myosin I MyoA [Aspergillus fischeri NRRL 181]
class I myosin( domain architecture ID 11544843)
class I myosin is an unconventional myosin that does not form dimers; it contains a a head/motor domain that has ATPase activity and functions as a molecular motor, utilizing ATP hydrolysis to generate directed movement toward the plus end along actin filaments
List of domain hits
Name | Accession | Description | Interval | E-value | ||||||||||
MYSc_Myo1 | cd01378 | class I myosin, motor domain; Myosin I generates movement at the leading edge in cell motility, ... |
65-717 | 0e+00 | ||||||||||
class I myosin, motor domain; Myosin I generates movement at the leading edge in cell motility, and class I myosins have been implicated in phagocytosis and vesicle transport. Myosin I, an unconventional myosin, does not form dimers. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. There are 5 myosin subclasses with subclasses c/h, d/g, and a/b have an IQ domain and a TH1 domain. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. : Pssm-ID: 276829 Cd Length: 652 Bit Score: 1298.67 E-value: 0e+00
|
||||||||||||||
Myosin_TH1 | pfam06017 | Unconventional myosin tail, actin- and lipid-binding; Unconventional myosins, ie those that ... |
775-972 | 2.61e-83 | ||||||||||
Unconventional myosin tail, actin- and lipid-binding; Unconventional myosins, ie those that are not found in muscle, have the common, classical-type head domain, sometimes a neck with the IQ calmodulin-binding motifs, and then non-standard tails. These tails determine the subcellular localization of the unconventional myosins and also help determine their individual functions. The family carries several different unconventional myosins, eg. Myo1f is expressed mainly in immune cells as well as in the inner ear where it can be associated with deafness, Myo1d has a lipid-binding module in their tail and is implicated in endosome vesicle recycling in epithelial cells. Myo1a, b, c and g from various eukaryotes are also found in this family. : Pssm-ID: 461801 Cd Length: 196 Bit Score: 270.24 E-value: 2.61e-83
|
||||||||||||||
SH3_Myosin-I_fungi | cd11858 | Src homology 3 domain of Type I fungal Myosins; Type I myosins (myosin-I) are actin-dependent ... |
1083-1134 | 4.51e-24 | ||||||||||
Src homology 3 domain of Type I fungal Myosins; Type I myosins (myosin-I) are actin-dependent motors in endocytic actin structures and actin patches. They play roles in membrane traffic in endocytic and secretory pathways, cell motility, and mechanosensing. Saccharomyces cerevisiae has two myosins-I, Myo3 and Myo5, which are involved in endocytosis and the polarization of the actin cytoskeleton. Myosin-I contains an N-terminal actin-activated ATPase, a phospholipid-binding TH1 (tail homology 1) domain, and a C-terminal extension which includes an F-actin-binding TH2 domain, an SH3 domain, and an acidic peptide that participates in activating the Arp2/3complex. The SH3 domain of myosin-I is required for myosin-I-induced actin polymerization. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. : Pssm-ID: 212792 [Multi-domain] Cd Length: 55 Bit Score: 96.30 E-value: 4.51e-24
|
||||||||||||||
Name | Accession | Description | Interval | E-value | ||||||||||||||
MYSc_Myo1 | cd01378 | class I myosin, motor domain; Myosin I generates movement at the leading edge in cell motility, ... |
65-717 | 0e+00 | ||||||||||||||
class I myosin, motor domain; Myosin I generates movement at the leading edge in cell motility, and class I myosins have been implicated in phagocytosis and vesicle transport. Myosin I, an unconventional myosin, does not form dimers. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. There are 5 myosin subclasses with subclasses c/h, d/g, and a/b have an IQ domain and a TH1 domain. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. Pssm-ID: 276829 Cd Length: 652 Bit Score: 1298.67 E-value: 0e+00
|
||||||||||||||||||
COG5022 | COG5022 | Myosin heavy chain [General function prediction only]; |
9-987 | 0e+00 | ||||||||||||||
Myosin heavy chain [General function prediction only]; Pssm-ID: 227355 [Multi-domain] Cd Length: 1463 Bit Score: 1210.68 E-value: 0e+00
|
||||||||||||||||||
MYSc | smart00242 | Myosin. Large ATPases; ATPase; molecular motor. Muscle contraction consists of a cyclical ... |
49-730 | 0e+00 | ||||||||||||||
Myosin. Large ATPases; ATPase; molecular motor. Muscle contraction consists of a cyclical interaction between myosin and actin. The core of the myosin structure is similar in fold to that of kinesin. Pssm-ID: 214580 [Multi-domain] Cd Length: 677 Bit Score: 1009.77 E-value: 0e+00
|
||||||||||||||||||
Myosin_head | pfam00063 | Myosin head (motor domain); |
53-717 | 0e+00 | ||||||||||||||
Myosin head (motor domain); Pssm-ID: 395017 [Multi-domain] Cd Length: 674 Bit Score: 851.19 E-value: 0e+00
|
||||||||||||||||||
PTZ00014 | PTZ00014 | myosin-A; Provisional |
53-764 | 7.37e-172 | ||||||||||||||
myosin-A; Provisional Pssm-ID: 240229 [Multi-domain] Cd Length: 821 Bit Score: 529.99 E-value: 7.37e-172
|
||||||||||||||||||
Myosin_TH1 | pfam06017 | Unconventional myosin tail, actin- and lipid-binding; Unconventional myosins, ie those that ... |
775-972 | 2.61e-83 | ||||||||||||||
Unconventional myosin tail, actin- and lipid-binding; Unconventional myosins, ie those that are not found in muscle, have the common, classical-type head domain, sometimes a neck with the IQ calmodulin-binding motifs, and then non-standard tails. These tails determine the subcellular localization of the unconventional myosins and also help determine their individual functions. The family carries several different unconventional myosins, eg. Myo1f is expressed mainly in immune cells as well as in the inner ear where it can be associated with deafness, Myo1d has a lipid-binding module in their tail and is implicated in endosome vesicle recycling in epithelial cells. Myo1a, b, c and g from various eukaryotes are also found in this family. Pssm-ID: 461801 Cd Length: 196 Bit Score: 270.24 E-value: 2.61e-83
|
||||||||||||||||||
SH3_Myosin-I_fungi | cd11858 | Src homology 3 domain of Type I fungal Myosins; Type I myosins (myosin-I) are actin-dependent ... |
1083-1134 | 4.51e-24 | ||||||||||||||
Src homology 3 domain of Type I fungal Myosins; Type I myosins (myosin-I) are actin-dependent motors in endocytic actin structures and actin patches. They play roles in membrane traffic in endocytic and secretory pathways, cell motility, and mechanosensing. Saccharomyces cerevisiae has two myosins-I, Myo3 and Myo5, which are involved in endocytosis and the polarization of the actin cytoskeleton. Myosin-I contains an N-terminal actin-activated ATPase, a phospholipid-binding TH1 (tail homology 1) domain, and a C-terminal extension which includes an F-actin-binding TH2 domain, an SH3 domain, and an acidic peptide that participates in activating the Arp2/3complex. The SH3 domain of myosin-I is required for myosin-I-induced actin polymerization. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. Pssm-ID: 212792 [Multi-domain] Cd Length: 55 Bit Score: 96.30 E-value: 4.51e-24
|
||||||||||||||||||
SH3 | smart00326 | Src homology 3 domains; Src homology 3 (SH3) domains bind to target proteins through sequences ... |
1083-1133 | 1.41e-12 | ||||||||||||||
Src homology 3 domains; Src homology 3 (SH3) domains bind to target proteins through sequences containing proline and hydrophobic amino acids. Pro-containing polypeptides may bind to SH3 domains in 2 different binding orientations. Pssm-ID: 214620 [Multi-domain] Cd Length: 56 Bit Score: 63.33 E-value: 1.41e-12
|
||||||||||||||||||
SH3_1 | pfam00018 | SH3 domain; SH3 (Src homology 3) domains are often indicative of a protein involved in signal ... |
1083-1128 | 9.80e-11 | ||||||||||||||
SH3 domain; SH3 (Src homology 3) domains are often indicative of a protein involved in signal transduction related to cytoskeletal organization. First described in the Src cytoplasmic tyrosine kinase. The structure is a partly opened beta barrel. Pssm-ID: 394975 [Multi-domain] Cd Length: 47 Bit Score: 57.98 E-value: 9.80e-11
|
||||||||||||||||||
Name | Accession | Description | Interval | E-value | ||||||||||||||
MYSc_Myo1 | cd01378 | class I myosin, motor domain; Myosin I generates movement at the leading edge in cell motility, ... |
65-717 | 0e+00 | ||||||||||||||
class I myosin, motor domain; Myosin I generates movement at the leading edge in cell motility, and class I myosins have been implicated in phagocytosis and vesicle transport. Myosin I, an unconventional myosin, does not form dimers. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. There are 5 myosin subclasses with subclasses c/h, d/g, and a/b have an IQ domain and a TH1 domain. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. Pssm-ID: 276829 Cd Length: 652 Bit Score: 1298.67 E-value: 0e+00
|
||||||||||||||||||
COG5022 | COG5022 | Myosin heavy chain [General function prediction only]; |
9-987 | 0e+00 | ||||||||||||||
Myosin heavy chain [General function prediction only]; Pssm-ID: 227355 [Multi-domain] Cd Length: 1463 Bit Score: 1210.68 E-value: 0e+00
|
||||||||||||||||||
MYSc | smart00242 | Myosin. Large ATPases; ATPase; molecular motor. Muscle contraction consists of a cyclical ... |
49-730 | 0e+00 | ||||||||||||||
