the linker region and the CTD. PABP-1-like and PABP-1-like 2 are the orthologs of PABP-1. PABP-4-like is the ortholog of PABP-5. Their cellular functions remain unclear. The family also includes the yeast PABP, a conserved poly(A) binding protein containing poly(A) tails that can be attached to the 3'-ends of mRNAs. The yeast PABP and its homologs may play important roles in the initiation of translation and in mRNA decay. Like vertebrate PABP-1, the yeast PABP contains four RRMs, a linker region, and a proline-rich CTD as well. The first two RRMs are mainly responsible for specific binding to poly(A). The proline-rich region may be involved in protein-protein interactions.


Pssm-ID: 409815 [Multi-domain]  Cd Length: 79  Bit Score: 38.02  E-value: 7.40e-04
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 2244986492  16 IKMFVGQIPRSWSEKELKELFEPYGAVYQINVLRDrsqNPPQSKGCCFVTFYTRKAALEAQNALH 80
Cdd:cd12381     2 VNLYVKNLDDTIDDEKLREEFSPFGTITSAKVMTD---EGGRSKGFGFVCFSSPEEATKAVTEMN 63
RRM1_DAZAP1 cd12574
RNA recognition motif 1 (RRM1) found in Deleted in azoospermia-associated protein 1 (DAZAP1) ...
17-66 7.68e-04

RNA recognition motif 1 (RRM1) found in Deleted in azoospermia-associated protein 1 (DAZAP1) and similar proteins; This subfamily corresponds to the RRM1 of DAZAP1 or DAZ-associated protein 1, also termed proline-rich RNA binding protein (Prrp), a multi-functional ubiquitous RNA-binding protein expressed most abundantly in the testis and essential for normal cell growth, development, and spermatogenesis. DAZAP1 is a shuttling protein whose acetylated form is predominantly nuclear and the nonacetylated form is in cytoplasm. It also functions as a translational regulator that activates translation in an mRNA-specific manner. DAZAP1 was initially identified as a binding partner of Deleted in Azoospermia (DAZ). It also interacts with numerous hnRNPs, including hnRNP U, hnRNP U like-1, hnRNPA1, hnRNPA/B, and hnRNP D, suggesting DAZAP1 might associate and cooperate with hnRNP particles to regulate adenylate-uridylate-rich elements (AU-rich element or ARE)-containing mRNAs. DAZAP1 contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a C-terminal proline-rich domain.


Pssm-ID: 409988 [Multi-domain]  Cd Length: 82  Bit Score: 38.09  E-value: 7.68e-04
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|
gi 2244986492  17 KMFVGQIPRSWSEKELKELFEPYGAVYQINVLRDRSQNppQSKGCCFVTF 66
Cdd:cd12574     1 KLFVGGLDWSTTQETLRSYFSQYGEVVDCVIMKDKTTN--QSRGFGFVKF 48
U2AF_lg TIGR01642
U2 snRNP auxilliary factor, large subunit, splicing factor; These splicing factors consist of ...
8-189 8.25e-04

U2 snRNP auxilliary factor, large subunit, splicing factor; These splicing factors consist of an N-terminal arginine-rich low complexity domain followed by three tandem RNA recognition motifs (pfam00076). The well-characterized members of this family are auxilliary components of the U2 small nuclear ribonuclearprotein splicing factor (U2AF). These proteins are closely related to the CC1-like subfamily of splicing factors (TIGR01622). Members of this subfamily are found in plants, metazoa and fungi.


Pssm-ID: 273727 [Multi-domain]  Cd Length: 509  Bit Score: 41.80  E-value: 8.25e-04
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2244986492   8 SDQPDpdaiKMFVGQIPRSWSEKELKELFEPYGAVYQINVLRDRsqNPPQSKGCCFVTFYTRKAALEAQNALHNI----K 83
Cdd:TIGR01642 292 LDSKD----RIYIGNLPLYLGEDQIKELLESFGDLKAFNLIKDI--ATGLSKGYAFCEYKDPSVTDVAIAALNGKdtgdN 365
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2244986492  84 TLPGMHHPIQMKPADSEKSN----------AVEDRKLFIGMVSKK--CNEN------------------DIRVMFSPFGQ 133
Cdd:TIGR01642 366 KLHVQRACVGANQATIDTSNgmapvtllakALSQSILQIGGKPTKvvQLTNlvtgddlmddeeyeeiyeDVKTEFSKYGP 445
                         170       180       190       200       210       220
                  ....*....|....*....|....*....|....*....|....*....|....*....|
gi 2244986492 134 IEECRILR----GPDGLSRGCAFVTFSTRAMAQnaiKAMhqsQTMEGCsspivvKFADTQ 189
Cdd:TIGR01642 446 LINIVIPRpngdRNSTPGVGKVFLEYADVRSAE---KAM---EGMNGR------KFNDRV 493
RRM_RBM25 cd12446
RNA recognition motif (RRM) found in eukaryotic RNA-binding protein 25 and similar proteins; ...
391-430 8.46e-04

RNA recognition motif (RRM) found in eukaryotic RNA-binding protein 25 and similar proteins; This subfamily corresponds to the RRM of RBM25, also termed Arg/Glu/Asp-rich protein of 120 kDa (RED120), or protein S164, or RNA-binding region-containing protein 7, an evolutionary-conserved splicing coactivator SRm160 (SR-related nuclear matrix protein of 160 kDa, )-interacting protein. RBM25 belongs to a family of RNA-binding proteins containing a well conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), at the N-terminus, a RE/RD-rich (ER) central region, and a C-terminal proline-tryptophan-isoleucine (PWI) motif. It localizes to the nuclear speckles and associates with multiple splicing components, including splicing cofactors SRm160/300, U snRNAs, assembled splicing complexes, and spliced mRNAs. It may play an important role in pre-mRNA processing by coupling splicing with mRNA 3'-end formation. Additional research indicates that RBM25 is one of the RNA-binding regulators that direct the alternative splicing of apoptotic factors. It can activate proapoptotic Bcl-xS 5'ss by binding to the exonic splicing enhancer, CGGGCA, and stabilize the pre-mRNA-U1 snRNP through interaction with hLuc7A, a U1 snRNP-associated factor.


Pssm-ID: 409880 [Multi-domain]  Cd Length: 83  Bit Score: 38.28  E-value: 8.46e-04
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|.
gi 2244986492 391 QQSAAGS-QKEGFVSYDNPVSAQAAIQAMNGFQIGMKRLKV 430
Cdd:cd12446    33 VQDPSGKlKAFGFCEFEDPEGALRALRLLNGLELGGKKLLV 73
RRM1_gar2 cd12447
RNA recognition motif 1 (RRM1) found in yeast protein gar2 and similar proteins; This ...
109-186 8.51e-04

RNA recognition motif 1 (RRM1) found in yeast protein gar2 and similar proteins; This subfamily corresponds to the RRM1 of yeast protein gar2, a novel nucleolar protein required for 18S rRNA and 40S ribosomal subunit accumulation. It shares similar domain architecture with nucleolin from vertebrates and NSR1 from Saccharomyces cerevisiae. The highly phosphorylated N-terminal domain of gar2 is made up of highly acidic regions separated from each other by basic sequences, and contains multiple phosphorylation sites. The central domain of gar2 contains two closely adjacent N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The C-terminal RGG (or GAR) domain of gar2 is rich in glycine, arginine and phenylalanine residues.


Pssm-ID: 409881 [Multi-domain]  Cd Length: 76  Bit Score: 37.80  E-value: 8.51e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 2244986492 109 KLFIGMVSKKCNENDIRVMFSPFGQIEECR-ILRGPDGLSRGCAFVTFSTRAMAQNAIKAMhQSQTMEGcsSPIVVKFA 186
Cdd:cd12447     1 TLFVGGLSWNVDDPWLKKEFEKYGGVISARvITDRGSGRSKGYGYVDFATPEAAQKALAAM-SGKEIDG--RQINVDFS 76
RRM1_SRSF4_like cd12337
RNA recognition motif 1 (RRM1) found in serine/arginine-rich splicing factor 4 (SRSF4) and ...
109-186 8.73e-04

RNA recognition motif 1 (RRM1) found in serine/arginine-rich splicing factor 4 (SRSF4) and similar proteins; This subfamily corresponds to the RRM1 in three serine/arginine (SR) proteins: serine/arginine-rich splicing factor 4 (SRSF4 or SRp75 or SFRS4), serine/arginine-rich splicing factor 5 (SRSF5 or SRp40 or SFRS5 or HRS), serine/arginine-rich splicing factor 6 (SRSF6 or SRp55). SRSF4 plays an important role in both, constitutive and alternative, splicing of many pre-mRNAs. It can shuttle between the nucleus and cytoplasm. SRSF5 regulates both alternative splicing and basal splicing. It is the only SR protein efficiently selected from nuclear extracts (NE) by the splicing enhancer (ESE) and essential for enhancer activation. SRSF6 preferentially interacts with a number of purine-rich splicing enhancers (ESEs) to activate splicing of the ESE-containing exon. It is the only protein from HeLa nuclear extract or purified SR proteins that specifically binds B element RNA after UV irradiation. SRSF6 may also recognize different types of RNA sites. Members in this family contain two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), followed by a C-terminal RS domains rich in serine-arginine dipeptides.


Pssm-ID: 409774 [Multi-domain]  Cd Length: 70  Bit Score: 37.68  E-value: 8.73e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 2244986492 109 KLFIGMVSKKCNENDIRVMFSPFGQIEECRilrgpdgLSRGCAFVTFSTRAMAQNAIKAMHQSqtmEGCSSPIVVKFA 186
Cdd:cd12337     1 RVYIGRLPYRARERDVERFFRGYGRIRDIN-------LKNGFGFVEFEDPRDADDAVYELNGK---ELCGERVIVEHA 68
RRM2_TIA1_like cd12353
RNA recognition motif 2 (RRM2) found in granule-associated RNA binding proteins p40-TIA-1 and ...
17-79 8.82e-04

RNA recognition motif 2 (RRM2) found in granule-associated RNA binding proteins p40-TIA-1 and TIAR; This subfamily corresponds to the RRM2 of nucleolysin TIA-1 isoform p40 (p40-TIA-1 or TIA-1) and nucleolysin TIA-1-related protein (TIAR), both of which are granule-associated RNA binding proteins involved in inducing apoptosis in cytotoxic lymphocyte (CTL) target cells. TIA-1 and TIAR share high sequence similarity. They are expressed in a wide variety of cell types. TIA-1 can be phosphorylated by a serine/threonine kinase that is activated during Fas-mediated apoptosis. TIAR is mainly localized in the nucleus of hematopoietic and nonhematopoietic cells. It is translocated from the nucleus to the cytoplasm in response to exogenous triggers of apoptosis. Both, TIA-1 and TIAR, bind specifically to poly(A) but not to poly(C) homopolymers. They are composed of three N-terminal highly homologous RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a glutamine-rich C-terminal auxiliary domain containing a lysosome-targeting motif. TIA-1 and TIAR interact with RNAs containing short stretches of uridylates and their RRM2 can mediate the specific binding to uridylate-rich RNAs. The C-terminal auxiliary domain may be responsible for interacting with other proteins. In addition, TIA-1 and TIAR share a potential serine protease-cleavage site (Phe-Val-Arg) localized at the junction between their RNA binding domains and their C-terminal auxiliary domains.


Pssm-ID: 409789 [Multi-domain]  Cd Length: 75  Bit Score: 37.76  E-value: 8.82e-04
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|...
gi 2244986492  17 KMFVGQIPRSWSEKELKELFEPYGAVYQINVLRDRSQNppQSKGCCFVTFYTRkaaLEAQNAL 79
Cdd:cd12353     1 HIFVGDLSPEIETEDLKEAFAPFGEISDARVVKDTQTG--KSKGYGFVSFVKK---EDAENAI 58
RRM2_TDP43 cd12322
RNA recognition motif 2 (RRM2) found in TAR DNA-binding protein 43 (TDP-43) and similar ...
108-163 8.94e-04

RNA recognition motif 2 (RRM2) found in TAR DNA-binding protein 43 (TDP-43) and similar proteins; This subfamily corresponds to the RRM2 of TDP-43 (also termed TARDBP), a ubiquitously expressed pathogenic protein whose normal function and abnormal aggregation are directly linked to the genetic disease cystic fibrosis, and two neurodegenerative disorders: frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). TDP-43 binds both DNA and RNA, and has been implicated in transcriptional repression, pre-mRNA splicing and translational regulation. TDP-43 is a dimeric protein with two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a C-terminal glycine-rich domain. The RRMs are responsible for DNA and RNA binding; they bind to TAR DNA and RNA sequences with UG-repeats. The glycine-rich domain can interact with the hnRNP family proteins to form the hnRNP-rich complex involved in splicing inhibition. It is also essential for the cystic fibrosis transmembrane conductance regulator (CFTR) exon 9-skipping activity.


Pssm-ID: 409761 [Multi-domain]  Cd Length: 71  Bit Score: 37.68  E-value: 8.94e-04
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....*.
gi 2244986492 108 RKLFIGMVSKKCNENDIRVMFSPFGQIEECRIlrgPDGLsRGCAFVTFSTRAMAQN 163
Cdd:cd12322     1 RKVFVGRCTEDMTEDDLRQYFSQFGEVTDVFI---PKPF-RAFAFVTFADDEVAQS 52
RRM2_hnRNPA3 cd12582
RNA recognition motif 2 (RRM2) found in heterogeneous nuclear ribonucleoprotein A3 (hnRNP A3) ...
108-155 9.18e-04

RNA recognition motif 2 (RRM2) found in heterogeneous nuclear ribonucleoprotein A3 (hnRNP A3) and similar proteins; This subgroup corresponds to the RRM2 of hnRNP A3, a novel RNA trafficking response element-binding protein that interacts with the hnRNP A2 response element (A2RE) independently of hnRNP A2 and participates in the trafficking of A2RE-containing RNA. hnRNP A3 can shuttle between the nucleus and the cytoplasm. It contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), followed by a long glycine-rich region at the C-terminus.


Pssm-ID: 409996 [Multi-domain]  Cd Length: 80  Bit Score: 38.01  E-value: 9.18e-04
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|
gi 2244986492 108 RKLFIGMVSKKCNENDIRVMFSPFGQIEECRIL--RGpDGLSRGCAFVTF 155
Cdd:cd12582     1 KKIFVGGIKEDTEEYHLRDYFEKYGKIETIEVMedRQ-SGKKRGFAFVTF 49
RRM3_Crp79_Mug28 cd21622
RNA recognition motif 3 (RRM3) found in Schizosaccharomyces pombe mRNA export factor Crp79, ...
401-438 9.21e-04

RNA recognition motif 3 (RRM3) found in Schizosaccharomyces pombe mRNA export factor Crp79, meiotically up-regulated gene 28 protein (Mug28) and similar proteins; Crp79, also called meiotic expression up-regulated protein 5 (Mug5), or polyadenylate-binding protein crp79, or PABP, or poly(A)-binding protein, is an auxiliary mRNA export factor that binds the poly(A) tail of mRNA and is involved in the export of mRNA from the nucleus to the cytoplasm. Mug28 is a meiosis-specific protein that regulates spore wall formation. Members in this family contain three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The model corresponds to the three RRM motif.


Pssm-ID: 410201 [Multi-domain]  Cd Length: 92  Bit Score: 38.12  E-value: 9.21e-04
                          10        20        30
                  ....*....|....*....|....*....|....*...
gi 2244986492 401 GFVSYDNPVSAQAAIQAMNGFQIGMKRLKVQLKRSKND 438
Cdd:cd21622    50 GFVAFSKPEDAAKAKETLNGVMVGRKRIFVSYAERKED 87
RRM3_NGR1_NAM8_like cd12346
RNA recognition motif 3 (RRM3) found in yeast negative growth regulatory protein NGR1 (RBP1), ...
401-429 9.70e-04

RNA recognition motif 3 (RRM3) found in yeast negative growth regulatory protein NGR1 (RBP1), yeast protein NAM8 and similar proteins; This subfamily corresponds to the RRM3 of NGR1 and NAM8. NGR1, also termed RNA-binding protein RBP1, is a putative glucose-repressible protein that binds both RNA and single-stranded DNA (ssDNA) in yeast. It may function in regulating cell growth in early log phase, possibly through its participation in RNA metabolism. NGR1 contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), followed by a glutamine-rich stretch that may be involved in transcriptional activity. In addition, NGR1 has an asparagine-rich region near the carboxyl terminus which also harbors a methionine-rich region. The family also includes protein NAM8, which is a putative RNA-binding protein that acts as a suppressor of mitochondrial splicing deficiencies when overexpressed in yeast. It may be a non-essential component of the mitochondrial splicing machinery. Like NGR1, NAM8 contains two RRMs.


Pssm-ID: 409782 [Multi-domain]  Cd Length: 72  Bit Score: 37.69  E-value: 9.70e-04
                          10        20
                  ....*....|....*....|....*....
gi 2244986492 401 GFVSYDNPVSAQAAIQAMNGFQIGMKRLK 429
Cdd:cd12346    40 GFVQFVNRASAEAAIQKLQGTPIGGSRIR 68
RRM COG0724
RNA recognition motif (RRM) domain [Translation, ribosomal structure and biogenesis];
401-439 9.83e-04

RNA recognition motif (RRM) domain [Translation, ribosomal structure and biogenesis];


Pssm-ID: 440488 [Multi-domain]  Cd Length: 85  Bit Score: 37.77  E-value: 9.83e-04
                          10        20        30
                  ....*....|....*....|....*....|....*....
gi 2244986492 401 GFVSYDNPVSAQAAIQAMNGFQIGMKRLKVQLKRSKNDS 439
Cdd:COG0724    46 GFVEMPDDEEAQAAIEALNGAELMGRTLKVNEARPREER 84
RRM_RBM7_like cd12336
RNA recognition motif (RRM) found in RNA-binding protein 7 (RBM7) and similar proteins; This ...
107-169 9.96e-04

RNA recognition motif (RRM) found in RNA-binding protein 7 (RBM7) and similar proteins; This subfamily corresponds to the RRM of RBM7, RBM11 and their eukaryotic homologous. RBM7 is an ubiquitously expressed pre-mRNA splicing factor that enhances messenger RNA (mRNA) splicing in a cell-specific manner or in a certain developmental process, such as spermatogenesis. It interacts with splicing factors SAP145 (the spliceosomal splicing factor 3b subunit 2) and SRp20, and may play a more specific role in meiosis entry and progression. Together with additional testis-specific RNA-binding proteins, RBM7 may regulate the splicing of specific pre-mRNA species that are important in the meiotic cell cycle. RBM11 is a novel tissue-specific splicing regulator that is selectively expressed in brain, cerebellum and testis, and to a lower extent in kidney. It is localized in the nucleoplasm and enriched in SRSF2-containing splicing speckles. It may play a role in the modulation of alternative splicing during neuron and germ cell differentiation. Both, RBM7 and RBM11, contain an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a region lacking known homology at the C-terminus. The RRM is responsible for RNA binding, whereas the C-terminal region permits nuclear localization and homodimerization.