Myosin. Large ATPases; ATPase; molecular motor. Muscle contraction consists of a cyclical interaction between myosin and actin. The core of the myosin structure is similar in fold to that of kinesin. Pssm-ID: 214580 [Multi-domain] Cd Length: 677 Bit Score: 1009.77 E-value: 0e+00
|
||||||||||||||||||
Myosin_head | pfam00063 | Myosin head (motor domain); |
53-717 | 0e+00 | ||||||||||||||
Myosin head (motor domain); Pssm-ID: 395017 [Multi-domain] Cd Length: 674 Bit Score: 851.19 E-value: 0e+00
|
||||||||||||||||||
MYSc | cd00124 | Myosin motor domain superfamily; Myosin motor domain. The catalytic (head) domain has ATPase ... |
65-717 | 0e+00 | ||||||||||||||
Myosin motor domain superfamily; Myosin motor domain. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. Pssm-ID: 276950 [Multi-domain] Cd Length: 633 Bit Score: 787.17 E-value: 0e+00
|
||||||||||||||||||
MYSc_Myo22 | cd14883 | class XXII myosin, motor domain; These myosins possess an extended neck with multiple IQ ... |
65-717 | 0e+00 | ||||||||||||||
class XXII myosin, motor domain; These myosins possess an extended neck with multiple IQ motifs such as found in class V, VIII, XI, and XIII myosins. These myosins are defined by two tandem MyTH4 and FERM domains. The apicomplexan, but not diatom myosins contain 4-6 WD40 repeats near the end of the C-terminal tail which suggests a possible function of these myosins in signal transduction and transcriptional regulation. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. Pssm-ID: 276849 [Multi-domain] Cd Length: 661 Bit Score: 690.22 E-value: 0e+00
|
||||||||||||||||||
MYSc_Myo5 | cd01380 | class V myosin, motor domain; Myo5, also called heavy chain 12, myoxin, are dimeric myosins ... |
70-715 | 0e+00 | ||||||||||||||
class V myosin, motor domain; Myo5, also called heavy chain 12, myoxin, are dimeric myosins that transport a variety of intracellular cargo processively along actin filaments, such as melanosomes, synaptic vesicles, vacuoles, and mRNA. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. It also contains a IQ domain and a globular DIL domain. Myosin V is a class of actin-based motor proteins involved in cytoplasmic vesicle transport and anchorage, spindle-pole alignment and mRNA translocation. The protein encoded by this gene is abundant in melanocytes and nerve cells. Mutations in this gene cause Griscelli syndrome type-1 (GS1), Griscelli syndrome type-3 (GS3) and neuroectodermal melanolysosomal disease, or Elejalde disease. Multiple alternatively spliced transcript variants encoding different isoforms have been reported, but the full-length nature of some variants has not been determined. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. Note that the Dictyostelium myoVs are not contained in this child group. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. Pssm-ID: 276831 [Multi-domain] Cd Length: 629 Bit Score: 666.17 E-value: 0e+00
|
||||||||||||||||||
MYSc_class_II | cd01377 | class II myosins, motor domain; Myosin motor domain in class II myosins. Class II myosins, ... |
70-717 | 0e+00 | ||||||||||||||
class II myosins, motor domain; Myosin motor domain in class II myosins. Class II myosins, also called conventional myosins, are the myosin type responsible for producing actomyosin contraction in metazoan muscle and non-muscle cells. Myosin II contains two heavy chains made up of the head (N-terminal) and tail (C-terminal) domains with a coiled-coil morphology that holds the two heavy chains together. Thus, myosin II has two heads. The intermediate neck domain is the region creating the angle between the head and tail. It also contains 4 light chains which bind the heavy chains in the "neck" region between the head and tail. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. Class-II myosins are regulated by phosphorylation of the myosin light chain or by binding of Ca2+. A cyclical interaction between myosin and actin provides the driving force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. Pssm-ID: 276951 [Multi-domain] Cd Length: 662 Bit Score: 662.62 E-value: 0e+00
|
||||||||||||||||||
MYSc_Myo11 | cd01384 | class XI myosin, motor domain; These plant-specific type XI myosin are involved in organelle ... |
70-717 | 0e+00 | ||||||||||||||
class XI myosin, motor domain; These plant-specific type XI myosin are involved in organelle transport. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. Pssm-ID: 276835 Cd Length: 647 Bit Score: 647.81 E-value: 0e+00
|
||||||||||||||||||
MYSc_Myo8 | cd01383 | class VIII myosin, motor domain; These plant-specific type VIII myosins has been associated ... |
70-717 | 0e+00 | ||||||||||||||
class VIII myosin, motor domain; These plant-specific type VIII myosins has been associated with endocytosis, cytokinesis, cell-to-cell coupling and gating at plasmodesmata. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. It also contains IQ domains Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. Pssm-ID: 276834 Cd Length: 647 Bit Score: 645.53 E-value: 0e+00
|
||||||||||||||||||
MYSc_Myo7 | cd01381 | class VII myosin, motor domain; These monomeric myosins have been associated with functions in ... |
66-717 | 0e+00 | ||||||||||||||
class VII myosin, motor domain; These monomeric myosins have been associated with functions in sensory systems such as vision and hearing. Mammalian myosin VII has a tail with 2 MyTH4 domains, 2 FERM domains, and a SH3 domain. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. Pssm-ID: 276832 Cd Length: 648 Bit Score: 632.37 E-value: 0e+00
|
||||||||||||||||||
MYSc_Myo4 | cd14872 | class IV myosin, motor domain; These myosins all possess a WW domain either N-terminal or ... |
66-714 | 0e+00 | ||||||||||||||
class IV myosin, motor domain; These myosins all possess a WW domain either N-terminal or C-terminal to their motor domain and a tail with a MyTH4 domain followed by a SH3 domain in some instances. The monomeric Acanthamoebas were the first identified members of this group and have been joined by Stramenopiles. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. Pssm-ID: 276839 Cd Length: 644 Bit Score: 605.62 E-value: 0e+00
|
||||||||||||||||||
MYSc_Myo29 | cd14890 | class XXIX myosin, motor domain; Class XXIX myosins are comprised of Stramenopiles and have ... |
65-717 | 0e+00 | ||||||||||||||
class XXIX myosin, motor domain; Class XXIX myosins are comprised of Stramenopiles and have very long tail domains consisting of three IQ motifs, short coiled-coil regions, up to 18 CBS domains, a PB1 domain, and a carboxy-terminal transmembrane domain. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. Pssm-ID: 276855 [Multi-domain] Cd Length: 662 Bit Score: 587.90 E-value: 0e+00
|
||||||||||||||||||
MYSc_Myo15 | cd01387 | class XV mammal-like myosin, motor domain; The class XV myosins are monomeric. In vertebrates, ... |
66-717 | 0e+00 | ||||||||||||||
class XV mammal-like myosin, motor domain; The class XV myosins are monomeric. In vertebrates, myosin XV appears to be expressed in sensory tissue and play a role in hearing. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. C-terminal to the head domain are 2 MyTH4 domain, a FERM domain, and a SH3 domain. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. Pssm-ID: 276838 [Multi-domain] Cd Length: 657 Bit Score: 565.53 E-value: 0e+00
|
||||||||||||||||||
MYSc_Myo6 | cd01382 | class VI myosin, motor domain; Myosin VI is a monomeric myosin, which moves towards the ... |
69-715 | 0e+00 | ||||||||||||||
class VI myosin, motor domain; Myosin VI is a monomeric myosin, which moves towards the minus-end of actin filaments, in contrast to most other myosins which moves towards the plus-end of actin filaments. It is thought that myosin VI, unlike plus-end directed myosins, does not use a pure lever arm mechanism, but instead steps with a mechanism analogous to the kinesin neck-linker uncoupling model. It has been implicated in a myriad of functions including: the transport of cytoplasmic organelles, maintenance of normal Golgi morphology, endocytosis, secretion, cell migration, border cell migration during development, and in cancer metastasis playing roles in deafness and retinal development among others. While how this is accomplished is largely unknown there are several interacting proteins that have been identified such as disabled homolog 2 (DAB2), GIPC1, synapse-associated protein 97 (SAP97; also known as DLG1) and optineurin, which have been found to target myosin VI to different cellular compartments. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the minus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. Pssm-ID: 276833 Cd Length: 649 Bit Score: 559.17 E-value: 0e+00
|
||||||||||||||||||
MYSc_Myo9 | cd01385 | class IX myosin, motor domain; Myosin IX is a processive single-headed motor, which might play ... |
69-717 | 6.03e-180 | ||||||||||||||
class IX myosin, motor domain; Myosin IX is a processive single-headed motor, which might play a role in signalling. It has a N-terminal RA domain, an IQ domain, a C1_1 domain, and a RhoGAP domain. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. Pssm-ID: 276836 [Multi-domain] Cd Length: 690 Bit Score: 546.59 E-value: 6.03e-180
|
||||||||||||||||||
MYSc_Myo10 | cd14873 | class X myosin, motor domain; Myosin X is an unconventional myosin motor that functions as a ... |
66-717 | 2.31e-177 | ||||||||||||||
class X myosin, motor domain; Myosin X is an unconventional myosin motor that functions as a monomer. In mammalian cells, the motor is found to localize to filopodia. Myosin X walks towards the barbed ends of filaments and is thought to walk on bundles of actin, rather than single filaments, a unique behavior. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. C-terminal to the head domain are a variable number of IQ domains, 2 PH domains, a MyTH4 domain, and a FERM domain. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. Pssm-ID: 276840 [Multi-domain] Cd Length: 651 Bit Score: 538.23 E-value: 2.31e-177
|
||||||||||||||||||
MYSc_Myo42 | cd14903 | class XLII myosin, motor domain; The class XLII myosins are comprised of Stramenopiles. Not ... |
66-715 | 3.83e-177 | ||||||||||||||
class XLII myosin, motor domain; The class XLII myosins are comprised of Stramenopiles. Not much is known about this myosin class. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. Pssm-ID: 276868 [Multi-domain] Cd Length: 658 Bit Score: 538.21 E-value: 3.83e-177
|
||||||||||||||||||
MYSc_Myo27 | cd14888 | class XXVII myosin, motor domain; Not much is known about this myosin class. The catalytic ... |
66-676 | 1.04e-172 | ||||||||||||||
class XXVII myosin, motor domain; Not much is known about this myosin class. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. Pssm-ID: 276853 [Multi-domain] Cd Length: 667 Bit Score: 526.95 E-value: 1.04e-172
|
||||||||||||||||||
PTZ00014 | PTZ00014 | myosin-A; Provisional |
53-764 | 7.37e-172 | ||||||||||||||
myosin-A; Provisional Pssm-ID: 240229 [Multi-domain] Cd Length: 821 Bit Score: 529.99 E-value: 7.37e-172
|
||||||||||||||||||
MYSc_Myo31 | cd14892 | class XXXI myosin, motor domain; Class XXXI myosins have a very long neck region consisting of ... |
69-717 | 1.52e-170 | ||||||||||||||
class XXXI myosin, motor domain; Class XXXI myosins have a very long neck region consisting of 17 IQ motifs and 2 tandem ANK repeats that are separated by a PH domain. The myosin classes XXX to XXXIV contain members from Phytophthora species and Hyaloperonospora parasitica. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. Pssm-ID: 276857 [Multi-domain] Cd Length: 656 Bit Score: 520.86 E-value: 1.52e-170
|
||||||||||||||||||
MYSc_Myo46 | cd14907 | class XLVI myosin, motor domain; The class XLVI myosins are comprised of Alveolata. Not much ... |
70-673 | 2.89e-169 | ||||||||||||||
class XLVI myosin, motor domain; The class XLVI myosins are comprised of Alveolata. Not much is known about this myosin class. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. Pssm-ID: 276872 [Multi-domain] Cd Length: 669 Bit Score: 518.05 E-value: 2.89e-169
|
||||||||||||||||||
MYSc_Myo40 | cd14901 | class XL myosin, motor domain; The class XL myosins are comprised of Stramenopiles. Not much ... |
66-716 | 3.47e-168 | ||||||||||||||
class XL myosin, motor domain; The class XL myosins are comprised of Stramenopiles. Not much is known about this myosin class. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. Pssm-ID: 276866 [Multi-domain] Cd Length: 655 Bit Score: 514.72 E-value: 3.47e-168
|
||||||||||||||||||
MYSc_Myo3 | cd01379 | class III myosin, motor domain; Myosin III has been shown to play a role in the vision process ... |
65-717 | 1.96e-165 | ||||||||||||||
class III myosin, motor domain; Myosin III has been shown to play a role in the vision process in insects and in hearing in mammals. Myosin III, an unconventional myosin, does not form dimers. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. They are characterized by an N-terminal protein kinase domain and several IQ domains. Some members also contain WW, SH2, PH, and Y-phosphatase domains. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. Pssm-ID: 276830 [Multi-domain] Cd Length: 633 Bit Score: 506.43 E-value: 1.96e-165
|
||||||||||||||||||
MYSc_Myo14 | cd14876 | class XIV myosin, motor domain; These myosins localize to plasma membranes of the ... |
69-717 | 1.67e-162 | ||||||||||||||
class XIV myosin, motor domain; These myosins localize to plasma membranes of the intracellular parasites and may be involved in the cell invasion process. Their known functions include: transporting phagosomes to the nucleus and perturbing the developmentally regulated elimination of the macronucleus during conjugation. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. C-terminal to their motor domain these myosins have a MyTH4-FERM protein domain combination. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. Pssm-ID: 276843 Cd Length: 649 Bit Score: 499.51 E-value: 1.67e-162
|
||||||||||||||||||
MYSc_Myo36 | cd14897 | class XXXVI myosin, motor domain; This class of molluscan myosins contains a motor domain ... |
65-717 | 4.46e-160 | ||||||||||||||
class XXXVI myosin, motor domain; This class of molluscan myosins contains a motor domain followed by a GlcAT-I (Beta1,3-glucuronyltransferase I) domain. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. Pssm-ID: 276862 [Multi-domain] Cd Length: 635 Bit Score: 492.67 E-value: 4.46e-160
|
||||||||||||||||||
MYSc_Myo43 | cd14904 | class XLIII myosin, motor domain; The class XLIII myosins are comprised of Stramenopiles. Not ... |
70-717 | 3.15e-155 | ||||||||||||||
class XLIII myosin, motor domain; The class XLIII myosins are comprised of Stramenopiles. Not much is known about this myosin class. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. Pssm-ID: 276869 Cd Length: 653 Bit Score: 480.59 E-value: 3.15e-155
|
||||||||||||||||||
MYSc_Myo35 | cd14896 | class XXXV myosin, motor domain; This class of metazoan myosins contains 2 IQ motifs, 2 MyTH4 ... |
70-717 | 5.24e-153 | ||||||||||||||
class XXXV myosin, motor domain; This class of metazoan myosins contains 2 IQ motifs, 2 MyTH4 domains, a single FERM domain, and an SH3 domain. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. Pssm-ID: 276861 [Multi-domain] Cd Length: 644 Bit Score: 474.27 E-value: 5.24e-153
|
||||||||||||||||||
MYSc_Myo28 | cd14889 | class XXVIII myosin, motor domain; These myosins are found in fish, chicken, and mollusks. The ... |
71-717 | 1.61e-150 | ||||||||||||||
class XXVIII myosin, motor domain; These myosins are found in fish, chicken, and mollusks. The tail regions of these class-XXVIII myosins consist of an IQ motif, a short coiled-coil region, and an SH2 domain. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. Pssm-ID: 276854 Cd Length: 659 Bit Score: 468.23 E-value: 1.61e-150
|
||||||||||||||||||
MYSc_Myo30 | cd14891 | class XXX myosin, motor domain; Myosins of class XXX are composed of an amino-terminal ... |
66-717 | 5.65e-147 | ||||||||||||||
class XXX myosin, motor domain; Myosins of class XXX are composed of an amino-terminal SH3-like domain, two IQ motifs, a coiled-coil region and a PX domain. The myosin classes XXX to XXXIV contain members from Phytophthora species and Hyaloperonospora parasitica. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. Pssm-ID: 276856 Cd Length: 645 Bit Score: 458.35 E-value: 5.65e-147
|
||||||||||||||||||
MYSc_Myo47 | cd14908 | class XLVII myosin, motor domain; The class XLVII myosins are comprised of Stramenopiles. Not ... |
66-717 | 1.03e-145 | ||||||||||||||
class XLVII myosin, motor domain; The class XLVII myosins are comprised of Stramenopiles. Not much is known about this myosin class. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. Pssm-ID: 276873 [Multi-domain] Cd Length: 682 Bit Score: 456.68 E-value: 1.03e-145
|
||||||||||||||||||
MYSc_Myh2_insects_mollusks | cd14911 | class II myosin heavy chain 2, motor domain; Myosin motor domain of type IIa skeletal muscle ... |
70-717 | 4.96e-145 | ||||||||||||||
class II myosin heavy chain 2, motor domain; Myosin motor domain of type IIa skeletal muscle myosin heavy chain 2 (also called MYH2A, MYHSA2, MyHC-IIa, MYHas8, MyHC-2A) in insects and mollusks. This gene encodes a member of the class II or conventional myosin heavy chains, and functions in skeletal muscle contraction. Mutations in this gene results in inclusion body myopathy-3 and familial congenital myopathy. Class II myosins, also called conventional myosins, are the myosin type responsible for producing actomyosin contraction in metazoan muscle and non-muscle cells. Myosin II contains two heavy chains made up of the head (N-terminal) and tail (C-terminal) domains with a coiled-coil morphology that holds the two heavy chains together. The intermediate neck domain is the region creating the angle between the head and tail. It also contains 4 light chains which bind the heavy chains in the "neck" region between the head and tail. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. Class-II myosins are regulated by phosphorylation of the myosin light chain or by binding of Ca2+. A cyclical interaction between myosin and actin provides the driving force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. Pssm-ID: 276876 [Multi-domain] Cd Length: 674 Bit Score: 454.44 E-value: 4.96e-145
|
||||||||||||||||||
MYSc_Myo25 | cd14886 | class XXV myosin, motor domain; These myosins are MyTH-FERM myosins that play a role in cell ... |
67-717 | 1.78e-139 | ||||||||||||||