Pssm-ID: 409773 [Multi-domain]  Cd Length: 75  Bit Score: 37.67  E-value: 9.96e-04
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|...
gi 2244986492 107 DRKLFIGMVSKKCNENDIRVMFSPFGQIEECRILRGPDGLSRGCAFVTFSTRAMAQNAIKAMH 169
Cdd:cd12336     1 DRTLFVGNLDPRVTEEILYELFLQAGPLEGVKIPKDPNGKPKNFAFVTFKHEVSVPYAIQLLN 63
RRM1_TIA1_like cd12352
RNA recognition motif 1 (RRM1) found in granule-associated RNA binding proteins p40-TIA-1 and ...
18-79 1.02e-03

RNA recognition motif 1 (RRM1) found in granule-associated RNA binding proteins p40-TIA-1 and TIAR; This subfamily corresponds to the RRM1 of nucleolysin TIA-1 isoform p40 (p40-TIA-1 or TIA-1) and nucleolysin TIA-1-related protein (TIAR), both of which are granule-associated RNA binding proteins involved in inducing apoptosis in cytotoxic lymphocyte (CTL) target cells. TIA-1 and TIAR share high sequence similarity. They are expressed in a wide variety of cell types. TIA-1 can be phosphorylated by a serine/threonine kinase that is activated during Fas-mediated apoptosis.TIAR is mainly localized in the nucleus of hematopoietic and nonhematopoietic cells. It is translocated from the nucleus to the cytoplasm in response to exogenous triggers of apoptosis. Both, TIA-1 and TIAR, bind specifically to poly(A) but not to poly(C) homopolymers. They are composed of three N-terminal highly homologous RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a glutamine-rich C-terminal auxiliary domain containing a lysosome-targeting motif. TIA-1 and TIAR interact with RNAs containing short stretches of uridylates and their RRM2 can mediate the specific binding to uridylate-rich RNAs. The C-terminal auxiliary domain may be responsible for interacting with other proteins. In addition, TIA-1 and TIAR share a potential serine protease-cleavage site (Phe-Val-Arg) localized at the junction between their RNA binding domains and their C-terminal auxiliary domains.


Pssm-ID: 409788 [Multi-domain]  Cd Length: 73  Bit Score: 37.77  E-value: 1.02e-03
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|..
gi 2244986492  18 MFVGQIPRSWSEKELKELFEPYGAVYQINVLRDRSQNPPQskgcCFVTFYTRKAALEAQNAL 79
Cdd:cd12352     1 LYVGNLDRQVTEDLILQLFSQIGPCKSCKMITEHGGNDPY----CFVEFYEHNHAAAALQAM 58
RRM_FOX1_like cd12407
RNA recognition motif (RRM) found in vertebrate RNA binding protein fox-1 homologs and similar ...
17-80 1.03e-03

RNA recognition motif (RRM) found in vertebrate RNA binding protein fox-1 homologs and similar proteins; This subfamily corresponds to the RRM of several tissue-specific alternative splicing isoforms of vertebrate RNA binding protein Fox-1 homologs, which show high sequence similarity to the Caenorhabditis elegans feminizing locus on X (Fox-1) gene encoding Fox-1 protein. RNA binding protein Fox-1 homolog 1 (RBFOX1), also termed ataxin-2-binding protein 1 (A2BP1), or Fox-1 homolog A, or hexaribonucleotide-binding protein 1 (HRNBP1), is predominantly expressed in neurons, skeletal muscle and heart. It regulates alternative splicing of tissue-specific exons by binding to UGCAUG elements. Moreover, RBFOX1 binds to the C-terminus of ataxin-2 and forms an ataxin-2/A2BP1 complex involved in RNA processing. RNA binding protein fox-1 homolog 2 (RBFOX2), also termed Fox-1 homolog B, or hexaribonucleotide-binding protein 2 (HRNBP2), or RNA-binding motif protein 9 (RBM9), or repressor of tamoxifen transcriptional activity, is expressed in ovary, whole embryo, and human embryonic cell lines in addition to neurons and muscle. RBFOX2 activates splicing of neuron-specific exons through binding to downstream UGCAUG elements. RBFOX2 also functions as a repressor of tamoxifen activation of the estrogen receptor. RNA binding protein Fox-1 homolog 3 (RBFOX3 or NeuN or HRNBP3), also termed Fox-1 homolog C, is a nuclear RNA-binding protein that regulates alternative splicing of the RBFOX2 pre-mRNA, producing a message encoding a dominant negative form of the RBFOX2 protein. Its message is detected exclusively in post-mitotic regions of embryonic brain. Like RBFOX1, both RBFOX2 and RBFOX3 bind to the hexanucleotide UGCAUG elements and modulate brain and muscle-specific splicing of exon EIIIB of fibronectin, exon N1 of c-src, and calcitonin/CGRP. Members in this family also harbor one RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409841 [Multi-domain]  Cd Length: 76  Bit Score: 37.76  E-value: 1.03e-03
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 2244986492  17 KMFVGQIPRSWSEKELKELFEPYGAVYQINVL-RDRSqnppqSKGCCFVTFYTRKAALEAQNALH 80
Cdd:cd12407     2 RLHVSNIPFRFRDPDLRQMFGQFGTILDVEIIfNERG-----SKGFGFVTFANSADADRAREKLN 61
RRM1_RBM40_like cd12238
RNA recognition motif 1 (RRM1) found in RNA-binding protein 40 (RBM40) and similar proteins; ...
120-170 1.05e-03

RNA recognition motif 1 (RRM1) found in RNA-binding protein 40 (RBM40) and similar proteins; This subfamily corresponds to the RRM1 of RBM40, also known as RNA-binding region-containing protein 3 (RNPC3) or U11/U12 small nuclear ribonucleoprotein 65 kDa protein (U11/U12-65K protein), It serves as a bridging factor between the U11 and U12 snRNPs. It contains two repeats of RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), connected by a linker that includes a proline-rich region. It binds to the U11-associated 59K protein via its RRM1 and employs the RRM2 to bind hairpin III of the U12 small nuclear RNA (snRNA). The proline-rich region might be involved in protein-protein interactions.


Pssm-ID: 409684 [Multi-domain]  Cd Length: 73  Bit Score: 37.61  E-value: 1.05e-03
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|.
gi 2244986492 120 NENDIRVMFSPFGqIEECRILrGPDGLSRGCAFVTFSTRAMAQNAIKAMHQ 170
Cdd:cd12238    12 SEDDKEDLLKHFG-ATSVRVM-KRRGKLKHTAFATFDNEQAASKALSRLHQ 60
RRM1_2_CID8_like cd12225
RNA recognition motif 1 and 2 (RRM1, RRM2) found in Arabidopsis thaliana CTC-interacting ...
108-183 1.06e-03

RNA recognition motif 1 and 2 (RRM1, RRM2) found in Arabidopsis thaliana CTC-interacting domain protein CID8, CID9, CID10, CID11, CID12, CID 13 and similar proteins; This subgroup corresponds to the RRM domains found in A. thaliana CID8, CID9, CID10, CID11, CID12, CID 13 and mainly their plant homologs. These highly related RNA-binding proteins contain an N-terminal PAM2 domain (PABP-interacting motif 2), two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a basic region that resembles a bipartite nuclear localization signal. The biological role of this family remains unclear.


Pssm-ID: 409672 [Multi-domain]  Cd Length: 76  Bit Score: 37.83  E-value: 1.06e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 2244986492 108 RKLFIGMVSKKCNENDIRVMFSPFGQIEECRILRgpDGLSRGCAFVTFSTramAQNAIKAMHQSQTMEGcSSPIVV 183
Cdd:cd12225     1 RTIHVGGIDGSLSEDELADYFSNCGEVTQVRLCG--DRVHTRFAWVEFAT---DASALSALNLDGTTLG-GHPLRV 70
RRM_RBPMS_like cd12420
RNA recognition motif (RRM) found in RNA-binding protein with multiple splicing (RBP-MS)-like ...
18-86 1.06e-03

RNA recognition motif (RRM) found in RNA-binding protein with multiple splicing (RBP-MS)-like proteins; This subfamily corresponds to the RRM of RNA-binding proteins with multiple splicing (RBP-MS)-like proteins, including protein products of RBPMS genes (RBP-MS and its paralogue RBP-MS2), the Drosophila couch potato (cpo), and Caenorhabditis elegans Mec-8 genes. RBP-MS may be involved in regulation of mRNA translation and localization during Xenopus laevis development. It has also been shown to physically interact with Smad2, Smad3 and Smad4, and stimulates Smad-mediated transactivation. Cpo may play an important role in regulating normal function of the nervous system, whereas mutations in Mec-8 affect mechanosensory and chemosensory neuronal function. All members contain a well conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). Some uncharacterized family members contain two RRMs; this subfamily includes their RRM1. Their RRM2 shows high sequence homology to the RRM of yeast proteins scw1, Whi3, and Whi4.


Pssm-ID: 409854 [Multi-domain]  Cd Length: 76  Bit Score: 37.69  E-value: 1.06e-03
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 2244986492  18 MFVGQIPRSWSEKELKELFEPYGAvYQINVLRDRSQNppqSKGCCFVTFYTRKAALEAQNALHNIKTLP 86
Cdd:cd12420     3 LFVSGLPLDVKERELYNLFRPLPG-YEASQLKFTGKN---TQPVGFVTFESRAAAEAAKDALQGMRFDP 67
RRM2_NCL cd12404
RNA recognition motif 2 (RRM2) found in vertebrate nucleolin; This subfamily corresponds to ...
108-185 1.06e-03

RNA recognition motif 2 (RRM2) found in vertebrate nucleolin; This subfamily corresponds to the RRM2 of ubiquitously expressed protein nucleolin, also termed protein C23, a multifunctional major nucleolar phosphoprotein that has been implicated in various metabolic processes, such as ribosome biogenesis, cytokinesis, nucleogenesis, cell proliferation and growth, cytoplasmic-nucleolar transport of ribosomal components, transcriptional repression, replication, signal transduction, inducing chromatin decondensation, etc. Nucleolin exhibits intrinsic self-cleaving, DNA helicase, RNA helicase and DNA-dependent ATPase activities. It can be phosphorylated by many protein kinases, such as the major mitotic kinase Cdc2, casein kinase 2 (CK2), and protein kinase C-zeta. Nucleolin shares similar domain architecture with gar2 from Schizosaccharomyces pombe and NSR1 from Saccharomyces cerevisiae. The highly phosphorylated N-terminal domain of nucleolin is made up of highly acidic regions separated from each other by basic sequences, and contains multiple phosphorylation sites. The central domain of nucleolin contains four closely adjacent N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), which suggests that nucleolin is potentially able to interact with multiple RNA targets. The C-terminal RGG (or GAR) domain of nucleolin is rich in glycine, arginine and phenylalanine residues, and contains high levels of NG,NG-dimethylarginines.RRM2, together with RRM1, binds specifically to RNA stem-loops containing the sequence (U/G)CCCG(A/G) in the loop.


Pssm-ID: 409838 [Multi-domain]  Cd Length: 77  Bit Score: 37.80  E-value: 1.06e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 2244986492 108 RKLFIGMVSKKCNENDIRVMFSpfgQIEECRILRGPDGLSRGCAFVTFSTRAMAQNAIKAMhQSQTMEGCSspIVVKF 185
Cdd:cd12404     4 RTLFVKNLPYSTTQDELKEVFE---DAVDIRIPMGRDGRSKGIAYIEFKSEAEAEKALEEK-QGTEVDGRS--IVVDY 75
RRM1_SART3 cd12391
RNA recognition motif 1 (RRM1) found in squamous cell carcinoma antigen recognized by T-cells ...
19-75 1.08e-03

RNA recognition motif 1 (RRM1) found in squamous cell carcinoma antigen recognized by T-cells 3 (SART3) and similar proteins; This subfamily corresponds to the RRM1 of SART3, also termed Tat-interacting protein of 110 kDa (Tip110), an RNA-binding protein expressed in the nucleus of the majority of proliferating cells, including normal cells and malignant cells, but not in normal tissues except for the testes and fetal liver. It is involved in the regulation of mRNA splicing probably via its complex formation with RNA-binding protein with a serine-rich domain (RNPS1), a pre-mRNA-splicing factor. SART3 has also been identified as a nuclear Tat-interacting protein that regulates Tat transactivation activity through direct interaction and functions as an important cellular factor for HIV-1 gene expression and viral replication. In addition, SART3 is required for U6 snRNP targeting to Cajal bodies. It binds specifically and directly to the U6 snRNA, interacts transiently with the U6 and U4/U6 snRNPs, and promotes the reassembly of U4/U6 snRNPs after splicing in vitro. SART3 contains an N-terminal half-a-tetratricopeptide repeat (HAT)-rich domain, a nuclearlocalization signal (NLS) domain, and two C-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409825 [Multi-domain]  Cd Length: 72  Bit Score: 37.59  E-value: 1.08e-03
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....*..
gi 2244986492  19 FVGQIPRSWSEKELKELFEPYGAVYQINVLRDRSQnppQSKGCCFVTFYTRKAALEA 75
Cdd:cd12391     3 FVSNLDYSVPEDKIREIFSGCGEITDVRLVKNYKG---KSKGYCYVEFKDEESAQKA 56
RRM5_MRD1 cd12570
RNA recognition motif 5 (RRM5) found in yeast multiple RNA-binding domain-containing protein 1 ...
17-93 1.09e-03

RNA recognition motif 5 (RRM5) found in yeast multiple RNA-binding domain-containing protein 1 (MRD1) and similar proteins; This subgroup corresponds to the RRM5 of MRD1 which is encoded by a novel yeast gene MRD1 (multiple RNA-binding domain). It is well-conserved in yeast and its homologs exist in all eukaryotes. MRD1 is present in the nucleolus and the nucleoplasm. It interacts with the 35 S precursor rRNA (pre-rRNA) and U3 small nucleolar RNAs (snoRNAs). MRD1 is essential for the initial processing at the A0-A2 cleavage sites in the 35 S pre-rRNA. It contains 5 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), which may play an important structural role in organizing specific rRNA processing events.


Pssm-ID: 241014 [Multi-domain]  Cd Length: 76  Bit Score: 37.49  E-value: 1.09e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 2244986492  17 KMFVGQIPRSWSEKELKELFEPYGAVYQINVLR--DRSqnppqSKGCCFVTFYTRKAALEAQNALHNIKTLpGMHHPIQ 93
Cdd:cd12570     2 KILVKNLPFEATKKDVRTLFSSYGQLKSVRVPKkfDQS-----ARGFAFVEFSTAKEALNAMNALKDTHLL-GRRLVLQ 74
RRM_RNPS1 cd12365
RNA recognition motif (RRM) found in RNA-binding protein with serine-rich domain 1 (RNPS1) and ...
20-81 1.12e-03

RNA recognition motif (RRM) found in RNA-binding protein with serine-rich domain 1 (RNPS1) and similar proteins; This subfamily corresponds to the RRM of RNPS1 and its eukaryotic homologs. RNPS1, also termed RNA-binding protein prevalent during the S phase, or SR-related protein LDC2, was originally characterized as a general pre-mRNA splicing activator, which activates both constitutive and alternative splicing of pre-mRNA in vitro.It has been identified as a protein component of the splicing-dependent mRNP complex, or exon-exon junction complex (EJC), and is directly involved in mRNA surveillance. Furthermore, RNPS1 is a splicing regulator whose activator function is controlled in part by CK2 (casein kinase II) protein kinase phosphorylation. It can also function as a squamous-cell carcinoma antigen recognized by T cells-3 (SART3)-binding protein, and is involved in the regulation of mRNA splicing. RNPS1 contains an N-terminal serine-rich (S) domain, a central RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and the C-terminal arginine/serine/proline-rich (RS/P) domain.


Pssm-ID: 409800 [Multi-domain]  Cd Length: 73  Bit Score: 37.53  E-value: 1.12e-03
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|..
gi 2244986492  20 VGQIPRSWSEKELKELFEPYGAVYQINVLRDRSQNppQSKGCCFVTFYTRKAALEAQNALHN 81
Cdd:cd12365     3 VGKLTRNVTKDHLKEIFSVYGTVKNVDLPIDREPN--LPRGYAYVEFESPEDAEKAIKHMDG 62
RRM_CSTF2_RNA15_like cd12398
RNA recognition motif (RRM) found in cleavage stimulation factor subunit 2 (CSTF2), yeast ...
19-81 1.16e-03

RNA recognition motif (RRM) found in cleavage stimulation factor subunit 2 (CSTF2), yeast ortholog mRNA 3'-end-processing protein RNA15 and similar proteins; This subfamily corresponds to the RRM domain of CSTF2, its tau variant and eukaryotic homologs. CSTF2, also termed cleavage stimulation factor 64 kDa subunit (CstF64), is the vertebrate conterpart of yeast mRNA 3'-end-processing protein RNA15. It is expressed in all somatic tissues and is one of three cleavage stimulatory factor (CstF) subunits required for polyadenylation. CstF64 contains an N-terminal RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), a CstF77-binding domain, a repeated MEARA helical region and a conserved C-terminal domain reported to bind the transcription factor PC-4. During polyadenylation, CstF interacts with the pre-mRNA through the RRM of CstF64 at U- or GU-rich sequences within 10 to 30 nucleotides downstream of the cleavage site. CSTF2T, also termed tauCstF64, is a paralog of the X-linked cleavage stimulation factor CstF64 protein that supports polyadenylation in most somatic cells. It is expressed during meiosis and subsequent haploid differentiation in a more limited set of tissues and cell types, largely in meiotic and postmeiotic male germ cells, and to a lesser extent in brain. The loss of CSTF2T will cause male infertility, as it is necessary for spermatogenesis and fertilization. Moreover, CSTF2T is required for expression of genes involved in morphological differentiation of spermatids, as well as for genes having products that function during interaction of motile spermatozoa with eggs. It promotes germ cell-specific patterns of polyadenylation by using its RRM to bind to different sequence elements downstream of polyadenylation sites than does CstF64. The family also includes yeast ortholog mRNA 3'-end-processing protein RNA15 and similar proteins. RNA15 is a core subunit of cleavage factor IA (CFIA), an essential transcriptional 3'-end processing factor from Saccharomyces cerevisiae. RNA recognition by CFIA is mediated by an N-terminal RRM, which is contained in the RNA15 subunit of the complex. The RRM of RNA15 has a strong preference for GU-rich RNAs, mediated by a binding pocket that is entirely conserved in both yeast and vertebrate RNA15 orthologs.