class XXV myosin, motor domain; These myosins are MyTH-FERM myosins that play a role in cell adhesion and filopodia formation. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. Pssm-ID: 276851 Cd Length: 650 Bit Score: 438.94 E-value: 1.78e-139
|
||||||||||||||||||
MYSc_Myo41 | cd14902 | class XLI myosin, motor domain; The class XLI myosins are comprised of Stramenopiles. Not much ... |
74-678 | 1.92e-138 | ||||||||||||||
class XLI myosin, motor domain; The class XLI myosins are comprised of Stramenopiles. Not much is known about this myosin class. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. Pssm-ID: 276867 [Multi-domain] Cd Length: 716 Bit Score: 438.56 E-value: 1.92e-138
|
||||||||||||||||||
MYSc_Myh7b | cd14927 | class II myosin heavy chain 7b, motor domain; Myosin motor domain of cardiac muscle, beta ... |
70-717 | 3.43e-136 | ||||||||||||||
class II myosin heavy chain 7b, motor domain; Myosin motor domain of cardiac muscle, beta myosin heavy chain 7b (also called KIAA1512, dJ756N5.1, MYH14, MHC14). MYH7B is a slow-twitch myosin. Mutations in this gene result in one form of autosomal dominant hearing impairment. Multiple transcript variants encoding different isoforms have been found for this gene. Class II myosins, also called conventional myosins, are the myosin type responsible for producing actomyosin contraction in metazoan muscle and non-muscle cells. Myosin II contains two heavy chains made up of the head (N-terminal) and tail (C-terminal) domains with a coiled-coil morphology that holds the two heavy chains together. The intermediate neck domain is the region creating the angle between the head and tail. It also contains 4 light chains which bind the heavy chains in the "neck" region between the head and tail. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. Class-II myosins are regulated by phosphorylation of the myosin light chain or by binding of Ca2+. A cyclical interaction between myosin and actin provides the driving force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. Pssm-ID: 276953 [Multi-domain] Cd Length: 676 Bit Score: 431.30 E-value: 3.43e-136
|
||||||||||||||||||
MYSc_Myh10 | cd14920 | class II myosin heavy chain 10, motor domain; Myosin motor domain of non-muscle myosin heavy ... |
70-717 | 5.35e-136 | ||||||||||||||
class II myosin heavy chain 10, motor domain; Myosin motor domain of non-muscle myosin heavy chain 10 (also called NMMHCB). Mutations in this gene have been associated with May-Hegglin anomaly and developmental defects in brain and heart. Multiple transcript variants encoding different isoforms have been found for this gene. Class II myosins, also called conventional myosins, are the myosin type responsible for producing actomyosin contraction in metazoan muscle and non-muscle cells. Myosin II contains two heavy chains made up of the head (N-terminal) and tail (C-terminal) domains with a coiled-coil morphology that holds the two heavy chains together. The intermediate neck domain is the region creating the angle between the head and tail. It also contains 4 light chains which bind the heavy chains in the "neck" region between the head and tail. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. Class-II myosins are regulated by phosphorylation of the myosin light chain or by binding of Ca2+. A cyclical interaction between myosin and actin provides the driving force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. Pssm-ID: 276952 [Multi-domain] Cd Length: 673 Bit Score: 430.59 E-value: 5.35e-136
|
||||||||||||||||||
MYSc_Myh3 | cd14913 | class II myosin heavy chain 3, motor domain; Myosin motor domain of fetal skeletal muscle ... |
70-717 | 1.07e-135 | ||||||||||||||
class II myosin heavy chain 3, motor domain; Myosin motor domain of fetal skeletal muscle myosin heavy chain 3 (MYHC-EMB, MYHSE1, HEMHC, SMHCE) in tetrapods including mammals, lizards, and frogs. This gene is a member of the MYH family and encodes a protein with an IQ domain and a myosin head-like domain. Mutations in this gene have been associated with two congenital contracture (arthrogryposis) syndromes, Freeman-Sheldon syndrome and Sheldon-Hall syndrome. Class II myosins, also called conventional myosins, are the myosin type responsible for producing actomyosin contraction in metazoan muscle and non-muscle cells. Myosin II contains two heavy chains made up of the head (N-terminal) and tail (C-terminal) domains with a coiled-coil morphology that holds the two heavy chains together. The intermediate neck domain is the region creating the angle between the head and tail. It also contains 4 light chains which bind the heavy chains in the "neck" region between the head and tail. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. Class-II myosins are regulated by phosphorylation of the myosin light chain or by binding of Ca2+. A cyclical interaction between myosin and actin provides the driving force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. Pssm-ID: 276878 [Multi-domain] Cd Length: 668 Bit Score: 429.47 E-value: 1.07e-135
|
||||||||||||||||||
MYSc_Myo19 | cd14880 | class XIX myosin, motor domain; Monomeric myosin-XIX (Myo19) functions as an actin-based motor ... |
71-716 | 1.11e-135 | ||||||||||||||
class XIX myosin, motor domain; Monomeric myosin-XIX (Myo19) functions as an actin-based motor for mitochondrial movement in vertebrate cells. It contains a variable number of IQ domains. Human myo19 contains a motor domain, three IQ motifs, and a short tail. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. Pssm-ID: 276846 [Multi-domain] Cd Length: 658 Bit Score: 429.27 E-value: 1.11e-135
|
||||||||||||||||||
MYSc_Myh1_insects_crustaceans | cd14909 | class II myosin heavy chain 1, motor domain; Myosin motor domain of type IIx skeletal muscle ... |
70-717 | 1.33e-135 | ||||||||||||||
class II myosin heavy chain 1, motor domain; Myosin motor domain of type IIx skeletal muscle myosin heavy chain 1 (also called MYHSA1, MYHa, MyHC-2X/D, MGC133384) in insects and crustaceans. Myh1 is a type I skeletal muscle myosin that in Humans is encoded by the MYH1 gene. Class II myosins, also called conventional myosins, are the myosin type responsible for producing actomyosin contraction in metazoan muscle and non-muscle cells. Myosin II contains two heavy chains made up of the head (N-terminal) and tail (C-terminal) domains with a coiled-coil morphology that holds the two heavy chains together. The intermediate neck domain is the region creating the angle between the head and tail. It also contains 4 light chains which bind the heavy chains in the "neck" region between the head and tail. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. Class-II myosins are regulated by phosphorylation of the myosin light chain or by binding of Ca2+. A cyclical interaction between myosin and actin provides the driving force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. Pssm-ID: 276874 Cd Length: 666 Bit Score: 429.26 E-value: 1.33e-135
|
||||||||||||||||||
MYSc_Myh15_mammals | cd14929 | class II myosin heavy chain 15, motor domain; Myosin motor domain of sarcomeric myosin heavy ... |
71-717 | 9.73e-135 | ||||||||||||||
class II myosin heavy chain 15, motor domain; Myosin motor domain of sarcomeric myosin heavy chain 15 in mammals (also called KIAA1000) . MYH15 is a slow-twitch myosin. Myh15 is a ventricular myosin heavy chain. Myh15 is absent in embryonic and fetal muscles and is found in orbital layer of extraocular muscles at birth. Class II myosins, also called conventional myosins, are the myosin type responsible for producing actomyosin contraction in metazoan muscle and non-muscle cells. Myosin II contains two heavy chains made up of the head (N-terminal) and tail (C-terminal) domains with a coiled-coil morphology that holds the two heavy chains together. The intermediate neck domain is the region creating the angle between the head and tail. It also contains 4 light chains which bind the heavy chains in the "neck" region between the head and tail. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. Class-II myosins are regulated by phosphorylation of the myosin light chain or by binding of Ca2+. A cyclical interaction between myosin and actin provides the driving force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. Pssm-ID: 276892 [Multi-domain] Cd Length: 662 Bit Score: 426.70 E-value: 9.73e-135
|
||||||||||||||||||
MYSc_Myh16 | cd14934 | class II myosin heavy chain 16, motor domain; Myosin motor domain of myosin heavy chain 16 ... |
69-717 | 3.69e-134 | ||||||||||||||
class II myosin heavy chain 16, motor domain; Myosin motor domain of myosin heavy chain 16 pseudogene (also called MHC20, MYH16, and myh5), encoding a sarcomeric myosin heavy chain expressed in nonhuman primate masticatory muscles, is inactivated in humans. This cd contains Myh16 in mammals. MYH16 has intermediate fibres between that of slow type 1 and fast 2B fibres, but exert more force than any other fibre type examined. Class II myosins, also called conventional myosins, are the myosin type responsible for producing actomyosin contraction in metazoan muscle and non-muscle cells. Myosin II contains two heavy chains made up of the head (N-terminal) and tail (C-terminal) domains with a coiled-coil morphology that holds the two heavy chains together. The intermediate neck domain is the region creating the angle between the head and tail. It also contains 4 light chains which bind the heavy chains in the "neck" region between the head and tail. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. Class-II myosins are regulated by phosphorylation of the myosin light chain or by binding of Ca2+. A cyclical interaction between myosin and actin provides the driving force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. Some of the data used for this classification were produced by the CyMoBase team at the Max-Planck-Institute for Biophysical Chemistry. The sequence names are composed of the species abbreviation followed by the protein abbreviation and optional protein classifier and variant designations. Pssm-ID: 276896 [Multi-domain] Cd Length: 659 Bit Score: 425.21 E-value: 3.69e-134
|
||||||||||||||||||
MYSc_Myo34 | cd14895 | class XXXIV myosin, motor domain; Class XXXIV myosins are composed of an IQ motif, a short ... |
66-673 | 1.87e-132 | ||||||||||||||
class XXXIV myosin, motor domain; Class XXXIV myosins are composed of an IQ motif, a short coiled-coil region, 5 tandem ANK repeats, and a carboxy-terminal FYVE domain. The myosin classes XXX to XXXIV contain members from Phytophthora species and Hyaloperonospora parasitica. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. Pssm-ID: 276860 [Multi-domain] Cd Length: 704 Bit Score: 422.05 E-value: 1.87e-132
|
||||||||||||||||||
MYSc_Myo39 | cd14900 | class XXXIX myosin, motor domain; The class XXXIX myosins are found in Stramenopiles. Not much ... |
71-673 | 6.23e-128 | ||||||||||||||
class XXXIX myosin, motor domain; The class XXXIX myosins are found in Stramenopiles. Not much is known about this myosin class. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. Pssm-ID: 276865 Cd Length: 627 Bit Score: 407.38 E-value: 6.23e-128
|
||||||||||||||||||
MYSc_Myh7 | cd14917 | class II myosin heavy chain 7, motor domain; Myosin motor domain of beta (or slow) type I ... |
66-717 | 5.72e-127 | ||||||||||||||
class II myosin heavy chain 7, motor domain; Myosin motor domain of beta (or slow) type I cardiac muscle myosin heavy chain 7 (also called CMH1, MPD1, and CMD1S). Muscle myosin is a hexameric protein containing 2 heavy chain subunits, 2 alkali light chain subunits, and 2 regulatory light chain subunits. It is expressed predominantly in normal human ventrical and in skeletal muscle tissues rich in slow-twitch type I muscle fibers. Changes in the relative abundance of this protein and the alpha (or fast) heavy subunit of cardiac myosin correlate with the contractile velocity of cardiac muscle. Its expression is also altered during thyroid hormone depletion and hemodynamic overloading. Mutations in this gene are associated with familial hypertrophic cardiomyopathy, myosin storage myopathy, dilated cardiomyopathy, and Laing early-onset distal myopathy. Class II myosins, also called conventional myosins, are the myosin type responsible for producing actomyosin contraction in metazoan muscle and non-muscle cells. Myosin II contains two heavy chains made up of the head (N-terminal) and tail (C-terminal) domains with a coiled-coil morphology that holds the two heavy chains together. The intermediate neck domain is the region creating the angle between the head and tail. It also contains 4 light chains which bind the heavy chains in the "neck" region between the head and tail. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. Class-II myosins are regulated by phosphorylation of the myosin light chain or by binding of Ca2+. A cyclical interaction between myosin and actin provides the driving force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. Pssm-ID: 276881 [Multi-domain] Cd Length: 668 Bit Score: 406.41 E-value: 5.72e-127
|
||||||||||||||||||
MYSc_Myh18 | cd14932 | class II myosin heavy chain 18, motor domain; Myosin motor domain of muscle myosin heavy chain ... |
70-717 | 1.44e-126 | ||||||||||||||
class II myosin heavy chain 18, motor domain; Myosin motor domain of muscle myosin heavy chain 18. Class II myosins, also called conventional myosins, are the myosin type responsible for producing actomyosin contraction in metazoan muscle and non-muscle cells. Myosin II contains two heavy chains made up of the head (N-terminal) and tail (C-terminal) domains with a coiled-coil morphology that holds the two heavy chains together. The intermediate neck domain is the region creating the angle between the head and tail. It also contains 4 light chains which bind the heavy chains in the "neck" region between the head and tail. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. Class-II myosins are regulated by phosphorylation of the myosin light chain or by binding of Ca2+. A cyclical interaction between myosin and actin provides the driving force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. Pssm-ID: 276895 [Multi-domain] Cd Length: 676 Bit Score: 405.57 E-value: 1.44e-126
|
||||||||||||||||||
MYSc_Myo45 | cd14906 | class XLV myosin, motor domain; The class XLVI myosins are comprised of slime molds ... |
67-670 | 1.93e-125 | ||||||||||||||
class XLV myosin, motor domain; The class XLVI myosins are comprised of slime molds Dictyostelium and Polysphondylium. Not much is known about this myosin class. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. Pssm-ID: 276871 [Multi-domain] Cd Length: 715 Bit Score: 403.59 E-value: 1.93e-125
|
||||||||||||||||||
MYSc_Myh8 | cd14918 | class II myosin heavy chain 8, motor domain; Myosin motor domain of perinatal skeletal muscle ... |
70-717 | 3.75e-125 | ||||||||||||||
class II myosin heavy chain 8, motor domain; Myosin motor domain of perinatal skeletal muscle myosin heavy chain 8 (also called MyHC-peri, MyHC-pn). Myosin is a hexameric protein composed of a pair of myosin heavy chains (MYH) and two pairs of nonidentical light chains. A mutation in this gene results in trismus-pseudocamptodactyly syndrome. Class II myosins, also called conventional myosins, are the myosin type responsible for producing actomyosin contraction in metazoan muscle and non-muscle cells. Myosin II contains two heavy chains made up of the head (N-terminal) and tail (C-terminal) domains with a coiled-coil morphology that holds the two heavy chains together. The intermediate neck domain is the region creating the angle between the head and tail. It also contains 4 light chains which bind the heavy chains in the "neck" region between the head and tail. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. Class-II myosins are regulated by phosphorylation of the myosin light chain or by binding of Ca2+. A cyclical interaction between myosin and actin provides the driving force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. Pssm-ID: 276882 [Multi-domain] Cd Length: 668 Bit Score: 401.42 E-value: 3.75e-125
|
||||||||||||||||||
MYSc_Myh6 | cd14916 | class II myosin heavy chain 6, motor domain; Myosin motor domain of alpha (or fast) cardiac ... |
70-717 | 1.24e-124 | ||||||||||||||
class II myosin heavy chain 6, motor domain; Myosin motor domain of alpha (or fast) cardiac muscle myosin heavy chain 6. Cardiac muscle myosin is a hexamer consisting of two heavy chain subunits, two light chain subunits, and two regulatory subunits. This gene encodes the alpha heavy chain subunit of cardiac myosin. Mutations in this gene cause familial hypertrophic cardiomyopathy and atrial septal defect. Class II myosins, also called conventional myosins, are the myosin type responsible for producing actomyosin contraction in metazoan muscle and non-muscle cells. Myosin II contains two heavy chains made up of the head (N-terminal) and tail (C-terminal) domains with a coiled-coil morphology that holds the two heavy chains together. The intermediate neck domain is the region creating the angle between the head and tail. It also contains 4 light chains which bind the heavy chains in the "neck" region between the head and tail. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. Class-II myosins are regulated by phosphorylation of the myosin light chain or by binding of Ca2+. A cyclical interaction between myosin and actin provides the driving force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. Pssm-ID: 276880 [Multi-domain] Cd Length: 670 Bit Score: 400.20 E-value: 1.24e-124
|
||||||||||||||||||
MYSc_Myh11 | cd14921 | class II myosin heavy chain 11, motor domain; Myosin motor domain of smooth muscle myosin ... |
70-717 | 2.36e-124 | ||||||||||||||