Pssm-ID: 409832 [Multi-domain]  Cd Length: 77  Bit Score: 37.50  E-value: 1.16e-03
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|...
gi 2244986492  19 FVGQIPRSWSEKELKELFEPYGAVYQINVLRDRSQNPPqsKGCCFVTFYTRKAALEAQNALHN 81
Cdd:cd12398     4 FVGNIPYDATEEQLKEIFSEVGPVVSFRLVTDRETGKP--KGYGFCEFRDAETALSAVRNLNG 64
RRM2_gar2 cd12448
RNA recognition motif 2 (RRM2) found in yeast protein gar2 and similar proteins; This ...
18-79 1.28e-03

RNA recognition motif 2 (RRM2) found in yeast protein gar2 and similar proteins; This subfamily corresponds to the RRM2 of yeast protein gar2, a novel nucleolar protein required for 18S rRNA and 40S ribosomal subunit accumulation. It shares similar domain architecture with nucleolin from vertebrates and NSR1 from Saccharomyces cerevisiae. The highly phosphorylated N-terminal domain of gar2 is made up of highly acidic regions separated from each other by basic sequences, and contains multiple phosphorylation sites. The central domain of gar2 contains two closely adjacent N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The C-terminal RGG (or GAR) domain of gar2 is rich in glycine, arginine and phenylalanine residues.


Pssm-ID: 409882 [Multi-domain]  Cd Length: 73  Bit Score: 37.39  E-value: 1.28e-03
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|..
gi 2244986492  18 MFVGQIPRSWSEKELKELFEPYGAVYQINVLRDRSQNppQSKGCCFVTFYTRKAALEAQNAL 79
Cdd:cd12448     1 LFVGNLPFSATQDALYEAFSQHGSIVSVRLPTDRETG--QPKGFGYVDFSTIDSAEAAIDAL 60
RRM1_p54nrb cd12588
RNA recognition motif 1 (RRM1) found in vertebrate 54 kDa nuclear RNA- and DNA-binding protein ...
17-82 1.35e-03

RNA recognition motif 1 (RRM1) found in vertebrate 54 kDa nuclear RNA- and DNA-binding protein (p54nrb); This subgroup corresponds to the RRM1 of p54nrb, also termed non-POU domain-containing octamer-binding protein (NonO), or 55 kDa nuclear protein (NMT55), or DNA-binding p52/p100 complex 52 kDa subunit. p54nrb is a multifunctional protein involved in numerous nuclear processes including transcriptional regulation, splicing, DNA unwinding, nuclear retention of hyperedited double-stranded RNA, viral RNA processing, control of cell proliferation, and circadian rhythm maintenance. It is ubiquitously expressed and highly conserved in vertebrates. p54nrb binds both, single- and double-stranded RNA and DNA, and also possesses inherent carbonic anhydrase activity. It forms a heterodimer with paraspeckle component 1 (PSPC1 or PSP1), localizing to paraspeckles in an RNA-dependent manneras well as with polypyrimidine tract-binding protein-associated-splicing factor (PSF). p54nrb contains two conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), at the N-terminus.


Pssm-ID: 410001 [Multi-domain]  Cd Length: 71  Bit Score: 37.24  E-value: 1.35e-03
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 2244986492  17 KMFVGQIPRSWSEKELKELFEPYGAVYQINVLRDRsqnppqskGCCFVTFYTRKAALEAQNALHNI 82
Cdd:cd12588     3 RLFVGNLPPDITEEEMRKLFEKYGKAGEVFIHKDK--------GFGFIRLETRTLAEIAKVELDNM 60
RRM1_HuR cd12769
RNA recognition motif 1 (RRM1) found in vertebrate Hu-antigen R (HuR); This subgroup ...
361-434 1.45e-03

RNA recognition motif 1 (RRM1) found in vertebrate Hu-antigen R (HuR); This subgroup corresponds to the RRM1 of HuR, also termed ELAV-like protein 1 (ELAV-1), a ubiquitously expressed Hu family member. It has a variety of biological functions mostly related to the regulation of cellular response to DNA damage and other types of stress. HuR has an anti-apoptotic function during early cell stress response; it binds to mRNAs and enhances the expression of several anti-apoptotic proteins, such as p21waf1, p53, and prothymosin alpha. Meanwhile, HuR also has pro-apoptotic function by promoting apoptosis when cell death is unavoidable. Furthermore, HuR may be important in muscle differentiation, adipogenesis, suppression of inflammatory response and modulation of gene expression in response to chronic ethanol exposure and amino acid starvation. Like other Hu proteins, HuR contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an AU-rich RNA element (ARE). RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions.


Pssm-ID: 410162 [Multi-domain]  Cd Length: 82  Bit Score: 37.32  E-value: 1.45e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 2244986492 361 TMDALTQAYSGIQQYAAAalptlysqSLLQQQSAAGSQKEGFVSYDNPVSAQAAIQAMNGFQIGMKRLKVQLKR 434
Cdd:cd12769    15 TQDELRSLFSSIGEVESA--------KLIRDKVAGHSLGYGFVNYVTAKDAERAINTLNGLRLQSKTIKVSYAR 80
RRM2_PTBP1_hnRNPL_like cd12422
RNA recognition motif (RRM) found in polypyrimidine tract-binding protein 1 (PTB or hnRNP I), ...
128-177 1.47e-03

RNA recognition motif (RRM) found in polypyrimidine tract-binding protein 1 (PTB or hnRNP I), heterogeneous nuclear ribonucleoprotein L (hnRNP-L), and similar proteins; This subfamily corresponds to the RRM2 of polypyrimidine tract-binding protein 1 (PTB or hnRNP I), polypyrimidine tract-binding protein 2 (PTBP2 or nPTB), regulator of differentiation 1 (Rod1), heterogeneous nuclear ribonucleoprotein L (hnRNP-L), heterogeneous nuclear ribonucleoprotein L-like (hnRNP-LL), polypyrimidine tract-binding protein homolog 3 (PTBPH3), polypyrimidine tract-binding protein homolog 1 and 2 (PTBPH1 and PTBPH2), and similar proteins, and RRM3 of PTBPH1 and PTBPH2. PTB is an important negative regulator of alternative splicing in mammalian cells and also functions at several other aspects of mRNA metabolism, including mRNA localization, stabilization, polyadenylation, and translation. PTBP2 is highly homologous to PTB and is perhaps specific to the vertebrates. Unlike PTB, PTBP2 is enriched in the brain and in some neural cell lines. It binds more stably to the downstream control sequence (DCS) RNA than PTB does but is a weaker repressor of splicing in vitro. PTBP2 also greatly enhances the binding of two other proteins, heterogeneous nuclear ribonucleoprotein (hnRNP) H and KH-type splicing-regulatory protein (KSRP), to the DCS RNA. The binding properties of PTBP2 and its reduced inhibitory activity on splicing imply roles in controlling the assembly of other splicing-regulatory proteins. Rod1 is a mammalian polypyrimidine tract binding protein (PTB) homolog of a regulator of differentiation in the fission yeast Schizosaccharomyces pombe, where the nrd1 gene encodes an RNA binding protein negatively regulates the onset of differentiation. ROD1 is predominantly expressed in hematopoietic cells or organs. It might play a role controlling differentiation in mammals. hnRNP-L is a higher eukaryotic specific subunit of human KMT3a (also known as HYPB or hSet2) complex required for histone H3 Lys-36 trimethylation activity. It plays both, nuclear and cytoplasmic, roles in mRNA export of intronless genes, IRES-mediated translation, mRNA stability, and splicing. hnRNP-LL protein plays a critical and unique role in the signal-induced regulation of CD45 and acts as a global regulator of alternative splicing in activated T cells. This family also includes polypyrimidine tract binding protein homolog 3 (PTBPH3) found in plant. Although its biological roles remain unclear, PTBPH3 shows significant sequence similarity to other family members, all of which contain four RNA recognition motifs (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain). Although their biological roles remain unclear, both PTBPH1 and PTBPH2 show significant sequence similarity to PTB. However, in contrast to PTB, they have three RRMs.


Pssm-ID: 409856 [Multi-domain]  Cd Length: 85  Bit Score: 37.55  E-value: 1.47e-03
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|
gi 2244986492 128 FSPFGQIEECRILRGPDGLsrgCAFVTFSTRAMAQNAIKAMHQSQTMEGC 177
Cdd:cd12422    22 FSPYGAVEKIVIFEKGTGV---QALVQFDSVESAEAAKKALNGRNIYDGC 68
RRM_snRNP70 cd12236
RNA recognition motif (RRM) found in U1 small nuclear ribonucleoprotein 70 kDa (U1-70K) and ...
18-66 1.49e-03

RNA recognition motif (RRM) found in U1 small nuclear ribonucleoprotein 70 kDa (U1-70K) and similar proteins; This subfamily corresponds to the RRM of U1-70K, also termed snRNP70, a key component of the U1 snRNP complex, which is one of the key factors facilitating the splicing of pre-mRNA via interaction at the 5' splice site, and is involved in regulation of polyadenylation of some viral and cellular genes, enhancing or inhibiting efficient poly(A) site usage. U1-70K plays an essential role in targeting the U1 snRNP to the 5' splice site through protein-protein interactions with regulatory RNA-binding splicing factors, such as the RS protein ASF/SF2. Moreover, U1-70K protein can specifically bind to stem-loop I of the U1 small nuclear RNA (U1 snRNA) contained in the U1 snRNP complex. It also mediates the binding of U1C, another U1-specific protein, to the U1 snRNP complex. U1-70K contains a conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), followed by an adjacent glycine-rich region at the N-terminal half, and two serine/arginine-rich (SR) domains at the C-terminal half. The RRM is responsible for the binding of stem-loop I of U1 snRNA molecule. Additionally, the most prominent immunodominant region that can be recognized by auto-antibodies from autoimmune patients may be located within the RRM. The SR domains are involved in protein-protein interaction with SR proteins that mediate 5' splice site recognition. For instance, the first SR domain is necessary and sufficient for ASF/SF2 Binding. The family also includes Drosophila U1-70K that is an essential splicing factor required for viability in flies, but its SR domain is dispensable. The yeast U1-70k doesn't contain easily recognizable SR domains and shows low sequence similarity in the RRM region with other U1-70k proteins and therefore not included in this family. The RRM domain is dispensable for yeast U1-70K function.


Pssm-ID: 409682 [Multi-domain]  Cd Length: 91  Bit Score: 37.60  E-value: 1.49e-03
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|....*....
gi 2244986492  18 MFVGQIPRSWSEKELKELFEPYGAVYQINVLRDRSQNppQSKGCCFVTF 66
Cdd:cd12236     4 LFVARLSYDTTESKLRREFEKYGPIKRVRLVRDKKTG--KSRGYAFIEF 50
RRM_PIN4_like cd12253
RNA recognition motif (RRM) found in yeast RNA-binding protein PIN4, fission yeast RNA-binding ...
402-434 1.58e-03

RNA recognition motif (RRM) found in yeast RNA-binding protein PIN4, fission yeast RNA-binding post-transcriptional regulators cip1, cip2 and similar proteins; This subfamily corresponds to the RRM in PIN4, also termed psi inducibility protein 4 or modifier of damage tolerance Mdt1, a novel phosphothreonine (pThr)-containing protein that specifically interacts with the pThr-binding site of the Rad53 FHA1 domain. It is encoded by gene MDT1 (YBL051C) from yeast Saccharomyces cerevisiae. PIN4 is involved in normal G2/M cell cycle progression in the absence of DNA damage and functions as a novel target of checkpoint-dependent cell cycle arrest pathways. It contains an N-terminal RRM, a nuclear localization signal, a coiled coil, and a total of 15 SQ/TQ motifs. cip1 (Csx1-interacting protein 1) and cip2 (Csx1-interacting protein 2) are novel cytoplasmic RRM-containing proteins that counteract Csx1 function during oxidative stress. They are not essential for viability in fission yeast Schizosaccharomyces pombe. Both cip1 and cip2 contain one RRM. Like PIN4, Cip2 also possesses an R3H motif that may function in sequence-specific binding to single-stranded nucleic acids.


Pssm-ID: 240699 [Multi-domain]  Cd Length: 79  Bit Score: 37.43  E-value: 1.58e-03
                          10        20        30
                  ....*....|....*....|....*....|...
gi 2244986492 402 FVSYDNPVSAQAAIQAMNGFQIGMKRLKVQLKR 434
Cdd:cd12253    47 FANFRSPEEAQTVVEALNGYEISGRRLRVEYKR 79
RRM_LARP6 cd12289
RNA recognition motif (RRM) found in La-related protein 6 (LARP6) and similar proteins; This ...
127-176 1.71e-03

RNA recognition motif (RRM) found in La-related protein 6 (LARP6) and similar proteins; This subfamily corresponds to the RRM of LARP6, also termed Acheron (Achn), a novel member of the lupus antigen (La) family. It is expressed predominantly in neurons and muscle in vertebrates. LARP6 functions as a key regulatory protein that may play a role in mediating a variety of developmental and homeostatic processes in animals, including myogenesis, neurogenesis and possibly metastasis. LARP6 binds to Ca2+/calmodulin-dependent serine protein kinase (CASK), and forms a complex with inhibitor of differentiation transcription factors. It is structurally related to the La autoantigen and contains a La motif (LAM), nuclear localization and export (NLS and NES) signals, and an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 409731 [Multi-domain]  Cd Length: 93  Bit Score: 37.66  E-value: 1.71e-03
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 2244986492 127 MFSPFGQIEECRILRG----PDGLSRG-----------CAFVTFSTRAMAQNAIKAMHQSQTMEG 176
Cdd:cd12289    21 LFSPCGEISLIRILRPgrtiPPDVKRHsnrhsqlgtkeCAIVEFEEVEAARKAHELLGAEDDGKG 85
RRM6_RBM19 cd12571
RNA recognition motif 6 (RRM6) found in RNA-binding protein 19 (RBM19) and similar proteins; ...
17-79 1.72e-03

RNA recognition motif 6 (RRM6) found in RNA-binding protein 19 (RBM19) and similar proteins; This subgroup corresponds to the RRM6 of RBM19, also termed RNA-binding domain-1 (RBD-1), which is a nucleolar protein conserved in eukaryotes. It is involved in ribosome biogenesis by processing rRNA. In addition, it is essential for preimplantation development. RBM19 has a unique domain organization containing 6 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409985 [Multi-domain]  Cd Length: 79  Bit Score: 37.02  E-value: 1.72e-03
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|...
gi 2244986492  17 KMFVGQIPRSWSEKELKELFEPYGAVYQINVLRDRSQNpPQSKGCCFVTFYTRKAALEAQNAL 79
Cdd:cd12571     2 KILVRNIPFQATVKEVRELFSTFGELKTVRLPKKMGGT-GQHRGFGFVDFITKQDAKRAFDAL 63
RRM_SRSF3_like cd12373
RNA recognition motif (RRM) found in serine/arginine-rich splicing factor 3 (SRSF3) and ...
17-79 1.75e-03

RNA recognition motif (RRM) found in serine/arginine-rich splicing factor 3 (SRSF3) and similar proteins; This subfamily corresponds to the RRM of two serine/arginine (SR) proteins, serine/arginine-rich splicing factor 3 (SRSF3) and serine/arginine-rich splicing factor 7 (SRSF7). SRSF3, also termed pre-mRNA-splicing factor SRp20, modulates alternative splicing by interacting with RNA cis-elements in a concentration- and cell differentiation-dependent manner. It is also involved in termination of transcription, alternative RNA polyadenylation, RNA export, and protein translation. SRSF3 is critical for cell proliferation, and tumor induction and maintenance. It can shuttle between the nucleus and cytoplasm. SRSF7, also termed splicing factor 9G8, plays a crucial role in both constitutive splicing and alternative splicing of many pre-mRNAs. Its localization and functions are tightly regulated by phosphorylation. SRSF7 is predominantly present in the nuclear and can shuttle between nucleus and cytoplasm. It cooperates with the export protein, Tap/NXF1, helps mRNA export to the cytoplasm, and enhances the expression of unspliced mRNA. Moreover, SRSF7 inhibits tau E10 inclusion through directly interacting with the proximal downstream intron of E10, a clustering region for frontotemporal dementia with Parkinsonism (FTDP) mutations. Both SRSF3 and SRSF7 contain a single N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a C-terminal RS domain rich in serine-arginine dipeptides. The RRM domain is involved in RNA binding, and the RS domain has been implicated in protein shuttling and protein-protein interactions.


Pssm-ID: 409808 [Multi-domain]  Cd Length: 73  Bit Score: 36.84  E-value: 1.75e-03
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|...
gi 2244986492  17 KMFVGQIPRSWSEKELKELFEPYGAVYQINVLRdrsqNPPqskGCCFVTFYTRKAALEAQNAL 79
Cdd:cd12373     1 KVYVGNLGPRVTKRELEDAFEKYGPLRNVWVAR----NPP---GFAFVEFEDPRDAEDAVRAL 56
RRM3_PUB1 cd12622
RNA recognition motif 3 (RRM3) found in yeast nuclear and cytoplasmic polyadenylated ...
111-168 1.80e-03

RNA recognition motif 3 (RRM3) found in yeast nuclear and cytoplasmic polyadenylated RNA-binding protein PUB1 and similar proteins; This subfamily corresponds to the RRM3 of yeast protein PUB1, also termed ARS consensus-binding protein ACBP-60, or poly uridylate-binding protein, or poly(U)-binding protein. PUB1 has been identified as both, a heterogeneous nuclear RNA-binding protein (hnRNP) and a cytoplasmic mRNA-binding protein (mRNP), which may be stably bound to a translationally inactive subpopulation of mRNAs within the cytoplasm. PUB1 is distributed in both, the nucleus and the cytoplasm, and binds to poly(A)+ RNA (mRNA or pre-mRNA). Although it is one of the major cellular proteins cross-linked by UV light to polyadenylated RNAs in vivo, PUB1 is nonessential for cell growth in yeast. PUB1 also binds to T-rich single stranded DNA (ssDNA); however, there is no strong evidence implicating PUB1 in the mechanism of DNA replication. PUB1 contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a GAR motif (glycine and arginine rich stretch) that is located between RRM2 and RRM3.