class II myosin heavy chain 11, motor domain; Myosin motor domain of smooth muscle myosin heavy chain 11 (also called SMMHC, SMHC). The gene product is a subunit of a hexameric protein that consists of two heavy chain subunits and two pairs of non-identical light chain subunits. It functions as a major contractile protein, converting chemical energy into mechanical energy through the hydrolysis of ATP. The gene encoding a human ortholog of rat NUDE1 is transcribed from the reverse strand of this gene, and its 3' end overlaps with that of the latter. Inversion of the MYH11 locus is one of the most frequent chromosomal aberrations found in acute myeloid leukemia. Alternative splicing generates isoforms that are differentially expressed, with ratios changing during muscle cell maturation. Mutations in MYH11 have been described in individuals with thoracic aortic aneurysms leading to acute aortic dissections with patent ductus arteriosus. MYH11 mutations are also thought to contribute to human colorectal cancer and are also associated with Peutz-Jeghers syndrome. The mutations found in human intestinal neoplasia result in unregulated proteins with constitutive motor activity, similar to the mutant myh11 zebrafish. Class II myosins, also called conventional myosins, are the myosin type responsible for producing actomyosin contraction in metazoan muscle and non-muscle cells. Myosin II contains two heavy chains made up of the head (N-terminal) and tail (C-terminal) domains with a coiled-coil morphology that holds the two heavy chains together. The intermediate neck domain is the region creating the angle between the head and tail. It also contains 4 light chains which bind the heavy chains in the "neck" region between the head and tail. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. Class-II myosins are regulated by phosphorylation of the myosin light chain or by binding of Ca2+. A cyclical interaction between myosin and actin provides the driving force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. Pssm-ID: 276885 [Multi-domain] Cd Length: 673 Bit Score: 399.39 E-value: 2.36e-124
|
||||||||||||||||||
MYSc_Myh2_mammals | cd14912 | class II myosin heavy chain 2, motor domain; Myosin motor domain of type IIa skeletal muscle ... |
66-717 | 2.30e-123 | ||||||||||||||
class II myosin heavy chain 2, motor domain; Myosin motor domain of type IIa skeletal muscle myosin heavy chain 2 (also called MYH2A, MYHSA2, MyHC-IIa, MYHas8, MyHC-2A) in mammals. Mutations in this gene results in inclusion body myopathy-3 and familial congenital myopathy. Class II myosins, also called conventional myosins, are the myosin type responsible for producing actomyosin contraction in metazoan muscle and non-muscle cells. Myosin II contains two heavy chains made up of the head (N-terminal) and tail (C-terminal) domains with a coiled-coil morphology that holds the two heavy chains together. The intermediate neck domain is the region creating the angle between the head and tail. It also contains 4 light chains which bind the heavy chains in the "neck" region between the head and tail. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. Class-II myosins are regulated by phosphorylation of the myosin light chain or by binding of Ca2+. A cyclical interaction between myosin and actin provides the driving force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. Pssm-ID: 276877 [Multi-domain] Cd Length: 673 Bit Score: 396.80 E-value: 2.30e-123
|
||||||||||||||||||
MYSc_Myh1_mammals | cd14910 | class II myosin heavy chain 1, motor domain; Myosin motor domain of type IIx skeletal muscle ... |
66-717 | 2.82e-123 | ||||||||||||||
class II myosin heavy chain 1, motor domain; Myosin motor domain of type IIx skeletal muscle myosin heavy chain 1 (also called MYHSA1, MYHa, MyHC-2X/D, MGC133384) in mammals. Class II myosins, also called conventional myosins, are the myosin type responsible for producing actomyosin contraction in metazoan muscle and non-muscle cells. Myosin II contains two heavy chains made up of the head (N-terminal) and tail (C-terminal) domains with a coiled-coil morphology that holds the two heavy chains together. The intermediate neck domain is the region creating the angle between the head and tail. It also contains 4 light chains which bind the heavy chains in the "neck" region between the head and tail. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. Class-II myosins are regulated by phosphorylation of the myosin light chain or by binding of Ca2+. A cyclical interaction between myosin and actin provides the driving force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. Pssm-ID: 276875 [Multi-domain] Cd Length: 671 Bit Score: 396.41 E-value: 2.82e-123
|
||||||||||||||||||
MYSc_Myo17 | cd14879 | class XVII myosin, motor domain; This fungal myosin which is also known as chitin synthase ... |
62-716 | 1.68e-122 | ||||||||||||||
class XVII myosin, motor domain; This fungal myosin which is also known as chitin synthase uses its motor domain to tether its vesicular cargo to peripheral actin. It works in opposition to dynein, contributing to the retention of Mcs1 vesicles at the site of cell growth and increasing vesicle fusion necessary for polarized growth. Class 17 myosins consist of a N-terminal myosin motor domain with Cyt-b5, chitin synthase 2, and a DEK_C domains at it C-terminus. The chitin synthase region contains several transmembrane domains by which myosin 17 is thought to bind secretory vesicles. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. Pssm-ID: 276845 [Multi-domain] Cd Length: 647 Bit Score: 393.45 E-value: 1.68e-122
|
||||||||||||||||||
MYSc_Myh4 | cd14915 | class II myosin heavy chain 4, motor domain; Myosin motor domain of skeletal muscle myosin ... |
66-717 | 2.60e-121 | ||||||||||||||
class II myosin heavy chain 4, motor domain; Myosin motor domain of skeletal muscle myosin heavy chain 4 (also called MYH2B, MyHC-2B, MyHC-IIb). Class II myosins, also called conventional myosins, are the myosin type responsible for producing actomyosin contraction in metazoan muscle and non-muscle cells. Myosin II contains two heavy chains made up of the head (N-terminal) and tail (C-terminal) domains with a coiled-coil morphology that holds the two heavy chains together. The intermediate neck domain is the region creating the angle between the head and tail. It also contains 4 light chains which bind the heavy chains in the "neck" region between the head and tail. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. Class-II myosins are regulated by phosphorylation of the myosin light chain or by binding of Ca2+. A cyclical interaction between myosin and actin provides the driving force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. Pssm-ID: 276879 [Multi-domain] Cd Length: 671 Bit Score: 391.40 E-value: 2.60e-121
|
||||||||||||||||||
MYSc_Myh9 | cd14919 | class II myosin heavy chain 9, motor domain; Myosin motor domain of non-muscle myosin heavy ... |
70-717 | 5.86e-121 | ||||||||||||||
class II myosin heavy chain 9, motor domain; Myosin motor domain of non-muscle myosin heavy chain 9 (also called NMMHCA, NMHC-II-A, MHA, FTNS, EPSTS, and DFNA17). Myosin is a hexameric protein composed of a pair of myosin heavy chains (MYH) and two pairs of nonidentical light chains. The encoded protein is a myosin IIA heavy chain that contains an IQ domain and a myosin head-like domain which is involved in several important functions, including cytokinesis, cell motility and maintenance of cell shape. Defects in this gene have been associated with non-syndromic sensorineural deafness autosomal dominant type 17, Epstein syndrome, Alport syndrome with macrothrombocytopenia, Sebastian syndrome, Fechtner syndrome and macrothrombocytopenia with progressive sensorineural deafness. Class II myosins, also called conventional myosins, are the myosin type responsible for producing actomyosin contraction in metazoan muscle and non-muscle cells. Myosin II contains two heavy chains made up of the head (N-terminal) and tail (C-terminal) domains with a coiled-coil morphology that holds the two heavy chains together. The intermediate neck domain is the region creating the angle between the head and tail. It also contains 4 light chains which bind the heavy chains in the "neck" region between the head and tail. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. Class-II myosins are regulated by phosphorylation of the myosin light chain or by binding of Ca2+. A cyclical interaction between myosin and actin provides the driving force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. Pssm-ID: 276883 [Multi-domain] Cd Length: 670 Bit Score: 390.22 E-value: 5.86e-121
|
||||||||||||||||||
MYSc_Myh13 | cd14923 | class II myosin heavy chain 13, motor domain; Myosin motor domain of skeletal muscle myosin ... |
70-717 | 1.06e-118 | ||||||||||||||
class II myosin heavy chain 13, motor domain; Myosin motor domain of skeletal muscle myosin heavy chain 13 (also called MyHC-eo) in mammals, chicken, and green anole. Myh13 is a myosin whose expression is restricted primarily to the extrinsic eye muscles which are specialized for function in eye movement. Class II myosins, also called conventional myosins, are the myosin type responsible for producing muscle contraction in muscle cells. Myosin II contains two heavy chains made up of the head (N-terminal) and tail (C-terminal) domains with a coiled-coil morphology that holds the two heavy chains together. The intermediate neck domain is the region creating the angle between the head and tail. It also contains 4 light chains which bind the heavy chains in the "neck" region between the head and tail. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. Class-II myosins are regulated by phosphorylation of the myosin light chain or by binding of Ca2+. A cyclical interaction between myosin and actin provides the driving force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. Pssm-ID: 276887 [Multi-domain] Cd Length: 671 Bit Score: 384.04 E-value: 1.06e-118
|
||||||||||||||||||
MYSc_Myh19 | cd15896 | class II myosin heavy chain19, motor domain; Myosin motor domain of muscle myosin heavy chain ... |
70-717 | 5.61e-118 | ||||||||||||||
class II myosin heavy chain19, motor domain; Myosin motor domain of muscle myosin heavy chain 19. Class II myosins, also called conventional myosins, are the myosin type responsible for producing actomyosin contraction in metazoan muscle and non-muscle cells. Myosin II contains two heavy chains made up of the head (N-terminal) and tail (C-terminal) domains with a coiled-coil morphology that holds the two heavy chains together. The intermediate neck domain is the region creating the angle between the head and tail. It also contains 4 light chains which bind the heavy chains in the "neck" region between the head and tail. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. Class-II myosins are regulated by phosphorylation of the myosin light chain or by binding of Ca2+. A cyclical interaction between myosin and actin provides the driving force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. Pssm-ID: 276899 [Multi-domain] Cd Length: 675 Bit Score: 382.49 E-value: 5.61e-118
|
||||||||||||||||||
MYSc_Myo13 | cd14875 | class XIII myosin, motor domain; These myosins have an N-terminal motor domain, a light-chain ... |
71-717 | 3.95e-114 | ||||||||||||||
class XIII myosin, motor domain; These myosins have an N-terminal motor domain, a light-chain binding domain, and a C-terminal GPA/Q-rich domain. There is little known about the function of this myosin class. Two of the earliest members identified in this class are green alga Acetabularia cliftonii, Aclmyo1 and Aclmyo2. They are striking with their short tail of Aclmyo1 of 18 residues and the maximum of 7 IQ motifs in Aclmyo2. It is thought that these myosins are involved in organelle transport and tip growth. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. Pssm-ID: 276842 [Multi-domain] Cd Length: 664 Bit Score: 371.45 E-value: 3.95e-114
|
||||||||||||||||||
MYSc_Myh14_mammals | cd14930 | class II myosin heavy chain 14 motor domain; Myosin motor domain of non-muscle myosin heavy ... |
70-717 | 5.65e-113 | ||||||||||||||
class II myosin heavy chain 14 motor domain; Myosin motor domain of non-muscle myosin heavy chain 14 (also called FLJ13881, KIAA2034, MHC16, MYH17). Its members include mammals, chickens, and turtles. Class II myosins, also called conventional myosins, are the myosin type responsible for producing actomyosin contraction in metazoan muscle and non-muscle cells. Myosin II contains two heavy chains made up of the head (N-terminal) and tail (C-terminal) domains with a coiled-coil morphology that holds the two heavy chains together. The intermediate neck domain is the region creating the angle between the head and tail. It also contains 4 light chains which bind the heavy chains in the "neck" region between the head and tail. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. Class-II myosins are regulated by phosphorylation of the myosin light chain or by binding of Ca2+. A cyclical interaction between myosin and actin provides the driving force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. Some of the data used for this classification were produced by the CyMoBase team at the Max-Planck-Institute for Biophysical Chemistry. The sequence names are composed of the species abbreviation followed by the protein abbreviation and optional protein classifier and variant designations. Pssm-ID: 276893 [Multi-domain] Cd Length: 670 Bit Score: 368.65 E-value: 5.65e-113
|
||||||||||||||||||
MYSc_Myo16 | cd14878 | class XVI myosin, motor domain; These XVI type myosins are also known as Neuronal ... |
74-717 | 3.42e-110 | ||||||||||||||
class XVI myosin, motor domain; These XVI type myosins are also known as Neuronal tyrosine-phosphorylated phosphoinositide-3-kinase adapter 3/NYAP3. Myo16 is thought to play a regulatory role in cell cycle progression and has been recently implicated in Schizophrenia. Class XVI myosins are characterized by an N-terminal ankyrin repeat domain and some with chitin synthase domains that arose independently from the ones in the class XVII fungal myosins. They bind protein phosphatase 1 catalytic subunits 1alpha/PPP1CA and 1gamma/PPP1CC. Human Myo16 interacts with ACOT9, ARHGAP26 and PIK3R2 and with components of the WAVE1 complex, CYFIP1 and NCKAP1. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. Pssm-ID: 276844 [Multi-domain] Cd Length: 656 Bit Score: 360.67 E-value: 3.42e-110
|
||||||||||||||||||
MYSc_Myo24A | cd14937 | class XXIV A myosin, motor domain; These myosins have a 1-2 IQ motifs in their neck and a ... |
65-717 | 4.21e-110 | ||||||||||||||
class XXIV A myosin, motor domain; These myosins have a 1-2 IQ motifs in their neck and a coiled-coil region in their C-terminal tail. The function of the class XXIV myosins remain elusive. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. Pssm-ID: 276897 Cd Length: 637 Bit Score: 359.71 E-value: 4.21e-110
|
||||||||||||||||||
MYSc_Myo38 | cd14899 | class XXXVIII myosin; The class XXXVIII myosins are comprised of Stramenopiles. Not much is ... |
66-670 | 1.88e-103 | ||||||||||||||
class XXXVIII myosin; The class XXXVIII myosins are comprised of Stramenopiles. Not much is known about this myosin class. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. Pssm-ID: 276864 [Multi-domain] Cd Length: 717 Bit Score: 344.39 E-value: 1.88e-103
|
||||||||||||||||||
MYSc_Myo37 | cd14898 | class XXXVII myosin, motor domain; The class XXXVIII myosins are comprised of fungi. Not much ... |
65-683 | 1.65e-95 | ||||||||||||||
class XXXVII myosin, motor domain; The class XXXVIII myosins are comprised of fungi. Not much is known about this myosin class. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. Pssm-ID: 276863 Cd Length: 578 Bit Score: 317.99 E-value: 1.65e-95
|
||||||||||||||||||
MYSc_Myo26 | cd14887 | class XXVI myosin, motor domain; These MyTH-FERM myosins are thought to be related to the ... |
69-715 | 3.42e-89 | ||||||||||||||
class XXVI myosin, motor domain; These MyTH-FERM myosins are thought to be related to the other myosins that have a MyTH4 domain such as class III, VII, IX, X , XV, XVI, XVII, XX, XXII, XXV, and XXXIV. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. Pssm-ID: 276852 Cd Length: 725 Bit Score: 305.03 E-value: 3.42e-89
|
||||||||||||||||||
MYSc_Myo12 | cd14874 | class XXXIII myosin, motor domain; Little is known about the XXXIII class of myosins. They ... |
66-717 | 9.11e-87 | ||||||||||||||
class XXXIII myosin, motor domain; Little is known about the XXXIII class of myosins. They are found predominately in nematodes. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. Pssm-ID: 276841 [Multi-domain] Cd Length: 628 Bit Score: 295.24 E-value: 9.11e-87
|
||||||||||||||||||
MYSc_Myo23 | cd14884 | class XXIII myosin, motor domain; These myosins are predicted to have a neck region with 1-2 ... |
65-670 | 3.52e-84 | ||||||||||||||
class XXIII myosin, motor domain; These myosins are predicted to have a neck region with 1-2 IQ motifs and a single MyTH4 domain in its C-terminal tail. The lack of a FERM domain here is odd since MyTH4 domains are usually found alongside FERM domains where they bind to microtubules. At any rate these Class XXIII myosins are still proposed to function in the apicomplexan microtubule cytoskeleton. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. Pssm-ID: 276850 [Multi-domain] Cd Length: 685 Bit Score: 289.88 E-value: 3.52e-84
|
||||||||||||||||||
Myosin_TH1 | pfam06017 | Unconventional myosin tail, actin- and lipid-binding; Unconventional myosins, ie those that ... |
775-972 | 2.61e-83 | ||||||||||||||
Unconventional myosin tail, actin- and lipid-binding; Unconventional myosins, ie those that are not found in muscle, have the common, classical-type head domain, sometimes a neck with the IQ calmodulin-binding motifs, and then non-standard tails. These tails determine the subcellular localization of the unconventional myosins and also help determine their individual functions. The family carries several different unconventional myosins, eg. Myo1f is expressed mainly in immune cells as well as in the inner ear where it can be associated with deafness, Myo1d has a lipid-binding module in their tail and is implicated in endosome vesicle recycling in epithelial cells. Myo1a, b, c and g from various eukaryotes are also found in this family. Pssm-ID: 461801 Cd Length: 196 Bit Score: 270.24 E-value: 2.61e-83
|
||||||||||||||||||
MYSc_Myo44 | cd14905 | class XLIV myosin, motor domain; There is little known about the function of the myosin XLIV ... |
71-717 | 3.26e-82 | ||||||||||||||
class XLIV myosin, motor domain; There is little known about the function of the myosin XLIV class. Members here include cellular slime mold Polysphondylium and soil-living amoeba Dictyostelium. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. Pssm-ID: 276870 Cd Length: 673 Bit Score: 283.91 E-value: 3.26e-82
|
||||||||||||||||||
MYSc_Myo18 | cd01386 | class XVIII myosin, motor domain; Many members of this class contain a N-terminal PDZ domain ... |
71-717 | 5.18e-81 | ||||||||||||||