Pssm-ID: 410033 [Multi-domain]  Cd Length: 74  Bit Score: 37.05  E-value: 1.80e-03
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....*...
gi 2244986492 111 FIGMVSKKCNENDIRVMFSPFGQIEECRILRgpdglSRGCAFVTFSTRAMAQNAIKAM 168
Cdd:cd12622     4 YVGNLPPEVTQADLIPLFQNFGVIEEVRVQR-----DKGFGFVKYDTHEEAALAIQQL 56
RRM1_hnRNPD_like cd12575
RNA recognition motif 1 (RRM1) found in heterogeneous nuclear ribonucleoprotein hnRNP D0, ...
110-155 1.81e-03

RNA recognition motif 1 (RRM1) found in heterogeneous nuclear ribonucleoprotein hnRNP D0, hnRNP A/B, hnRNP DL and similar proteins; This subfamily corresponds to the RRM1 in hnRNP D0, hnRNP A/B, hnRNP DL and similar proteins. hnRNP D0 is a UUAG-specific nuclear RNA binding protein that may be involved in pre-mRNA splicing and telomere elongation. hnRNP A/B is an RNA unwinding protein with a high affinity for G- followed by U-rich regions. hnRNP A/B has also been identified as an APOBEC1-binding protein that interacts with apolipoprotein B (apoB) mRNA transcripts around the editing site and thus plays an important role in apoB mRNA editing. hnRNP DL (or hnRNP D-like) is a dual functional protein that possesses DNA- and RNA-binding properties. It has been implicated in mRNA biogenesis at the transcriptional and post-transcriptional levels. All members in this family contain two putative RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a glycine- and tyrosine-rich C-terminus.


Pssm-ID: 409989 [Multi-domain]  Cd Length: 72  Bit Score: 36.77  E-value: 1.81e-03
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|....*..
gi 2244986492 110 LFIGMVSKKCNENDIRVMFSPFGQIEECRILRGP-DGLSRGCAFVTF 155
Cdd:cd12575     1 MFIGGLSWDTSKKDLKDYFSKFGEVVDCTIKLDPvTGRSRGFGFVLF 47
RRM_Nop15p cd12552
RNA recognition motif in yeast ribosome biogenesis protein 15 (Nop15p) and similar proteins; ...
18-81 1.86e-03

RNA recognition motif in yeast ribosome biogenesis protein 15 (Nop15p) and similar proteins; This subgroup corresponds to the RRM of Nop15p, also termed nucleolar protein 15, which is encoded by YNL110C from Saccharomyces cerevisiae, and localizes to the nucleoplasm and nucleolus. Nop15p has been identified as a component of a pre-60S particle. It interacts with RNA components of the early pre-60S particles. Furthermore, Nop15p binds directly to a pre-rRNA transcript in vitro and is required for pre-rRNA processing. It functions as a ribosome synthesis factor required for the 5' to 3' exonuclease digestion that generates the 5' end of the major, short form of the 5.8S rRNA as well as for processing of 27SB to 7S pre-rRNA. Nop15p also play a specific role in cell cycle progression. Nop15p contains an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 409968 [Multi-domain]  Cd Length: 77  Bit Score: 37.15  E-value: 1.86e-03
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....
gi 2244986492  18 MFVGQIPRSWSEKELKELFEPYGAVYQINVLrdRSQNPPQSKGCCFVTFYTRKAALEAQNALHN 81
Cdd:cd12552     2 IYVSHLPHGFHEKELKKYFAQFGDLKNVRLA--RSKKTGNSKHYGFLEFVNPEDAMIAQKSMNN 63
RRM1_PSP1 cd12586
RNA recognition motif 1 (RRM1) found in vertebrate paraspeckle protein 1 (PSP1); This subgroup ...
17-79 1.88e-03

RNA recognition motif 1 (RRM1) found in vertebrate paraspeckle protein 1 (PSP1); This subgroup corresponds to the RRM1 of PSPC1, also termed paraspeckle component 1 (PSPC1), a novel nucleolar factor that accumulates within a new nucleoplasmic compartment, termed paraspeckles, and diffusely distributes in the nucleoplasm. It is ubiquitously expressed and highly conserved in vertebrates. Its cellular function remains unknown currently, however, PSPC1 forms a novel heterodimer with the nuclear protein p54nrb, also known as non-POU domain-containing octamer-binding protein (NonO), which localizes to paraspeckles in an RNA-dependent manner. PSPC1 contains two conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), at the N-terminus.


Pssm-ID: 409999 [Multi-domain]  Cd Length: 71  Bit Score: 36.82  E-value: 1.88e-03
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|...
gi 2244986492  17 KMFVGQIPRSWSEKELKELFEPYGAVYQINVLRDRsqnppqskGCCFVTFYTRKAALEAQNAL 79
Cdd:cd12586     3 RLFVGNLPTDITEEDFKRLFERYGEPSEVFINRDR--------GFGFIRLESRTLAEIAKAEL 57
RRM1_SXL cd12649
RNA recognition motif 1 (RRM1) found in Drosophila sex-lethal (SXL) and similar proteins; This ...
110-172 1.89e-03

RNA recognition motif 1 (RRM1) found in Drosophila sex-lethal (SXL) and similar proteins; This subfamily corresponds to the RRM1 of SXL which governs sexual differentiation and X chromosome dosage compensation in Drosophila melanogaster. It induces female-specific alternative splicing of the transformer (tra) pre-mRNA by binding to the tra uridine-rich polypyrimidine tract at the non-sex-specific 3' splice site during the sex-determination process. SXL binds also to its own pre-mRNA and promotes female-specific alternative splicing. SXL contains an N-terminal Gly/Asn-rich domain that may be responsible for the protein-protein interaction, and tandem RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), that show high preference to bind single-stranded, uridine-rich target RNA transcripts.


Pssm-ID: 241093 [Multi-domain]  Cd Length: 81  Bit Score: 36.99  E-value: 1.89e-03
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....
gi 2244986492 110 LFIGMVSKKCNENDIRVMFSPFGQIEECRILRG-PDGLSRGCAFVTFSTRAMAQNAIKAMHQSQ 172
Cdd:cd12649     3 LIVNYLPQDLTDREFRALFRAIGPVNTCKIVRDkKTGYSYGFGFVDFTSEEDAQRAIKTLNGLQ 66
RRM2_hnRNPD cd12583
RNA recognition motif 2 (RRM2) found in heterogeneous nuclear ribonucleoprotein D0 (hnRNP D0) ...
17-66 1.98e-03

RNA recognition motif 2 (RRM2) found in heterogeneous nuclear ribonucleoprotein D0 (hnRNP D0) and similar proteins; This subgroup corresponds to the RRM2 of hnRNP D0, also termed AU-rich element RNA-binding protein 1, a UUAG-specific nuclear RNA binding protein that may be involved in pre-mRNA splicing and telomere elongation. hnRNP D0 contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), in the middle and an RGG box rich in glycine and arginine residues in the C-terminal part. Each of RRMs can bind solely to the UUAG sequence specifically.


Pssm-ID: 241027 [Multi-domain]  Cd Length: 75  Bit Score: 36.91  E-value: 1.98e-03
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|
gi 2244986492  17 KMFVGQIPRSWSEKELKELFEPYGAVYQINVLRDRSQNppQSKGCCFVTF 66
Cdd:cd12583     1 KIFVGGLSPDTPEEKIREYFGAFGEVESIELPMDNKTN--KRRGFCFITF 48
RRM_G3BP2 cd12464
RNA recognition motif (RRM) found in ras GTPase-activating protein-binding protein 2 (G3BP2) ...
13-47 1.99e-03

RNA recognition motif (RRM) found in ras GTPase-activating protein-binding protein 2 (G3BP2) and similar proteins; This subgroup corresponds to the RRM of G3BP2, also termed GAP SH3 domain-binding protein 2, a cytoplasmic protein that interacts with both IkappaBalpha and IkappaBalpha/NF-kappaB complexes, indicating that G3BP2 may play a role in the control of nucleocytoplasmic distribution of IkappaBalpha and cytoplasmic anchoring of the IkappaBalpha/NF-kappaB complex. G3BP2 contains an N-terminal nuclear transfer factor 2 (NTF2)-like domain, an acidic domain, a domain containing five PXXP motifs, an RNA recognition motif (RRM domain), and an Arg-Gly-rich region (RGG-rich region, or arginine methylation motif). It binds to the SH3 domain of RasGAP, a multi-functional protein controlling Ras activity, through its N-terminal NTF2-like domain. The acidic domain is sufficient for the interaction of G3BP2 with the IkappaBalpha cytoplasmic retention sequence. Furthermore, G3BP2 might influence stability or translational efficiency of particular mRNAs by binding to RNA-containing structures within the cytoplasm through its RNA-binding domain.


Pssm-ID: 409897 [Multi-domain]  Cd Length: 83  Bit Score: 37.25  E-value: 1.99e-03
                          10        20        30
                  ....*....|....*....|....*....|....*
gi 2244986492  13 PDAIKMFVGQIPRSWSEKELKELFEPYGAVYQINV 47
Cdd:cd12464     3 PDSHQLFVGNLPHDIDENELKEFFMSFGNVVELRI 37
RRM_snRNP35 cd12237
RNA recognition motif (RRM) found in U11/U12 small nuclear ribonucleoprotein 35 kDa protein ...
12-75 2.00e-03

RNA recognition motif (RRM) found in U11/U12 small nuclear ribonucleoprotein 35 kDa protein (U11/U12-35K) and similar proteins; This subfamily corresponds to the RRM of U11/U12-35K, also termed protein HM-1, or U1 snRNP-binding protein homolog, and is one of the components of the U11/U12 snRNP, which is a subunit of the minor (U12-dependent) spliceosome required for splicing U12-type nuclear pre-mRNA introns. U11/U12-35K is highly conserved among bilateria and plants, but lacks in some organisms, such as Saccharomyces cerevisiae and Caenorhabditis elegans. Moreover, U11/U12-35K shows significant sequence homology to U1 snRNP-specific 70 kDa protein (U1-70K or snRNP70). It contains a conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), followed by an adjacent glycine-rich region, and Arg-Asp and Arg-Glu dipeptide repeats rich domain, making U11/U12-35K a possible functional analog of U1-70K. It may facilitate 5' splice site recognition in the minor spliceosome and play a role in exon bridging, interacting with components of the major spliceosome bound to the pyrimidine tract of an upstream U2-type intron. The family corresponds to the RRM of U11/U12-35K that may directly contact the U11 or U12 snRNA through the RRM domain.


Pssm-ID: 409683 [Multi-domain]  Cd Length: 94  Bit Score: 37.31  E-value: 2.00e-03
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....
gi 2244986492  12 DPDaIKMFVGQIPRSWSEKELKELFEPYGAVYQINVLRDRSQNppQSKGCCFVTFYTRKAALEA 75
Cdd:cd12237     2 DPR-LTLFVGRLSLQTTEEKLKEVFSRYGDIRRLRLVRDIVTG--FSKRYAFIEYKEERDALHA 62
RRM2_NsCP33_like cd21608
RNA recognition motif 2 (RRM2) found in Nicotiana sylvestris chloroplastic 33 kDa ...
401-430 2.02e-03

RNA recognition motif 2 (RRM2) found in Nicotiana sylvestris chloroplastic 33 kDa ribonucleoprotein (NsCP33) and similar proteins; The family includes NsCP33, Arabidopsis thaliana chloroplastic 31 kDa ribonucleoprotein (CP31A) and mitochondrial glycine-rich RNA-binding protein 2 (AtGR-RBP2). NsCP33 may be involved in splicing and/or processing of chloroplast RNA's. AtCP31A, also called RNA-binding protein 1/2/3 (AtRBP33), or RNA-binding protein CP31A, or RNA-binding protein RNP-T, or RNA-binding protein cp31, is required for specific RNA editing events in chloroplasts and stabilizes specific chloroplast mRNAs, as well as for normal chloroplast development under cold stress conditions by stabilizing transcripts of numerous mRNAs under these conditions. CP31A may modulate telomere replication through RNA binding domains. AtGR-RBP2, also called AtRBG2, or glycine-rich protein 2 (AtGRP2), or mitochondrial RNA-binding protein 1a (At-mRBP1a), plays a role in RNA transcription or processing during stress. It binds RNAs and DNAs sequence with a preference to single-stranded nucleic acids. AtGR-RBP2 displays strong affinity to poly(U) sequence. It exerts cold and freezing tolerance, probably by exhibiting an RNA chaperone activity during the cold and freezing adaptation process. Some members in this family contain two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The model corresponds to the second RRM motif.


Pssm-ID: 410187 [Multi-domain]  Cd Length: 76  Bit Score: 36.76  E-value: 2.02e-03
                          10        20        30
                  ....*....|....*....|....*....|
gi 2244986492 401 GFVSYDNPVSAQAAIQAMNGFQIGMKRLKV 430
Cdd:cd21608    44 GFVTFSTAEAAEAAIDALNGKELDGRSIVV 73
RRM1_PHIP1 cd12271
RNA recognition motif 1 (RRM1) found in Arabidopsis thaliana phragmoplastin interacting ...
19-75 2.04e-03

RNA recognition motif 1 (RRM1) found in Arabidopsis thaliana phragmoplastin interacting protein 1 (PHIP1) and similar proteins; This subfamily corresponds to the RRM1 of PHIP1. A. thaliana PHIP1 and its homologs represent a novel class of plant-specific RNA-binding proteins that may play a unique role in the polarized mRNA transport to the vicinity of the cell plate. The family members consist of multiple functional domains, including a lysine-rich domain (KRD domain) that contains three nuclear localization motifs (KKKR/NK), two RNA recognition motifs (RRMs), and three CCHC-type zinc fingers. PHIP1 is a peripheral membrane protein and is localized at the cell plate during cytokinesis in plants. In addition to phragmoplastin, PHIP1 interacts with two Arabidopsis small GTP-binding proteins, Rop1 and Ran2. However, PHIP1 interacted only with the GTP-bound form of Rop1 but not the GDP-bound form. It also binds specifically to Ran2 mRNA.


Pssm-ID: 409714 [Multi-domain]  Cd Length: 72  Bit Score: 36.53  E-value: 2.04e-03
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....*..
gi 2244986492  19 FVGQIPRSWSEKELKELFEPYGAVYQINVLrdRSQNPPQSKGCCFVTFYTRKAALEA 75
Cdd:cd12271     2 YVGGIPYYSTEAEIRSYFSSCGEVRSVDLM--RFPDSGNFRGIAFITFKTEEAAKRA 56
RRM_PPIL4 cd12235
RNA recognition motif (RRM) found in peptidyl-prolyl cis-trans isomerase-like 4 (PPIase) and ...
110-168 2.06e-03

RNA recognition motif (RRM) found in peptidyl-prolyl cis-trans isomerase-like 4 (PPIase) and similar proteins; This subfamily corresponds to the RRM of PPIase, also termed cyclophilin-like protein PPIL4, or rotamase PPIL4, a novel nuclear RNA-binding protein encoded by cyclophilin-like PPIL4 gene. The precise role of PPIase remains unclear. PPIase contains a conserved N-terminal peptidyl-prolyl cistrans isomerase (PPIase) motif, a central RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), followed by a lysine rich domain, and a pair of bipartite nuclear targeting sequences (NLS) at the C-terminus.


Pssm-ID: 409681 [Multi-domain]  Cd Length: 83  Bit Score: 36.87  E-value: 2.06e-03
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|..
gi 2244986492 110 LFIGMVSKKCNENDIRVMFSPFGQIEECRILRgpD---GLSRGCAFVTFSTRAMAQNAIKAM 168
Cdd:cd12235     6 LFVCKLNPVTTDEDLEIIFSRFGKIKSCEVIR--DkktGDSLQYAFIEFETKESCEEAYFKM 65
RRM_II_PABPs cd12306
RNA recognition motif in type II polyadenylate-binding proteins; This subfamily corresponds to ...
19-79 2.14e-03

RNA recognition motif in type II polyadenylate-binding proteins; This subfamily corresponds to the RRM of type II polyadenylate-binding proteins (PABPs), including polyadenylate-binding protein 2 (PABP-2 or PABPN1), embryonic polyadenylate-binding protein 2 (ePABP-2 or PABPN1L) and similar proteins. PABPs are highly conserved proteins that bind to the poly(A) tail present at the 3' ends of most eukaryotic mRNAs. They have been implicated in the regulation of poly(A) tail length during the polyadenylation reaction, translation initiation, mRNA stabilization by influencing the rate of deadenylation and inhibition of mRNA decapping. ePABP-2 is predominantly located in the cytoplasm and PABP-2 is located in the nucleus. In contrast to the type I PABPs containing four copies of RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), the type II PABPs contains a single highly-conserved RRM. This subfamily also includes Saccharomyces cerevisiae RBP29 (SGN1, YIR001C) gene encoding cytoplasmic mRNA-binding protein Rbp29 that binds preferentially to poly(A). Although not essential for cell viability, Rbp29 plays a role in modulating the expression of cytoplasmic mRNA. Like other type II PABPs, Rbp29 contains one RRM only.


Pssm-ID: 409747 [Multi-domain]  Cd Length: 73  Bit Score: 36.51  E-value: 2.14e-03
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|.
gi 2244986492  19 FVGQIPRSWSEKELKELFEPYGAVYQINVLRDRsqNPPQSKGCCFVTFyTRKAALEaqNAL 79
Cdd:cd12306     3 YVGNVDYGTTPEELQAHFKSCGTINRVTILCDK--FTGQPKGFAYIEF-VDKSSVE--NAL 58
RRM3_Nop4p cd12676
RNA recognition motif 3 (RRM3) found in yeast nucleolar protein 4 (Nop4p) and similar proteins; ...
19-86 2.15e-03

RNA recognition motif 3 (RRM3) found in yeast nucleolar protein 4 (Nop4p) and similar proteins; This subgroup corresponds to the RRM3 of Nop4p (also known as Nop77p), encoded by YPL043W from Saccharomyces cerevisiae. It is an essential nucleolar protein involved in processing and maturation of 27S pre-rRNA and biogenesis of 60S ribosomal subunits. Nop4p has four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 410077 [Multi-domain]  Cd Length: 107  Bit Score: 37.79  E-value: 2.15e-03
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 2244986492  19 FVGQIPRSWSEKELKELFEPYGAVYQINVLRDRSQNppQSKGCCFVTFYTRKaalEAQNALHNIKTLP 86
Cdd:cd12676     5 FVRNLPFDATEDELYSHFSQFGPLKYARVVKDPATG--RSKGTAFVKFKNKE---DADNCLSAAPEAQ 67
RRM_RBPMS_like cd12420
RNA recognition motif (RRM) found in RNA-binding protein with multiple splicing (RBP-MS)-like ...
108-169 2.27e-03

RNA recognition motif (RRM) found in RNA-binding protein with multiple splicing (RBP-MS)-like proteins; This subfamily corresponds to the RRM of RNA-binding proteins with multiple splicing (RBP-MS)-like proteins, including protein products of RBPMS genes (RBP-MS and its paralogue RBP-MS2), the Drosophila couch potato (cpo), and Caenorhabditis elegans Mec-8 genes. RBP-MS may be involved in regulation of mRNA translation and localization during Xenopus laevis development. It has also been shown to physically interact with Smad2, Smad3 and Smad4, and stimulates Smad-mediated transactivation. Cpo may play an important role in regulating normal function of the nervous system, whereas mutations in Mec-8 affect mechanosensory and chemosensory neuronal function. All members contain a well conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). Some uncharacterized family members contain two RRMs; this subfamily includes their RRM1. Their RRM2 shows high sequence homology to the RRM of yeast proteins scw1, Whi3, and Whi4.


Pssm-ID: 409854 [Multi-domain]  Cd Length: 76  Bit Score: 36.54  E-value: 2.27e-03
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|..
gi 2244986492 108 RKLFIGMVSKKCNENDIRVMFSPFGQIEECrILRGPDGLSRGCAFVTFSTRAMAQNAIKAMH 169
Cdd:cd12420     1 RTLFVSGLPLDVKERELYNLFRPLPGYEAS-QLKFTGKNTQPVGFVTFESRAAAEAAKDALQ 61
RRM2_RBM34 cd12395
RNA recognition motif 2 (RRM2) found in RNA-binding protein 34 (RBM34) and similar proteins; ...
19-83 2.35e-03

RNA recognition motif 2 (RRM2) found in RNA-binding protein 34 (RBM34) and similar proteins; This subfamily corresponds to the RRM2 of RBM34, a putative RNA-binding protein containing two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). Although the function of RBM34 remains unclear currently, its RRM domains may participate in mRNA processing. RBM34 may act as an mRNA processing-related protein.


Pssm-ID: 409829 [Multi-domain]  Cd Length: 73  Bit Score: 36.71  E-value: 2.35e-03
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 2244986492  19 FVGQIPRSWSEKELKELFEPYGAVYQINVLRDRSQNppQSKGCCFVTFYTRKAALEAQnALHNIK 83
Cdd:cd12395     3 FVGNLPFDIEEEELRKHFEDCGDVEAVRIVRDRETG--IGKGFGYVLFKDKDSVDLAL-KLNGSK 64
RRM4_MRN1 cd12522
RNA recognition motif 4 (RRM4) found in RNA-binding protein MRN1 and similar proteins; This ...
108-170 2.37e-03

RNA recognition motif 4 (RRM4) found in RNA-binding protein MRN1 and similar proteins; This subgroup corresponds to the RRM4 of MRN1, also termed multicopy suppressor of RSC-NHP6 synthetic lethality protein 1, or post-transcriptional regulator of 69 kDa, which is a RNA-binding protein found in yeast. Although its specific biological role remains unclear, MRN1 might be involved in translational regulation. Members in this family contain four copies of conserved RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 409942 [Multi-domain]  Cd Length: 81  Bit Score: 36.74  E-value: 2.37e-03
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 2244986492 108 RKLFIGMV--SKKCNENDIRVMFSPFGQIEECRILRgpdglSRGCAFVTFSTRAMAQNAIKAMHQ 170
Cdd:cd12522     4 RNVYIGNIddVRVLTEERLRHDFSQYGEIEQVNFLR-----EKNCAFVNFTNIANAIKAIDKIKS 63
RRM_RBM8 cd12324
RNA recognition motif (RRM) found in RNA-binding protein RBM8A, RBM8B nd similar proteins; ...
105-186 2.40e-03

RNA recognition motif (RRM) found in RNA-binding protein RBM8A, RBM8B nd similar proteins; This subfamily corresponds to the RRM of RBM8, also termed binder of OVCA1-1 (BOV-1), or RNA-binding protein Y14, which is one of the components of the exon-exon junction complex (EJC). It has two isoforms, RBM8A and RBM8B, both of which are identical except that RBM8B is 16 amino acids shorter at its N-terminus. RBM8, together with other EJC components (such as Magoh, Aly/REF, RNPS1, Srm160, and Upf3), plays critical roles in postsplicing processing, including nuclear export and cytoplasmic localization of the mRNA, and the nonsense-mediated mRNA decay (NMD) surveillance process. RBM8 binds to mRNA 20-24 nucleotides upstream of a spliced exon-exon junction. It is also involved in spliced mRNA nuclear export, and the process of nonsense-mediated decay of mRNAs with premature stop codons. RBM8 forms a specific heterodimer complex with the EJC protein Magoh which then associates with Aly/REF, RNPS1, DEK, and SRm160 on the spliced mRNA, and inhibits ATP turnover by eIF4AIII, thereby trapping the EJC core onto RNA. RBM8 contains an N-terminal putative bipartite nuclear localization signal, one RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), in the central region, and a C-terminal serine-arginine rich region (SR domain) and glycine-arginine rich region (RG domain).


Pssm-ID: 409762 [Multi-domain]  Cd Length: 88  Bit Score: 36.82  E-value: 2.40e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2244986492 105 VEDRKLFIGMVSKKCNENDIRVMFSPFGQIEECRI-LRGPDGLSRGCAFVTFSTRAMAQNAIKAMHQSQTMEgcsSPIVV 183
Cdd:cd12324     4 VEGWIIFVTGVHEEAQEEDIHDKFAEFGEIKNLHLnLDRRTGFVKGYALVEYETKKEAQAAIEGLNGKELLG---QTISV 80

                  ...
gi 2244986492 184 KFA 186
Cdd:cd12324    81 DWA 83
RRM1_SHARP cd12348
RNA recognition motif 1 (RRM1) found in SMART/HDAC1-associated repressor protein (SHARP) and ...
18-78 2.41e-03

RNA recognition motif 1 (RRM1) found in SMART/HDAC1-associated repressor protein (SHARP) and similar proteins; This subfamily corresponds to the RRM1 of SHARP, also termed Msx2-interacting protein (MINT), or SPEN homolog, an estrogen-inducible transcriptional repressor that interacts directly with the nuclear receptor corepressor SMRT, histone deacetylases (HDACs) and components of the NuRD complex. SHARP recruits HDAC activity and binds to the steroid receptor RNA coactivator SRA through four conserved N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), further suppressing SRA-potentiated steroid receptor transcription activity. Thus, SHARP has the capacity to modulate both liganded and nonliganded nuclear receptors. SHARP also has been identified as a component of transcriptional repression complexes in Notch/RBP-Jkappa signaling pathways. In addition to the N-terminal RRMs, SHARP possesses a C-terminal SPOC domain (Spen paralog and ortholog C-terminal domain), which is highly conserved among Spen proteins.


Pssm-ID: 409784 [Multi-domain]  Cd Length: 75  Bit Score: 36.82  E-value: 2.41e-03
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|.
gi 2244986492  18 MFVGQIPRSWSEKELKELFEPYGAVYQINVLRDRSQNPPQSkgcCFVTFYTRKAALEAQNA 78
Cdd:cd12348     2 LWVGNLPENVREEKIIEHFKRFGRVESVKILPKRGSEGGVA---AFVDFVDIKSAQKAHSA 59
RRM1_MRD1 cd12565
RNA recognition motif 1 (RRM1) found in yeast multiple RNA-binding domain-containing protein 1 ...
19-81 2.42e-03

RNA recognition motif 1 (RRM1) found in yeast multiple RNA-binding domain-containing protein 1 (MRD1) and similar proteins; This subgroup corresponds to the RRM1 of MRD1 which is encoded by a novel yeast gene MRD1 (multiple RNA-binding domain). It is well-conserved in yeast and its homologs exist in all eukaryotes. MRD1 is present in the nucleolus and the nucleoplasm. It interacts with the 35 S precursor rRNA (pre-rRNA) and U3 small nucleolar RNAs (snoRNAs). MRD1 is essential for the initial processing at the A0-A2 cleavage sites in the 35 S pre-rRNA. It contains 5 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), which may play an important structural role in organizing specific rRNA processing events.


Pssm-ID: 409981 [Multi-domain]  Cd Length: 76  Bit Score: 36.77  E-value: 2.42e-03
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|...
gi 2244986492  19 FVGQIPRSWSEKELKELFEPYGAVYQINVLRDRSQnppQSKGCCFVTFYTRKAALEAQNALHN 81
Cdd:cd12565     4 IVKNLPKYVTEKRLKEHFSKKGEITDVKVMRTKDG---KSRRFGFIGFKSEEEAQKAVKYFNK 63
RRM_Set1 cd12304
RNA recognition motif in the Set1-like family of histone-lysine N-methyltransferases; This ...
120-174 2.56e-03

RNA recognition motif in the Set1-like family of histone-lysine N-methyltransferases; This subfamily corresponds to the RRM of the Set1-like family of histone-lysine N-methyltransferases which includes Set1A and Set1B that are ubiquitously expressed vertebrates histone methyltransferases exhibiting high homology to yeast Set1. Set1A and Set1B proteins exhibit a largely non-overlapping subnuclear distribution in euchromatic nuclear speckles, strongly suggesting that they bind to a unique set of target genes and thus make non-redundant contributions to the epigenetic control of chromatin structure and gene expression. With the exception of the catalytic component, the subunit composition of the Set1A and Set1B histone methyltransferase complexes are identical. Each complex contains six human homologs of the yeast Set1/COMPASS complex, including Set1A or Set1B, Ash2 (homologous to yeast Bre2), CXXC finger protein 1 (CFP1; homologous to yeast Spp1), Rbbp5 (homologous to yeast Swd1), Wdr5 (homologous to yeast Swd3), and Wdr82 (homologous to yeast Swd2). The genomic targeting of these complexes is determined by the identity of the catalytic subunit present in each histone methyltransferase complex. Thus, the Set1A and Set1B complexes may exhibit both overlapping and non-redundant properties. Both Set1A and Set1B contain an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), an N- SET domain, and a C-terminal catalytic SET domain followed by a post-SET domain. In contrast to Set1B, Set1A additionally contains an HCF-1 binding motif that interacts with HCF-1 in vivo.


Pssm-ID: 409745 [Multi-domain]  Cd Length: 93  Bit Score: 36.94  E-value: 2.56e-03
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....*.
gi 2244986492 120 NENDIRVMFSPFGQIEECRILRGPD-GLSRGCAFVTFSTRAMAQNAIKAMHQSQTM 174
Cdd:cd12304    15 NEGFLKDMCKKYGEVEEVKIYFHPKtGKHLGLARVVFDTTKGAKDCVEKLNQTSVM 70
RRM1_MSI cd12576
RNA recognition motif 1 (RRM1) found in RNA-binding protein Musashi homolog Musashi-1, ...
17-66 2.61e-03

RNA recognition motif 1 (RRM1) found in RNA-binding protein Musashi homolog Musashi-1, Musashi-2 and similar proteins; This subfamily corresponds to the RRM1 in Musashi-1 and Musashi-2. Musashi-1 (also termed Msi1) is a neural RNA-binding protein putatively expressed in central nervous system (CNS) stem cells and neural progenitor cells, and associated with asymmetric divisions in neural progenitor cells. It is evolutionarily conserved from invertebrates to vertebrates. Musashi-1 is a homolog of Drosophila Musashi and Xenopus laevis nervous system-specific RNP protein-1 (Nrp-1). It has been implicated in the maintenance of the stem-cell state, differentiation, and tumorigenesis. It translationally regulates the expression of a mammalian numb gene by binding to the 3'-untranslated region of mRNA of Numb, encoding a membrane-associated inhibitor of Notch signaling, and further influences neural development. Moreover, Musashi-1 represses translation by interacting with the poly(A)-binding protein and competes for binding of the eukaryotic initiation factor-4G (eIF-4G). Musashi-2 (also termed Msi2) has been identified as a regulator of the hematopoietic stem cell (HSC) compartment and of leukemic stem cells after transplantation of cells with loss and gain of function of the gene. It influences proliferation and differentiation of HSCs and myeloid progenitors, and further modulates normal hematopoiesis and promotes aggressive myeloid leukemia. Both, Musashi-1 and Musashi-2, contain two conserved N-terminal tandem RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), along with other domains of unknown function.


Pssm-ID: 409990 [Multi-domain]  Cd Length: 76  Bit Score: 36.66  E-value: 2.61e-03
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|..
gi 2244986492  17 KMFVGQIprSW--SEKELKELFEPYGAVYQINVLRDRSQNppQSKGCCFVTF 66
Cdd:cd12576     1 KMFIGGL--SWqtTPEGLREYFSKFGEITECMVMRDPTTK--RSRGFGFVTF 48
RRM2_Nop12p_like cd12670
RNA recognition motif 2 (RRM2) found in yeast nucleolar protein 12 (Nop12p) and similar ...
110-176 2.70e-03

RNA recognition motif 2 (RRM2) found in yeast nucleolar protein 12 (Nop12p) and similar proteins; This subgroup corresponds to the RRM2 of Nop12p, which is encoded by YOL041C from Saccharomyces cerevisiae. It is a novel nucleolar protein required for pre-25S rRNA processing and normal rates of cell growth at low temperatures. Nop12p shares high sequence similarity with nucleolar protein 13 (Nop13p). Both, Nop12p and Nop13p, are not essential for growth. However, unlike Nop13p that localizes primarily to the nucleolus but is also present in the nucleoplasm to a lesser extent, Nop12p is localized to the nucleolus. Nop12p contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 410071 [Multi-domain]  Cd Length: 77  Bit Score: 36.65  E-value: 2.70e-03
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 2244986492 110 LFIGMVSKKCNENDIRVMFSPFGQIEECRILRGP-DGLSRGCAFVTFSTRAMAQNAIKaMHQSQTMEG 176
Cdd:cd12670     2 VFVGNLAFEAEEEGLWRYFGKCGAIESVRIVRDPkTNVGKGFAYVQFKDENAVEKALL-LNEKPTMKG 68
RRM2_hnRNPA1 cd12580
RNA recognition motif 2 (RRM2) found in heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) ...
108-155 2.73e-03

RNA recognition motif 2 (RRM2) found in heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) and similar proteins; This subgroup corresponds to the RRM2 of hnRNP A1, also termed helix-destabilizing protein, or single-strand RNA-binding protein, or hnRNP core protein A1, an abundant eukaryotic nuclear RNA-binding protein that may modulate splice site selection in pre-mRNA splicing. hnRNP A1 has been characterized as a splicing silencer, often acting in opposition to an activating hnRNP H. It silences exons when bound to exonic elements in the alternatively spliced transcripts of c-src, HIV, GRIN1, and beta-tropomyosin. hnRNP A1 can shuttle between the nucleus and the cytoplasm. Thus, it may be involved in transport of cellular RNAs, including the packaging of pre-mRNA into hnRNP particles and transport of poly A+ mRNA from the nucleus to the cytoplasm. The cytoplasmic hnRNP A1 has high affinity with AU-rich elements, whereas the nuclear hnRNP A1 has high affinity with a polypyrimidine stretch bordered by AG at the 3' ends of introns. hnRNP A1 is also involved in the replication of an RNA virus, such as mouse hepatitis virus (MHV), through an interaction with the transcription-regulatory region of viral RNA. Moreover, hnRNP A1, together with the scaffold protein septin 6, serves as host proteins to form a complex with NS5b and viral RNA, and further play important roles in the replication of Hepatitis C virus (HCV). hnRNP A1 contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), followed by a long glycine-rich region at the C-terminus. The RRMs of hnRNP A1 play an important role in silencing the exon and the glycine-rich domain is responsible for protein-protein interactions.


Pssm-ID: 409994 [Multi-domain]  Cd Length: 77  Bit Score: 36.48  E-value: 2.73e-03
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|
gi 2244986492 108 RKLFIGMVSKKCNENDIRVMFSPFGQIEECRIL--RGpDGLSRGCAFVTF 155
Cdd:cd12580     1 KKIFVGGIKEDTEEHHLRDYFEQYGKIEVIEIMtdRG-SGKKRGFAFVTF 49
RRM1_hnRPDL cd12758
RNA recognition motif 1 (RRM1) found in heterogeneous nuclear ribonucleoprotein D-like (hnRNP ...
109-155 2.78e-03

RNA recognition motif 1 (RRM1) found in heterogeneous nuclear ribonucleoprotein D-like (hnRNP D-like or hnRNP DL) and similar proteins; This subgroup corresponds to the RRM1 of hnRNP DL (or hnRNP D-like), also termed AU-rich element RNA-binding factor, or JKT41-binding protein (protein laAUF1 or JKTBP), which is a dual functional protein that possesses DNA- and RNA-binding properties. It has been implicated in mRNA biogenesis at the transcriptional and post-transcriptional levels. hnRNP DL binds single-stranded DNA (ssDNA) or double-stranded DNA (dsDNA) in a non-sequencespecific manner, and interacts with poly(G) and poly(A) tenaciously. It contains two putative two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a glycine- and tyrosine-rich C-terminus.


Pssm-ID: 410152 [Multi-domain]  Cd Length: 76  Bit Score: 36.49  E-value: 2.78e-03
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|....*...
gi 2244986492 109 KLFIGMVSKKCNENDIRVMFSPFGQIEECRILRGP-DGLSRGCAFVTF 155
Cdd:cd12758     1 KMFIGGLSWDTSKKDLTEYLSRFGEVVDCTIKTDPvTGRSRGFGFVLF 48
RRM2_RBM23_RBM39 cd12284
RNA recognition motif 2 (RRM2) found in vertebrate RNA-binding protein RBM23, RBM39 and ...
389-430 2.83e-03

RNA recognition motif 2 (RRM2) found in vertebrate RNA-binding protein RBM23, RBM39 and similar proteins; This subfamily corresponds to the RRM2 of RBM39 (also termed HCC1), a nuclear autoantigen that contains an N-terminal arginine/serine rich (RS) motif and three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). An octapeptide sequence called the RS-ERK motif is repeated six times in the RS region of RBM39. Although the cellular function of RBM23 remains unclear, it shows high sequence homology to RBM39 and contains two RRMs. It may possibly function as a pre-mRNA splicing factor.


Pssm-ID: 409726 [Multi-domain]  Cd Length: 78  Bit Score: 36.45  E-value: 2.83e-03
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|...
gi 2244986492 389 LQQQSAAG-SQKEGFVSYDNPVSAQAAIQAMNGFQIGMKRLKV 430
Cdd:cd12284    30 LQKDPETGrSKGYGFIQFRDAEDAKKALEQLNGFELAGRPMKV 72
RRM4_RBM45 cd12369
RNA recognition motif 4 (RRM4) found in RNA-binding protein 45 (RBM45) and similar proteins; ...
401-430 2.96e-03

RNA recognition motif 4 (RRM4) found in RNA-binding protein 45 (RBM45) and similar proteins; This subfamily corresponds to the RRM4 of RBM45, also termed developmentally-regulated RNA-binding protein 1 (DRB1), a new member of RNA recognition motif (RRM)-type neural RNA-binding proteins, which expresses under spatiotemporal control. It is encoded by gene drb1 that is expressed in neurons, not in glial cells. RBM45 predominantly localizes in cytoplasm of cultured cells and specifically binds to poly(C) RNA. It could play an important role during neurogenesis. RBM45 carries four RRMs, also known as RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409804 [Multi-domain]  Cd Length: 68  Bit Score: 36.12  E-value: 2.96e-03
                          10        20        30
                  ....*....|....*....|....*....|
gi 2244986492 401 GFVSYDNPVSAQAAIQAMNGFQIGMKRLKV 430
Cdd:cd12369    38 GYAKYADRESAEEAITTLHGKEVNGVKLKV 67
RRM1_hnRNPAB cd12757
RNA recognition motif 1 (RRM1) found in heterogeneous nuclear ribonucleoprotein A/B (hnRNP A/B) ...
14-66 3.06e-03

RNA recognition motif 1 (RRM1) found in heterogeneous nuclear ribonucleoprotein A/B (hnRNP A/B) and similar proteins; This subgroup corresponds to the RRM1 of hnRNP A/B, also termed APOBEC1-binding protein 1 (ABBP-1), which is an RNA unwinding protein with a high affinity for G- followed by U-rich regions. hnRNP A/B has also been identified as an APOBEC1-binding protein that interacts with apolipoprotein B (apoB) mRNA transcripts around the editing site and thus plays an important role in apoB mRNA editing. hnRNP A/B contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), followed by a long C-terminal glycine-rich domain that contains a potential ATP/GTP binding loop.


Pssm-ID: 410151 [Multi-domain]  Cd Length: 80  Bit Score: 36.49  E-value: 3.06e-03
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|...
gi 2244986492  14 DAIKMFVGQIPRSWSEKELKELFEPYGAVYQINVLRDrsQNPPQSKGCCFVTF 66
Cdd:cd12757     3 DAGKMFVGGLSWDTSKKDLKDYFTKFGEVVDCTIKMD--PNTGRSRGFGFILF 53
RRM2_Nop4p cd12675
RNA recognition motif 2 (RRM2) found in yeast nucleolar protein 4 (Nop4p) and similar proteins; ...
127-186 3.06e-03

RNA recognition motif 2 (RRM2) found in yeast nucleolar protein 4 (Nop4p) and similar proteins; This subgroup corresponds to the RRM2 of Nop4p (also known as Nop77p), encoded by YPL043W from Saccharomyces cerevisiae. It is an essential nucleolar protein involved in processing and maturation of 27S pre-rRNA and biogenesis of 60S ribosomal subunits. Nop4p has four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 410076 [Multi-domain]  Cd Length: 83  Bit Score: 36.69  E-value: 3.06e-03
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|
gi 2244986492 127 MFSPFGQIEECRILRGPDGLSRGCAFVTFSTRamaQNAIKAMHQSQTMEGCSSPIVVKFA 186
Cdd:cd12675    21 LFGRYGKVVEATIPRKKGGKLSGFAFVTMKGR---KNAEEALESVNGLEIDGRPVAVDWA 77
RRM2_Spen cd12309
RNA recognition motif 2 (RRM2) found in the Spen (split end) protein family; This subfamily ...
18-66 3.13e-03

RNA recognition motif 2 (RRM2) found in the Spen (split end) protein family; This subfamily corresponds to the RRM2 domain in the Spen (split end) protein family which includes RNA binding motif protein 15 (RBM15), putative RNA binding motif protein 15B (RBM15B), and similar proteins found in Metazoa. RBM15, also termed one-twenty two protein 1 (OTT1), conserved in eukaryotes, is a novel mRNA export factor and component of the NXF1 pathway. It binds to NXF1 and serves as receptor for the RNA export element RTE. It also possess mRNA export activity and can facilitate the access of DEAD-box protein DBP5 to mRNA at the nuclear pore complex (NPC). RNA-binding protein 15B (RBM15B), also termed one twenty-two 3 (OTT3), is a paralog of RBM15 and therefore has post-transcriptional regulatory activity. It is a nuclear protein sharing with RBM15 the association with the splicing factor compartment and the nuclear envelope as well as the binding to mRNA export factors NXF1 and Aly/REF. Members in this family belong to the Spen (split end) protein family, which share a domain architecture comprising of three N-terminal RNA recognition motifs (RRMs), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a C-terminal SPOC (Spen paralog and ortholog C-terminal) domain.


Pssm-ID: 240755 [Multi-domain]  Cd Length: 79  Bit Score: 36.22  E-value: 3.13e-03
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|....*....
gi 2244986492  18 MFVGQIPRSWSEKELKELFEPYGAVYQINVLRDRsqnPPQSKGCCFVTF 66
Cdd:cd12309     5 LFVGNLEITITEEELRRAFERYGVVEDVDIKRPP---RGQGNAYAFVKF 50
RRM_Set1B cd12549
RNA recognition motif in vertebrate histone-lysine N-methyltransferase Setd1B (Set1B); This ...
121-174 3.23e-03

RNA recognition motif in vertebrate histone-lysine N-methyltransferase Setd1B (Set1B); This subgroup corresponds to the RRM of Setd1B, also termed SET domain-containing protein 1B (Set1B), or lysine N-methyltransferase 2G, a ubiquitously expressed vertebrates histone methyltransferase that exhibits high homology to yeast Set1. Set1B is localized to euchromatic nuclear speckles and associates with a complex containing six human homologs of the yeast Set1/COMPASS complex, including CXXC finger protein 1 (CFP1; homologous to yeast Spp1), Rbbp5 (homologous to yeast Swd1), Ash2 (homologous to yeast Bre2), Wdr5 (homologous to yeast Swd3), and Wdr82 (homologous to yeast Swd2). Set1B complex is a histone methyltransferase that produces trimethylated histone H3 at Lys4. Set1B contains an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), an N- SET domain, and a C-terminal catalytic SET domain followed by a post-SET domain.


Pssm-ID: 409965 [Multi-domain]  Cd Length: 93  Bit Score: 36.85  E-value: 3.23e-03
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....*
gi 2244986492 121 ENDIRVMFSPFGQIEECRILRGPDGLSR-GCAFVTFSTRAMAQNAIKAMHQSQTM 174
Cdd:cd12549    16 ENFLRDMCKKYGEVEEVEILYNPKNKKHlGIAKVVFATVKGAKDAVQHLHNTSVM 70
RRM_Aly_REF_like cd12418
RNA recognition motif (RRM) found in the Aly/REF family; This subfamily corresponds to the RRM ...
28-95 3.32e-03

RNA recognition motif (RRM) found in the Aly/REF family; This subfamily corresponds to the RRM of Aly/REF family which includes THO complex subunit 4 (THOC4, also termed Aly/REF), S6K1 Aly/REF-like target (SKAR, also termed PDIP3 or PDIP46) and similar proteins. THOC4 is an mRNA transporter protein with a well conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). It is involved in RNA transportation from the nucleus, and was initially identified as a transcription coactivator of LEF-1 and AML-1 for the TCRalpha enhancer function. In addition, THOC4 specifically binds to rhesus (RH) promoter in erythroid, and might be a novel transcription cofactor for erythroid-specific genes. SKAR shows high sequence homology with THOC4 and possesses one RRM as well. SKAR is widely expressed and localizes to the nucleus. It may be a critical player in the function of S6K1 in cell and organism growth control by binding the activated, hyperphosphorylated form of S6K1 but not S6K2. Furthermore, SKAR functions as a protein partner of the p50 subunit of DNA polymerase delta. In addition, SKAR may have particular importance in pancreatic beta cell size determination and insulin secretion.


Pssm-ID: 409852 [Multi-domain]  Cd Length: 75  Bit Score: 36.02  E-value: 3.32e-03
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 2244986492  28 SEKELKELFEPYGAVYQINVLRDRSQnppQSKGCCFVTFYTRKAALEAQNALHNiKTLPGMhhPIQMK 95
Cdd:cd12418    13 TEEDLRELFGRVGPVKSVKINYDRSG---RSTGTAYVVFERPEDAEKAIKQFDG-VLLDGQ--PMKVE 74
RRM_PRC cd12624
RNA recognition motif (RRM) found in peroxisome proliferator-activated receptor gamma ...
106-170 3.51e-03

RNA recognition motif (RRM) found in peroxisome proliferator-activated receptor gamma coactivator-related protein 1 (PRC) and similar proteins; This subgroup corresponds to the RRM of PRC, also termed PGC-1-related coactivator, one of the members of PGC-1 transcriptional coactivators family, including peroxisome proliferator-activated receptor gamma coactivators PGC-1alpha and PGC-1beta. Unlike PGC-1alpha and PGC-1beta, PRC is ubiquitous and more abundantly expressed in proliferating cells than in growth-arrested cells. PRC has been implicated in the regulation of several metabolic pathways, mitochondrial biogenesis, and cell growth. It functions as a growth-regulated transcriptional cofactor activating many nuclear genes specifying mitochondrial respiratory function. PRC directly interacts with nuclear transcriptional factors implicated in respiratory chain expression including nuclear respiratory factors 1 and 2 (NRF-1 and NRF-2), CREB (cAMP-response element-binding protein), and estrogen-related receptor alpha (ERRalpha). It interacts indirectly with the NRF-2beta subunit through host cell factor (HCF), a cellular protein involved in herpes simplex virus (HSV) infection and cell cycle regulation. Furthermore, like PGC-1alpha and PGC-1beta, PRC can transactivate a number of NRF-dependent nuclear genes required for mitochondrial respiratory function, including those encoding cytochrome c, 5-aminolevulinate synthase, Tfam, and TFB1M, and TFB2M. Further research indicates that PRC may also act as a sensor of metabolic stress that orchestrates a redox-sensitive program of inflammatory gene expression. PRC is a multi-domain protein containing an N-terminal activation domain, an LXXLL coactivator signature, a central proline-rich region, a tetrapeptide motif (DHDY) responsible for HCF binding, a C-terminal arginine/serine-rich (SR) domain, and an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 410035 [Multi-domain]  Cd Length: 91  Bit Score: 36.72  E-value: 3.51e-03
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 2244986492 106 EDRKLFIGMVSKKCNENDIRVMFSPFGQIEECRILRGPDGLSRGcaFVTFSTRAMAQNAIKAMHQ 170
Cdd:cd12624     1 ERRVVYIGKIRGRMTRSELKDRFSVFGEIEECTIHFREEGDNYG--FVTYRYTEDAFAAIENGHK 63
RRM_ist3_like cd12411
RNA recognition motif (RRM) found in ist3 family; This subfamily corresponds to the RRM of the ...
7-66 3.58e-03

RNA recognition motif (RRM) found in ist3 family; This subfamily corresponds to the RRM of the ist3 family that includes fungal U2 small nuclear ribonucleoprotein (snRNP) component increased sodium tolerance protein 3 (ist3), X-linked 2 RNA-binding motif proteins (RBMX2) found in Metazoa and plants, and similar proteins. Gene IST3 encoding ist3, also termed U2 snRNP protein SNU17 (Snu17p), is a novel yeast Saccharomyces cerevisiae protein required for the first catalytic step of splicing and for progression of spliceosome assembly. It binds specifically to the U2 snRNP and is an intrinsic component of prespliceosomes and spliceosomes. Yeast ist3 contains an atypical RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). In the yeast pre-mRNA retention and splicing complex, the atypical RRM of ist3 functions as a scaffold that organizes the other two constituents, Bud13p (bud site selection 13) and Pml1p (pre-mRNA leakage 1). Fission yeast Schizosaccharomyces pombe gene cwf29 encoding ist3, also termed cell cycle control protein cwf29, is an RNA-binding protein complexed with cdc5 protein 29. It also contains one RRM. The biological function of RBMX2 remains unclear. It shows high sequence similarity to yeast ist3 protein and harbors one RRM as well.


Pssm-ID: 409845 [Multi-domain]  Cd Length: 89  Bit Score: 36.42  E-value: 3.58e-03
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|
gi 2244986492   7 HSDQPDPDAIkmFVGQIPRSWSEKELKELFEPYGAVYQINVLRDRSQNppQSKGCCFVTF 66
Cdd:cd12411     3 HDEYKDSAYI--YIGGLPYELTEGDILCVFSQYGEIVDINLVRDKKTG--KSKGFAFLAY 58
RRM1_hnRNPA_like cd12578
RNA recognition motif 1 (RRM1) found in heterogeneous nuclear ribonucleoprotein A subfamily; ...
17-78 3.58e-03

RNA recognition motif 1 (RRM1) found in heterogeneous nuclear ribonucleoprotein A subfamily; This subfamily corresponds to the RRM1 in hnRNP A0, hnRNP A1, hnRNP A2/B1, hnRNP A3 and similar proteins. hnRNP A0 is a low abundance hnRNP protein that has been implicated in mRNA stability in mammalian cells. It has been identified as the substrate for MAPKAP-K2 and may be involved in the lipopolysaccharide (LPS)-induced post-transcriptional regulation of tumor necrosis factor-alpha (TNF-alpha), cyclooxygenase 2 (COX-2) and macrophage inflammatory protein 2 (MIP-2). hnRNP A1 is an abundant eukaryotic nuclear RNA-binding protein that may modulate splice site selection in pre-mRNA splicing. hnRNP A2/B1 is an RNA trafficking response element-binding protein that interacts with the hnRNP A2 response element (A2RE). Many mRNAs, such as myelin basic protein (MBP), myelin-associated oligodendrocytic basic protein (MOBP), carboxyanhydrase II (CAII), microtubule-associated protein tau, and amyloid precursor protein (APP) are trafficked by hnRNP A2/B1. hnRNP A3 is also a RNA trafficking response element-binding protein that participates in the trafficking of A2RE-containing RNA. The hnRNP A subfamily is characterized by two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), followed by a long glycine-rich region at the C-terminus.


Pssm-ID: 409992 [Multi-domain]  Cd Length: 78  Bit Score: 36.26  E-value: 3.58e-03
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|..
gi 2244986492  17 KMFVGQIPRSWSEKELKELFEPYGAVYQINVLRDRSQNppQSKGCCFVTFYTRKAALEAQNA 78
Cdd:cd12578     1 KLFIGGLSYETTDDSLRNHFEQWGEITDVVVMKDPATK--RSRGFGFVTYSSASEVDAAMNA 60
RRM1_HRB1_GBP2 cd21605
RNA recognition motif 1 (RRM1) found in Saccharomyces cerevisiae protein HRB1, ...
107-175 3.72e-03

RNA recognition motif 1 (RRM1) found in Saccharomyces cerevisiae protein HRB1, G-strand-binding protein 2 (GBP2) and similar proteins; The family includes Saccharomyces cerevisiae protein HRB1 (also called protein TOM34) and GBP2, both of which are SR-like mRNA-binding proteins which shuttle from the nucleus to the cytoplasm when bound to the mature mRNA molecules. They act as quality control factors for spliced mRNAs. GBP2, also called RAP1 localization factor 6, is a single-strand telomeric DNA-binding protein that binds single-stranded telomeric sequences of the type (TG[1-3])n in vitro. It also binds to RNA. GBP2 influences the localization of RAP1 in the nuclei and plays a role in modulating telomere length. Members in this family contain three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The model corresponds to the first RRM motif.


Pssm-ID: 410184 [Multi-domain]  Cd Length: 77  Bit Score: 36.12  E-value: 3.72e-03
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 2244986492 107 DRKLFIGMVSKKCNENDIRVMFSPFGQIEECRILRGpDGLSRGCAFVTFSTRAMAQNAIKAMHQSQTME 175
Cdd:cd21605     1 ENSIFVGNLPFDCTWEDLKDHFSQVGEVIRADIVTS-RGRHRGMGTVEFTNKEDVDRAISKFDHTMFMG 68
RRM1_RIM4_like cd12453
RNA recognition motif 1 (RRM1) found in yeast meiotic activator RIM4 and similar proteins; ...
18-79 3.75e-03

RNA recognition motif 1 (RRM1) found in yeast meiotic activator RIM4 and similar proteins; This subfamily corresponds to the RRM1 of RIM4, also termed regulator of IME2 protein 4, a putative RNA binding protein that is expressed at elevated levels early in meiosis. It functions as a meiotic activator required for both the IME1- and IME2-dependent pathways of meiotic gene expression, as well as early events of meiosis, such as meiotic division and recombination, in Saccharomyces cerevisiae. RIM4 contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The family also includes a putative RNA-binding protein termed multicopy suppressor of sporulation protein Msa1. It is a putative RNA-binding protein encoded by a novel gene, msa1, from the fission yeast Schizosaccharomyces pombe. Msa1 may be involved in the inhibition of sexual differentiation by controlling the expression of Ste11-regulated genes, possibly through the pheromone-signaling pathway. Like RIM4, Msa1 also contains two RRMs, both of which are essential for the function of Msa1.


Pssm-ID: 409887 [Multi-domain]  Cd Length: 86  Bit Score: 36.23  E-value: 3.75e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2244986492  18 MFVGQIPRSWSEKEL----KELFEPYGAVYQINVLRDRSQNPpqskgCCFVTFYT----RKAALEAQNAL 79
Cdd:cd12453     5 LFVASLSSARSDEELcaavTNHFSKWGELLNVKVLKDWSNRP-----YAFVQYTNtedaKNALVNGHNTL 69
RRM2_Nop4p cd12675
RNA recognition motif 2 (RRM2) found in yeast nucleolar protein 4 (Nop4p) and similar proteins; ...
17-83 3.75e-03

RNA recognition motif 2 (RRM2) found in yeast nucleolar protein 4 (Nop4p) and similar proteins; This subgroup corresponds to the RRM2 of Nop4p (also known as Nop77p), encoded by YPL043W from Saccharomyces cerevisiae. It is an essential nucleolar protein involved in processing and maturation of 27S pre-rRNA and biogenesis of 60S ribosomal subunits. Nop4p has four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 410076 [Multi-domain]  Cd Length: 83  Bit Score: 36.30  E-value: 3.75e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2244986492  17 KMFVGQIPrsWS---EKELKELFEPYGAVYQINVLRDRSQnppQSKGCCFVTFYTRKAALEAQNALHNIK 83
Cdd:cd12675     2 KLIIRNLP--WSikkPVHLKKLFGRYGKVVEATIPRKKGG---KLSGFAFVTMKGRKNAEEALESVNGLE 66
RRM3_RAVER cd12390
RNA recognition motif 3 (RRM3) found in ribonucleoprotein PTB-binding raver-1, raver-2 and ...
119-185 3.84e-03

RNA recognition motif 3 (RRM3) found in ribonucleoprotein PTB-binding raver-1, raver-2 and similar proteins; This subfamily corresponds to the RRM3 of raver-1 and raver-2. Raver-1 is a ubiquitously expressed heterogeneous nuclear ribonucleoprotein (hnRNP) that serves as a co-repressor of the nucleoplasmic splicing repressor polypyrimidine tract-binding protein (PTB)-directed splicing of select mRNAs. It shuttles between the cytoplasm and the nucleus and can accumulate in the perinucleolar compartment, a dynamic nuclear substructure that harbors PTB. Raver-1 also modulates focal adhesion assembly by binding to the cytoskeletal proteins, including alpha-actinin, vinculin, and metavinculin (an alternatively spliced isoform of vinculin) at adhesion complexes, particularly in differentiated muscle tissue. Raver-2 is a novel member of the heterogeneous nuclear ribonucleoprotein (hnRNP) family. It shows high sequence homology to raver-1. Raver-2 exerts a spatio-temporal expression pattern during embryogenesis and is mainly limited to differentiated neurons and glia cells. Although it displays nucleo-cytoplasmic shuttling in heterokaryons, raver2 localizes to the nucleus in glia cells and neurons. Raver-2 can interact with PTB and may participate in PTB-mediated RNA-processing. However, there is no evidence indicating that raver-2 can bind to cytoplasmic proteins. Both, raver-1 and raver-2, contain three N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), two putative nuclear localization signals (NLS) at the N- and C-termini, a central leucine-rich region, and a C-terminal region harboring two [SG][IL]LGxxP motifs. They binds to RNA through the RRMs. In addition, the two [SG][IL]LGxxP motifs serve as the PTB-binding motifs in raver1. However, raver-2 interacts with PTB through the SLLGEPP motif only.


Pssm-ID: 409824 [Multi-domain]  Cd Length: 91  Bit Score: 36.45  E-value: 3.84e-03
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 2244986492 119 CNENDIRVMFSPFGQIEECRILRGPdGLSRGCAFVTFSTRAMAQNAIKAMHqSQTMEGcsSPIVVKF 185
Cdd:cd12390    15 RDGSELRKLFSQVGKPTFCQLAMGN-GVPRGFAFVEFASAEDAEEAQQLLN-GHDLQG--SPIRVSF 77
RRM_PPARGC1A_like cd12357
RNA recognition motif (RRM) found in the peroxisome proliferator-activated receptor gamma ...
18-91 4.01e-03

RNA recognition motif (RRM) found in the peroxisome proliferator-activated receptor gamma coactivator 1A (PGC-1alpha) family of regulated coactivators; This subfamily corresponds to the RRM of PGC-1alpha, PGC-1beta, and PGC-1-related coactivator (PRC), which serve as mediators between environmental or endogenous signals and the transcriptional machinery governing mitochondrial biogenesis. They play an important integrative role in the control of respiratory gene expression through interacting with a number of transcription factors, such as NRF-1, NRF-2, ERR, CREB and YY1. All family members are multi-domain proteins containing the N-terminal activation domain, an LXXLL coactivator signature, a tetrapeptide motif (DHDY) responsible for HCF binding, and an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). In contrast to PGC-1alpha and PRC, PGC-1beta possesses two glutamic/aspartic acid-rich acidic domains, but lacks most of the arginine/serine (SR)-rich domain that is responsible for the regulation of RNA processing.


Pssm-ID: 409793 [Multi-domain]  Cd Length: 91  Bit Score: 36.25  E-value: 4.01e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 2244986492  18 MFVGQIPRSWSEKELKELFEPYGAVYQINVL-RDRSQNppqsKGccFVTF-YTRKAALeaqnALHNIKTLPGMHHP 91
Cdd:cd12357     5 VYVGKLEQDTTRSELRRRFEVFGEIEECTVHfRERGDK----YG--FVTYrYSEDAFL----ALENGHDLRKRNEP 70
RRM_NOL8 cd12226
RNA recognition motif (RRM) found in nucleolar protein 8 (NOL8) and similar proteins; This ...
19-83 4.20e-03

RNA recognition motif (RRM) found in nucleolar protein 8 (NOL8) and similar proteins; This model corresponds to the RRM of NOL8 (also termed Nop132) encoded by a novel NOL8 gene that is up-regulated in the majority of diffuse-type, but not intestinal-type, gastric cancers. Thus, NOL8 may be a good molecular target for treatment of diffuse-type gastric cancer. Also, NOL8 is a phosphorylated protein that contains an N-terminal RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), suggesting NOL8 is likely to function as a novel RNA-binding protein. It may be involved in regulation of gene expression at the post-transcriptional level or in ribosome biogenesis in cancer cells.


Pssm-ID: 409673 [Multi-domain]  Cd Length: 77  Bit Score: 36.02  E-value: 4.20e-03
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 2244986492  19 FVGQIPRSWSEKELKELFEPYGAVYQINVLRDRSqnpPQSKGCCFVTFYTRKAALE-AQNALHNIK 83
Cdd:cd12226     3 FVGGLSPSITEDDLERRFSRFGTVSDVEIIRKKD---APDRGFAYIDLRTSEAALQkCLSTLNGVK 65
RRM1_U1A_like cd12246
RNA recognition motif 1 (RRM1) found in the U1A/U2B"/SNF protein family; This subfamily ...
30-82 4.34e-03

RNA recognition motif 1 (RRM1) found in the U1A/U2B"/SNF protein family; This subfamily corresponds to the RRM1 of U1A/U2B"/SNF protein family which contains Drosophila sex determination protein SNF and its two mammalian counterparts, U1 small nuclear ribonucleoprotein A (U1 snRNP A or U1-A or U1A) and U2 small nuclear ribonucleoprotein B" (U2 snRNP B" or U2B"), all of which consist of two RNA recognition motifs (RRMs), connected by a variable, flexible linker. SNF is an RNA-binding protein found in the U1 and U2 snRNPs of Drosophila where it is essential in sex determination and possesses a novel dual RNA binding specificity. SNF binds with high affinity to both Drosophila U1 snRNA stem-loop II (SLII) and U2 snRNA stem-loop IV (SLIV). It can also bind to poly(U) RNA tracts flanking the alternatively spliced Sex-lethal (Sxl) exon, as does Drosophila Sex-lethal protein (SXL). U1A is an RNA-binding protein associated with the U1 snRNP, a small RNA-protein complex involved in pre-mRNA splicing. U1A binds with high affinity and specificity to stem-loop II (SLII) of U1 snRNA. It is predominantly a nuclear protein that shuttles between the nucleus and the cytoplasm independently of interactions with U1 snRNA. Moreover, U1A may be involved in RNA 3'-end processing, specifically cleavage, splicing and polyadenylation, through interacting with a large number of non-snRNP proteins. U2B", initially identified to bind to stem-loop IV (SLIV) at the 3' end of U2 snRNA, is a unique protein that comprises of the U2 snRNP. Additional research indicates U2B" binds to U1 snRNA stem-loop II (SLII) as well and shows no preference for SLIV or SLII on the basis of binding affinity. Moreover, U2B" does not require an auxiliary protein for binding to RNA, and its nuclear transport is independent of U2 snRNA binding.


Pssm-ID: 409692 [Multi-domain]  Cd Length: 78  Bit Score: 35.97  E-value: 4.34e-03
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|...
gi 2244986492  30 KELKELFEPYGAVYQINVLRdrsqnPPQSKGCCFVTFYTRKAALEAQNALHNI 82
Cdd:cd12246    18 RSLYALFSQFGPVLDIVASK-----SLKMRGQAFVVFKDVESATNALRALQGF 65
RRM_RBPMS2 cd12683
RNA recognition motif (RRM) found in vertebrate RNA-binding protein with multiple splicing 2 ...
18-95 4.38e-03

RNA recognition motif (RRM) found in vertebrate RNA-binding protein with multiple splicing 2 (RBP-MS2); This subfamily corresponds to the RRM of RBP-MS2, encoded by RBPMS2 gene, a paralog of RNA-binding protein with multiple splicing (RBP-MS). The biological function of RBP-MS2 remains unclear. Like RBP-MS, RBP-MS2 contains an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 410084 [Multi-domain]  Cd Length: 76  Bit Score: 35.79  E-value: 4.38e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 2244986492  18 MFVGQIPRSWSEKELKELFEPYGAvYQINVLRDRSQNPpqskgCCFVTFYTRKAALEAQNALHNIKTLPgmHHPIQMK 95
Cdd:cd12683     4 LFVSGLPVDIKPRELYLLFRPFKG-YEGSLIKLTSKQP-----VGFVTFDSRAGAEAAKNALNGIRFDP--ENPQTLR 73
RRM2_DAZAP1 cd12327
RNA recognition motif 2 (RRM2) found in Deleted in azoospermia-associated protein 1 (DAZAP1) ...
109-169 5.12e-03

RNA recognition motif 2 (RRM2) found in Deleted in azoospermia-associated protein 1 (DAZAP1) and similar proteins; This subfamily corresponds to the RRM2 of DAZAP1 or DAZ-associated protein 1, also termed proline-rich RNA binding protein (Prrp), a multi-functional ubiquitous RNA-binding protein expressed most abundantly in the testis and essential for normal cell growth, development, and spermatogenesis. DAZAP1 is a shuttling protein whose acetylated is predominantly nuclear and the nonacetylated form is in cytoplasm. DAZAP1 also functions as a translational regulator that activates translation in an mRNA-specific manner. DAZAP1 was initially identified as a binding partner of Deleted in Azoospermia (DAZ). It also interacts with numerous hnRNPs, including hnRNP U, hnRNP U like-1, hnRNPA1, hnRNPA/B, and hnRNP D, suggesting DAZAP1 might associate and cooperate with hnRNP particles to regulate adenylate-uridylate-rich elements (AU-rich element or ARE)-containing mRNAs. DAZAP1 contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a C-terminal proline-rich domain.


Pssm-ID: 409765 [Multi-domain]  Cd Length: 80  Bit Score: 35.94  E-value: 5.12e-03
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|..
gi 2244986492 109 KLFIGMVSKKCNENDIRVMFSPFGQIEECRILRGPDG-LSRGCAFVTFSTRAMAQNAIkAMH 169
Cdd:cd12327     4 KVFVGGIPHNCGETELRDYFKRYGVVTEVVMMYDAEKqRSRGFGFITFEDEQSVDQAV-NMH 64
RRM2_MSI cd12323
RNA recognition motif 2 (RRM2) found in RNA-binding protein Musashi homologs Musashi-1, ...
17-66 5.15e-03

RNA recognition motif 2 (RRM2) found in RNA-binding protein Musashi homologs Musashi-1, Musashi-2 and similar proteins; This subfamily corresponds to the RRM2.in Musashi-1 (also termed Msi1), a neural RNA-binding protein putatively expressed in central nervous system (CNS) stem cells and neural progenitor cells, and associated with asymmetric divisions in neural progenitor cells. It is evolutionarily conserved from invertebrates to vertebrates. Musashi-1 is a homolog of Drosophila Musashi and Xenopus laevis nervous system-specific RNP protein-1 (Nrp-1). It has been implicated in the maintenance of the stem-cell state, differentiation, and tumorigenesis. It translationally regulates the expression of a mammalian numb gene by binding to the 3'-untranslated region of mRNA of Numb, encoding a membrane-associated inhibitor of Notch signaling, and further influences neural development. Moreover, Musashi-1 represses translation by interacting with the poly(A)-binding protein and competes for binding of the eukaryotic initiation factor-4G (eIF-4G). Musashi-2 (also termed Msi2) has been identified as a regulator of the hematopoietic stem cell (HSC) compartment and of leukemic stem cells after transplantation of cells with loss and gain of function of the gene. It influences proliferation and differentiation of HSCs and myeloid progenitors, and further modulates normal hematopoiesis and promotes aggressive myeloid leukemia. Both, Musashi-1 and Musashi-2, contain two conserved N-terminal tandem RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), along with other domains of unknown function.


Pssm-ID: 240769 [Multi-domain]  Cd Length: 74  Bit Score: 35.49  E-value: 5.15e-03
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|
gi 2244986492  17 KMFVGQIPRSWSEKELKELFEPYGAVYQINVLRDRSQNppQSKGCCFVTF 66
Cdd:cd12323     1 KIFVGGLSANTTEDDVKKYFSQFGKVEDAMLMFDKQTN--RHRGFGFVTF 48
RRM_cpo cd12684
RNA recognition motif (RRM) found in Drosophila couch potato (cpo) coding RNA-binding protein ...
18-97 5.36e-03

RNA recognition motif (RRM) found in Drosophila couch potato (cpo) coding RNA-binding protein and similar proteins; This subfamily corresponds to the RRM of Cpo, an RNA-binding protein encoded by Drosophila couch potato (cpo) gene. Cpo contains a well conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). It may control the processing of RNA molecules required for the proper functioning of the peripheral nervous system (PNS).


Pssm-ID: 410085 [Multi-domain]  Cd Length: 83  Bit Score: 36.04  E-value: 5.36e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2244986492  18 MFVGQIPRSWSEKELKELFEPYGAvYQINVLRDRSQNPPQSKGCCFVTFYTRKAALEAQNALHNIKTLPGMHHPIQMKPA 97
Cdd:cd12684     4 LFVSGLPMDAKPRELYLLFRAYKG-YEGSLLKVTSKNGKTTSPVGFVTFLSRQAAEAAKQDLQGVRFDPDLPQTLRLEFA 82
RRM_NELFE cd12305
RNA recognition motif in negative elongation factor E (NELF-E) and similar proteins; This ...
28-94 5.38e-03

RNA recognition motif in negative elongation factor E (NELF-E) and similar proteins; This subfamily corresponds to the RRM of NELF-E, also termed RNA-binding protein RD. NELF-E is the RNA-binding subunit of cellular negative transcription elongation factor NELF (negative elongation factor) involved in transcriptional regulation of HIV-1 by binding to the stem of the viral transactivation-response element (TAR) RNA which is synthesized by cellular RNA polymerase II at the viral long terminal repeat. NELF is a heterotetrameric protein consisting of NELF A, B, C or the splice variant D, and E. NELF-E contains an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). It plays a role in the control of HIV transcription by binding to TAR RNA. In addition, NELF-E is associated with the NELF-B subunit, probably via a leucine zipper motif.


Pssm-ID: 409746 [Multi-domain]  Cd Length: 75  Bit Score: 35.76  E-value: 5.38e-03
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 2244986492  28 SEKELKELFEPYGAVYQINVLRDRSqnppqskgCCFVTFYTRKAALEAQNALHNiKTLPGMHHPIQM 94
Cdd:cd12305    15 TEDVLKKAFSPFGNIINISMEIEKN--------CAFVTFEKMESADQAIAELNG-TTVEGVQLKVSI 72
RRM2_TDP43 cd12322
RNA recognition motif 2 (RRM2) found in TAR DNA-binding protein 43 (TDP-43) and similar ...
17-66 5.57e-03

RNA recognition motif 2 (RRM2) found in TAR DNA-binding protein 43 (TDP-43) and similar proteins; This subfamily corresponds to the RRM2 of TDP-43 (also termed TARDBP), a ubiquitously expressed pathogenic protein whose normal function and abnormal aggregation are directly linked to the genetic disease cystic fibrosis, and two neurodegenerative disorders: frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). TDP-43 binds both DNA and RNA, and has been implicated in transcriptional repression, pre-mRNA splicing and translational regulation. TDP-43 is a dimeric protein with two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a C-terminal glycine-rich domain. The RRMs are responsible for DNA and RNA binding; they bind to TAR DNA and RNA sequences with UG-repeats. The glycine-rich domain can interact with the hnRNP family proteins to form the hnRNP-rich complex involved in splicing inhibition. It is also essential for the cystic fibrosis transmembrane conductance regulator (CFTR) exon 9-skipping activity.


Pssm-ID: 409761 [Multi-domain]  Cd Length: 71  Bit Score: 35.37  E-value: 5.57e-03
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|
gi 2244986492  17 KMFVGQIPRSWSEKELKELFEPYGAVYQINVlrdrsqnPPQSKGCCFVTF 66
Cdd:cd12322     2 KVFVGRCTEDMTEDDLRQYFSQFGEVTDVFI-------PKPFRAFAFVTF 44
RRM2_ESRPs_Fusilli cd12508
RNA recognition motif 2 (RRM2) found in epithelial splicing regulatory protein ESRP1, ESRP2, ...
119-166 5.71e-03

RNA recognition motif 2 (RRM2) found in epithelial splicing regulatory protein ESRP1, ESRP2, Drosophila RNA-binding protein Fusilli and similar proteins; This subfamily corresponds to the RRM2 of ESRPs and Fusilli. ESRP1 (also termed RBM35A) and ESRP2 (also termed RBM35B) are epithelial-specific RNA binding proteins that promote splicing of the epithelial variant of the fibroblast growth factor receptor 2 (FGFR2), ENAH (also termed hMena), CD44 and CTNND1 (also termed p120-Catenin) transcripts. They are highly conserved paralogs and specifically bind to GU-rich binding site. ESRP1 and ESRP2 contain three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The family also includes Drosophila fusilli (fus) gene encoding RNA-binding protein Fusilli.Loss of fusilli activity causes lethality during embryogenesis in flies. Drosophila Fusilli can regulate endogenous FGFR2 splicing and functions as a splicing factor. It shows high sequence homology to ESRPs and contains three RRMs as well. It also has an N-terminal domain with unknown function and a C-terminal domain particularly rich in alanine, glutamine, and serine.


Pssm-ID: 409930 [Multi-domain]  Cd Length: 80  Bit Score: 35.80  E-value: 5.71e-03
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|..
gi 2244986492 119 CNENDIRVMFSPFGQIEECR----ILRGPDGLSRGCAFVTFSTRAMAQNAIK 166
Cdd:cd12508    13 ATAADILAFFGGECPVTGGKdgilFVTYPDGRPTGDAFVLFATEEDAQQALG 64
RRM1_Nop4p cd12674
RNA recognition motif 1 (RRM1) found in yeast nucleolar protein 4 (Nop4p) and similar proteins; ...
108-176 6.26e-03

RNA recognition motif 1 (RRM1) found in yeast nucleolar protein 4 (Nop4p) and similar proteins; This subgroup corresponds to the RRM1 of Nop4p (also known as Nop77p), encoded by YPL043W from Saccharomyces cerevisiae. It is an essential nucleolar protein involved in processing and maturation of 27S pre-rRNA and biogenesis of 60S ribosomal subunits. Nop4p has four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 410075 [Multi-domain]  Cd Length: 80  Bit Score: 35.52  E-value: 6.26e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2244986492 108 RKLFIGMVSKKCNENDIRVMFSPFGQIEECRILRGPD-GLSRGCAFVTFSTRAMAQNAIKAMhQSQTMEG 176
Cdd:cd12674     1 TTLFVRNLPFDVTLESLTDFFSDIGPVKHAVVVTDPEtKKSRGYGFVSFSTHDDAEEALAKL-KNRKLSG 69
RRM_Yme2p_like cd12433
RNA recognition motif (RRM) found in yeast mitochondrial escape protein 2 (Yme2p) and similar ...
28-83 6.56e-03

RNA recognition motif (RRM) found in yeast mitochondrial escape protein 2 (Yme2p) and similar proteins; This subfamily corresponds to the RRM of Yme2p, also termed protein RNA12, an inner mitochondrial membrane protein that plays a critical role in mitochondrial DNA transactions. It may serve as a mediator of nucleoid structure and number in mitochondria of the yeast Saccharomyces cerevisiae. Yme2p contains an exonuclease domain, an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a C-terminal domain.


Pssm-ID: 409867 [Multi-domain]  Cd Length: 86  Bit Score: 35.71  E-value: 6.56e-03
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....*..
gi 2244986492  28 SEKELKELFEPYGAVYQINVlrdrsqNPPQSK-GCCFVTFYTRKAALEAQNALHNIK 83
Cdd:cd12433    17 SQEELYSLFRPYGRINDITP------PPPDSLpRYATVTFRRIRGAIAAKNCLHGYV 67
RRM_PARN cd12428
RNA recognition motif (RRM) found in poly(A)-specific ribonuclease PARN and similar proteins; ...
24-79 6.65e-03

RNA recognition motif (RRM) found in poly(A)-specific ribonuclease PARN and similar proteins; The subfamily corresponds to the RRM of PARN, also termed deadenylating nuclease, or deadenylation nuclease, or polyadenylate-specific ribonuclease, a processive poly(A)-specific 3'-exoribonuclease involved in the decay of eukaryotic mRNAs. It specifically binds both, the poly(A) tail at the 3' end and the 7-methylguanosine (m7G) cap located at the 5' end of eukaryotic mRNAs, and catalyzes the 3'- to 5'-end deadenylation of single-stranded mRNA with a free 3' hydroxyl group both in the nucleus and in the cytoplasm. PARN belongs to the DEDD superfamily of exonucleases. It contains a nuclease domain, an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and an R3H domain. PARN exists as a homodimer. The nuclease domain is involved in the dimerization. RRM and R3H domains are essential for the RNA-binding.


Pssm-ID: 409862 [Multi-domain]  Cd Length: 66  Bit Score: 34.97  E-value: 6.65e-03
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....*.
gi 2244986492  24 PRSWSEKELKELFEPYGAVYqINVLRDRSqnppqskgcCFVTFYTRKAALEAQNAL 79
Cdd:cd12428    10 PKEWKTSDLYQLFSPFGGIQ-VSWIDDTS---------AFVALSDPEQVNIALKTI 55
RRM1_hnRNPD cd12756
RNA recognition motif 1 (RRM1) found in heterogeneous nuclear ribonucleoprotein D0 (hnRNP D0) ...
110-172 6.72e-03

RNA recognition motif 1 (RRM1) found in heterogeneous nuclear ribonucleoprotein D0 (hnRNP D0) and similar proteins; This subgroup corresponds to the RRM1 of hnRNP D0, also termed AU-rich element RNA-binding protein 1, which is a UUAG-specific nuclear RNA binding protein that may be involved in pre-mRNA splicing and telomere elongation. hnRNP D0 contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), in the middle and an RGG box rich in glycine and arginine residues in the C-terminal part. Each of RRMs can bind solely to the UUAG sequence specifically.


Pssm-ID: 410150 [Multi-domain]  Cd Length: 74  Bit Score: 35.36  E-value: 6.72e-03
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....
gi 2244986492 110 LFIGMVSKKCNENDIRVMFSPFGQIEECRILRGP-DGLSRGCAFVTFSTramAQNAIKAMHQSQ 172
Cdd:cd12756     1 MFIGGLSWDTTKKDLKDYFSKFGEVVDCTLKLDPiTGRSRGFGFVLFKE---SESVDKVMDQKE 61
RRM2_NUCLs cd12451
RNA recognition motif 2 (RRM2) found in nucleolin-like proteins mainly from plants; This ...
28-75 7.66e-03

RNA recognition motif 2 (RRM2) found in nucleolin-like proteins mainly from plants; This subfamily corresponds to the RRM2 of a group of plant nucleolin-like proteins, including nucleolin 1 (also termed protein nucleolin like 1) and nucleolin 2 (also termed protein nucleolin like 2, or protein parallel like 1). They play roles in the regulation of ribosome synthesis and in the growth and development of plants. Like yeast nucleolin, nucleolin-like proteins possess two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409885 [Multi-domain]  Cd Length: 79  Bit Score: 35.46  E-value: 7.66e-03
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|....*...
gi 2244986492  28 SEKELKELFEPYGAVYQINVLRDRsqNPPQSKGCCFVTFYTRKAALEA 75
Cdd:cd12451    16 IRDELREHFGECGEVTNVRIPTDR--ETGELKGFAYIEFSTKEAKEKA 61
RRM1_PUF60 cd12370
RNA recognition motif 1 (RRM1) found in (U)-binding-splicing factor PUF60 and similar proteins; ...
402-430 7.87e-03

RNA recognition motif 1 (RRM1) found in (U)-binding-splicing factor PUF60 and similar proteins; This subfamily corresponds to the RRM1 of PUF60, also termed FUSE-binding protein-interacting repressor (FBP-interacting repressor or FIR), or Ro-binding protein 1 (RoBP1), or Siah-binding protein 1 (Siah-BP1). PUF60 is an essential splicing factor that functions as a poly-U RNA-binding protein required to reconstitute splicing in depleted nuclear extracts. Its function is enhanced through interaction with U2 auxiliary factor U2AF65. PUF60 also controls human c-myc gene expression by binding and inhibiting the transcription factor far upstream sequence element (FUSE)-binding-protein (FBP), an activator of c-myc promoters. PUF60 contains two central RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a C-terminal U2AF (U2 auxiliary factor) homology motifs (UHM) that harbors another RRM and binds to tryptophan-containing linear peptide motifs (UHM ligand motifs, ULMs) in several nuclear proteins. Research indicates that PUF60 binds FUSE as a dimer, and only the first two RRM domains participate in the single-stranded DNA recognition.


Pssm-ID: 409805 [Multi-domain]  Cd Length: 76  Bit Score: 35.08  E-value: 7.87e-03
                          10        20
                  ....*....|....*....|....*....
gi 2244986492 402 FVSYDNPVSAQAAIQAMNGFQIGMKRLKV 430
Cdd:cd12370    46 FVEYEVPEAAQLALEQMNGVMLGGRNIKV 74
RRM2_TIA1_like cd12353
RNA recognition motif 2 (RRM2) found in granule-associated RNA binding proteins p40-TIA-1 and ...
401-430 8.05e-03

RNA recognition motif 2 (RRM2) found in granule-associated RNA binding proteins p40-TIA-1 and TIAR; This subfamily corresponds to the RRM2 of nucleolysin TIA-1 isoform p40 (p40-TIA-1 or TIA-1) and nucleolysin TIA-1-related protein (TIAR), both of which are granule-associated RNA binding proteins involved in inducing apoptosis in cytotoxic lymphocyte (CTL) target cells. TIA-1 and TIAR share high sequence similarity. They are expressed in a wide variety of cell types. TIA-1 can be phosphorylated by a serine/threonine kinase that is activated during Fas-mediated apoptosis. TIAR is mainly localized in the nucleus of hematopoietic and nonhematopoietic cells. It is translocated from the nucleus to the cytoplasm in response to exogenous triggers of apoptosis. Both, TIA-1 and TIAR, bind specifically to poly(A) but not to poly(C) homopolymers. They are composed of three N-terminal highly homologous RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a glutamine-rich C-terminal auxiliary domain containing a lysosome-targeting motif. TIA-1 and TIAR interact with RNAs containing short stretches of uridylates and their RRM2 can mediate the specific binding to uridylate-rich RNAs. The C-terminal auxiliary domain may be responsible for interacting with other proteins. In addition, TIA-1 and TIAR share a potential serine protease-cleavage site (Phe-Val-Arg) localized at the junction between their RNA binding domains and their C-terminal auxiliary domains.


Pssm-ID: 409789 [Multi-domain]  Cd Length: 75  Bit Score: 35.06  E-value: 8.05e-03
                          10        20        30
                  ....*....|....*....|....*....|
gi 2244986492 401 GFVSYDNPVSAQAAIQAMNGFQIGMKRLKV 430
Cdd:cd12353    44 GFVSFVKKEDAENAIQGMNGQWLGGRNIRT 73
RRM1_Hu cd12650
RNA recognition motif 1 (RRM1) found in the Hu proteins family; This subfamily corresponds to ...
110-174 8.86e-03

RNA recognition motif 1 (RRM1) found in the Hu proteins family; This subfamily corresponds to the RRM1 of the Hu proteins family which represents a group of RNA-binding proteins involved in diverse biological processes. Since the Hu proteins share high homology with the Drosophila embryonic lethal abnormal vision (ELAV) protein, the Hu family is sometimes referred to as the ELAV family. Drosophila ELAV is exclusively expressed in neurons and is required for the correct differentiation and survival of neurons in flies. The neuronal members of the Hu family include Hu-antigen B (HuB or ELAV-2 or Hel-N1), Hu-antigen C (HuC or ELAV-3 or PLE21), and Hu-antigen D (HuD or ELAV-4), which play important roles in neuronal differentiation, plasticity and memory. HuB is also expressed in gonads. Hu-antigen R (HuR or ELAV-1 or HuA) is the ubiquitously expressed Hu family member. It has a variety of biological functions mostly related to the regulation of cellular response to DNA damage and other types of stress. HuR has an anti-apoptotic function during early cell stress response. It binds to mRNAs and enhances the expression of several anti-apoptotic proteins, such as p21waf1, p53, and prothymosin alpha. HuR also has pro-apoptotic function by promoting apoptosis when cell death is unavoidable. Furthermore, HuR may be important in muscle differentiation, adipogenesis, suppression of inflammatory response and modulation of gene expression in response to chronic ethanol exposure and amino acid starvation. Hu proteins perform their cytoplasmic and nuclear molecular functions by coordinately regulating functionally related mRNAs. In the cytoplasm, Hu proteins recognize and bind to AU-rich RNA elements (AREs) in the 3' untranslated regions (UTRs) of certain target mRNAs, such as GAP-43, vascular epithelial growth factor (VEGF), the glucose transporter GLUT1, eotaxin and c-fos, and stabilize those ARE-containing mRNAs. They also bind and regulate the translation of some target mRNAs, such as neurofilament M, GLUT1, and p27. In the nucleus, Hu proteins function as regulators of polyadenylation and alternative splicing. Each Hu protein contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an ARE. RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions.


Pssm-ID: 410053 [Multi-domain]  Cd Length: 77  Bit Score: 35.07  E-value: 8.86e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2244986492 110 LFIGMVSKKCNENDIRVMFSPFGQIEECRILRGP-DGLSRGCAFVTFSTRAMAQNAIKAMH----QSQTM 174
Cdd:cd12650     3 LIVNYLPQNMTQDEIRSLFSSIGEIESCKLIRDKvTGQSLGYGFVNYVDPSDAEKAINTLNglrlQNKTI 72
RRM_NELFE cd12305
RNA recognition motif in negative elongation factor E (NELF-E) and similar proteins; This ...
121-178 9.05e-03

RNA recognition motif in negative elongation factor E (NELF-E) and similar proteins; This subfamily corresponds to the RRM of NELF-E, also termed RNA-binding protein RD. NELF-E is the RNA-binding subunit of cellular negative transcription elongation factor NELF (negative elongation factor) involved in transcriptional regulation of HIV-1 by binding to the stem of the viral transactivation-response element (TAR) RNA which is synthesized by cellular RNA polymerase II at the viral long terminal repeat. NELF is a heterotetrameric protein consisting of NELF A, B, C or the splice variant D, and E. NELF-E contains an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). It plays a role in the control of HIV transcription by binding to TAR RNA. In addition, NELF-E is associated with the NELF-B subunit, probably via a leucine zipper motif.


Pssm-ID: 409746 [Multi-domain]  Cd Length: 75  Bit Score: 34.99  E-value: 9.05e-03
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....*...
gi 2244986492 121 ENDIRVMFSPFGQIEECRILRgpdglSRGCAFVTFSTRAMAQNAIKAMHQSqTMEGCS 178
Cdd:cd12305    16 EDVLKKAFSPFGNIINISMEI-----EKNCAFVTFEKMESADQAIAELNGT-TVEGVQ 67
RRM3_Bruno_like cd12640
RNA recognition motif 3 (RRM3) found in Drosophila melanogaster Bruno protein and similar ...
106-172 9.16e-03

RNA recognition motif 3 (RRM3) found in Drosophila melanogaster Bruno protein and similar proteins; This subgroup corresponds to the RRM3 of Bruno protein, a Drosophila RNA recognition motif (RRM)-containing protein that plays a central role in regulation of Oskar (Osk) expression. It mediates repression by binding to regulatory Bruno response elements (BREs) in the Osk mRNA 3' UTR. The full-length Bruno protein contains three RRMs, two located in the N-terminal half of the protein and the third near the C-terminus, separated by a linker region.


Pssm-ID: 241084 [Multi-domain]  Cd Length: 79  Bit Score: 34.97  E-value: 9.16e-03
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 2244986492 106 EDRKLFIGMVSKKCNENDIRVMFSPFGQIEECRI-LRGPDGLSRGCAFVTFSTRAMAQNAIKAMHQSQ 172
Cdd:cd12640     3 EGCNLFIYHLPQEFTDTDLAQTFLPFGNVISAKVfIDKQTNLSKCFGFVSYDNPDSAQAAIQAMNGFQ 70
RRM_RDM1 cd12364
RNA recognition motif (RRM) found in RAD52 motif-containing protein 1 (RDM1) and similar ...
16-80 9.48e-03

RNA recognition motif (RRM) found in RAD52 motif-containing protein 1 (RDM1) and similar proteins; This subfamily corresponds to the RRM of RDM1, also termed RAD52 homolog B, a novel factor involved in the cellular response to the anti-cancer drug cisplatin in vertebrates. RDM1 contains a small RD motif that shares with the recombination and repair protein RAD52, and an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). The RD motif is responsible for the acidic pH-dependent DNA-binding properties of RDM1. It interacts with ss- and dsDNA, and may act as a DNA-damage recognition factor by recognizing the distortions of the double helix caused by cisplatin-DNA adducts in vitro. In addition, due to the presence of RRM, RDM1 can bind to RNA as well as DNA.


Pssm-ID: 409799 [Multi-domain]  Cd Length: 81  Bit Score: 35.03  E-value: 9.48e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 2244986492  16 IKMFVGQIPRSWSEKELKEL----FEPYGAVYQINVLRDRSQNPPqskGC-CFVTFYTRKAALEAQNALH 80
Cdd:cd12364     1 KTLFVWNISPKLTEEEIYESlckaFSAFGLLYSVRVFPNAAVATP---GFyAFVKFYSARDASRAQKALN 67
RRM3_RBM28_like cd12415
RNA recognition motif 3 (RRM3) found in RNA-binding protein 28 (RBM28) and similar proteins; ...
19-77 9.60e-03

RNA recognition motif 3 (RRM3) found in RNA-binding protein 28 (RBM28) and similar proteins; This subfamily corresponds to the RRM3 of RBM28 and Nop4p. RBM28 is a specific nucleolar component of the spliceosomal small nuclear ribonucleoproteins (snRNPs), possibly coordinating their transition through the nucleolus. It specifically associates with U1, U2, U4, U5, and U6 small nuclear RNAs (snRNAs), and may play a role in the maturation of both small nuclear and ribosomal RNAs. RBM28 has four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and an extremely acidic region between RRM2 and RRM3. The family also includes nucleolar protein 4 (Nop4p or Nop77p) encoded by YPL043W from Saccharomyces cerevisiae. It is an essential nucleolar protein involved in processing and maturation of 27S pre-rRNA and biogenesis of 60S ribosomal subunits. Nop4p also contains four RRMs.


Pssm-ID: 409849 [Multi-domain]  Cd Length: 83  Bit Score: 35.27  E-value: 9.60e-03
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|...
gi 2244986492  19 FVGQIPRSWSEKELKELFEPYGAV-YQINVLRDRSQnppQSKGCCFVTFYTRKAA---LEAQN 77
Cdd:cd12415     4 FIRNLSFDTTEEDLKEFFSKFGEVkYARIVLDKDTG---HSKGTAFVQFKTKESAdkcIEAAN 63
 
Blast search parameters
Data Source: Precalculated data, version = cdd.v.3.21
Preset Options:Database: CDSEARCH/cdd   Low complexity filter: no  Composition Based Adjustment: yes   E-value threshold: 0.01

References:

  • Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
  • Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
  • Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
Help | Disclaimer | Write to the Help Desk
NCBI | NLM | NIH