class XVIII myosin, motor domain; Many members of this class contain a N-terminal PDZ domain which is commonly found in proteins establishing molecular complexes. The motor domain itself does not exhibit ATPase activity, suggesting that it functions as an actin tether protein. It also has two IQ domains that probably bind light chains or related calmodulins and a C-terminal tail with two sections of coiled-coil domains, which are thought to mediate homodimerization. The function of these myosins are largely unknown. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. Pssm-ID: 276837 [Multi-domain] Cd Length: 689 Bit Score: 280.74 E-value: 5.18e-81
|
||||||||||||||||||
MYSc_Myo21 | cd14882 | class XXI myosin, motor domain; The myosins here are comprised of insects. Leishmania class ... |
65-717 | 2.90e-79 | ||||||||||||||
class XXI myosin, motor domain; The myosins here are comprised of insects. Leishmania class XXI myosins do not group with them. Myo21, unlike other myosin proteins, contains UBA-like protein domains and has no structural or functional relationship with the myosins present in other organisms possessing cilia or flagella. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. They have diverse tails with IQ, WW, PX, and Tub domains. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. Pssm-ID: 276848 Cd Length: 642 Bit Score: 274.70 E-value: 2.90e-79
|
||||||||||||||||||
MYSc_Myo20 | cd14881 | class XX myosin, motor domain; These class 20 myosins are primarily insect myosins with such ... |
65-675 | 2.33e-73 | ||||||||||||||
class XX myosin, motor domain; These class 20 myosins are primarily insect myosins with such members as Drosophila, Daphnia, and mosquitoes. These myosins contain a single IQ motif in the neck region. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. Pssm-ID: 276847 [Multi-domain] Cd Length: 633 Bit Score: 257.35 E-value: 2.33e-73
|
||||||||||||||||||
MYSc_Myo32 | cd14893 | class XXXII myosin, motor domain; Class XXXII myosins do not contain any IQ motifs, but ... |
71-716 | 8.30e-73 | ||||||||||||||
class XXXII myosin, motor domain; Class XXXII myosins do not contain any IQ motifs, but possess tandem MyTH4 and FERM domains. The myosin classes XXX to XXXIV contain members from Phytophthora species and Hyaloperonospora parasitica. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. Pssm-ID: 276858 Cd Length: 741 Bit Score: 258.75 E-value: 8.30e-73
|
||||||||||||||||||
MYSc_Myo24B | cd14938 | class XXIV B myosin, motor domain; These myosins have a 1-2 IQ motifs in their neck and a ... |
70-716 | 6.72e-49 | ||||||||||||||
class XXIV B myosin, motor domain; These myosins have a 1-2 IQ motifs in their neck and a coiled-coil region in their C-terminal tail. The functions of these myosins remain elusive. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. Pssm-ID: 276898 [Multi-domain] Cd Length: 713 Bit Score: 186.58 E-value: 6.72e-49
|
||||||||||||||||||
Motor_domain | cd01363 | Myosin and Kinesin motor domain; Myosin and Kinesin motor domain. These ATPases belong to the ... |
87-209 | 1.30e-41 | ||||||||||||||
Myosin and Kinesin motor domain; Myosin and Kinesin motor domain. These ATPases belong to the P-loop NTPase family and provide the driving force in myosin and kinesin mediated processes. Some of the names do not match with what is given in the sequence list. This is because they are based on the current nomenclature by Kollmar/Sebe-Pedros. Pssm-ID: 276814 [Multi-domain] Cd Length: 170 Bit Score: 150.57 E-value: 1.30e-41
|
||||||||||||||||||
MYSc_Myo33 | cd14894 | class myosin, motor domain; Class XXXIII myosins have variable numbers of IQ domain and 2 ... |
65-654 | 1.25e-33 | ||||||||||||||
class myosin, motor domain; Class XXXIII myosins have variable numbers of IQ domain and 2 tandem ANK repeats that are separated by a PH domain. The myosin classes XXX to XXXIV contain members from Phytophthora species and Hyaloperonospora parasitica. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy. Pssm-ID: 276859 [Multi-domain] Cd Length: 871 Bit Score: 140.65 E-value: 1.25e-33
|
||||||||||||||||||
SH3_Myosin-I_fungi | cd11858 | Src homology 3 domain of Type I fungal Myosins; Type I myosins (myosin-I) are actin-dependent ... |
1083-1134 | 4.51e-24 | ||||||||||||||
Src homology 3 domain of Type I fungal Myosins; Type I myosins (myosin-I) are actin-dependent motors in endocytic actin structures and actin patches. They play roles in membrane traffic in endocytic and secretory pathways, cell motility, and mechanosensing. Saccharomyces cerevisiae has two myosins-I, Myo3 and Myo5, which are involved in endocytosis and the polarization of the actin cytoskeleton. Myosin-I contains an N-terminal actin-activated ATPase, a phospholipid-binding TH1 (tail homology 1) domain, and a C-terminal extension which includes an F-actin-binding TH2 domain, an SH3 domain, and an acidic peptide that participates in activating the Arp2/3complex. The SH3 domain of myosin-I is required for myosin-I-induced actin polymerization. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. Pssm-ID: 212792 [Multi-domain] Cd Length: 55 Bit Score: 96.30 E-value: 4.51e-24
|
||||||||||||||||||
SH3 | smart00326 | Src homology 3 domains; Src homology 3 (SH3) domains bind to target proteins through sequences ... |
1083-1133 | 1.41e-12 | ||||||||||||||
Src homology 3 domains; Src homology 3 (SH3) domains bind to target proteins through sequences containing proline and hydrophobic amino acids. Pro-containing polypeptides may bind to SH3 domains in 2 different binding orientations. Pssm-ID: 214620 [Multi-domain] Cd Length: 56 Bit Score: 63.33 E-value: 1.41e-12
|
||||||||||||||||||
SH3_Tks5_1 | cd12074 | First Src homology 3 domain of Tyrosine kinase substrate with five SH3 domains; Tks5, also ... |
1083-1133 | 1.98e-11 | ||||||||||||||
First Src homology 3 domain of Tyrosine kinase substrate with five SH3 domains; Tks5, also called SH3 and PX domain-containing protein 2A (SH3PXD2A) or Five SH (FISH), is a scaffolding protein and Src substrate that is localized in podosomes, which are electron-dense structures found in Src-transformed fibroblasts, osteoclasts, macrophages, and some invasive cancer cells. It binds and regulates some members of the ADAMs family of transmembrane metalloproteases, which function as sheddases and mediators of cell and matrix interactions. It is required for podosome formation, degradation of the extracellular matrix, and cancer cell invasion. Tks5 contains an N-terminal Phox homology (PX) domain and five SH3 domains. This model characterizes the first SH3 domain of Tks5. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. Pssm-ID: 213007 [Multi-domain] Cd Length: 53 Bit Score: 60.11 E-value: 1.98e-11
|
||||||||||||||||||
SH3_p47phox_like | cd11856 | Src homology 3 domains of the p47phox subunit of NADPH oxidase and similar domains; This ... |
1083-1134 | 4.70e-11 | ||||||||||||||
Src homology 3 domains of the p47phox subunit of NADPH oxidase and similar domains; This family is composed of the tandem SH3 domains of p47phox subunit of NADPH oxidase and Nox Organizing protein 1 (NoxO1), the four SH3 domains of Tks4 (Tyr kinase substrate with four SH3 domains), the five SH3 domains of Tks5, the SH3 domain of obscurin, Myosin-I, and similar domains. Most members of this group also contain Phox homology (PX) domains, except for obscurin and Myosin-I. p47phox and NoxO1 are regulators of the phagocytic NADPH oxidase complex (also called Nox2 or gp91phox) and nonphagocytic NADPH oxidase Nox1, respectively. They play roles in the activation of their respective NADPH oxidase, which catalyzes the transfer of electrons from NADPH to molecular oxygen to form superoxide. Tks proteins are Src substrates and scaffolding proteins that play important roles in the formation of podosomes and invadopodia, the dynamic actin-rich structures that are related to cell migration and cancer cell invasion. Obscurin is a giant muscle protein that plays important roles in the organization and assembly of the myofibril and the sarcoplasmic reticulum. Type I myosins (Myosin-I) are actin-dependent motors in endocytic actin structures and actin patches. They play roles in membrane traffic in endocytic and secretory pathways, cell motility, and mechanosensing. Myosin-I contains an N-terminal actin-activated ATPase, a phospholipid-binding TH1 (tail homology 1) domain, and a C-terminal extension which includes an F-actin-binding TH2 domain, an SH3 domain, and an acidic peptide that participates in activating the Arp2/3complex. The SH3 domain of myosin-I is required for myosin-I-induced actin polymerization. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. Pssm-ID: 212790 [Multi-domain] Cd Length: 53 Bit Score: 59.19 E-value: 4.70e-11
|
||||||||||||||||||
SH3_Tks_1 | cd12015 | First Src homology 3 domain of Tyrosine kinase substrate (Tks) proteins; Tks proteins are Src ... |
1083-1133 | 7.09e-11 | ||||||||||||||
First Src homology 3 domain of Tyrosine kinase substrate (Tks) proteins; Tks proteins are Src substrates and scaffolding proteins that play important roles in the formation of podosomes and invadopodia, the dynamic actin-rich structures that are related to cell migration and cancer cell invasion. Vertebrates contain two Tks proteins, Tks4 (Tyr kinase substrate with four SH3 domains) and Tks5 (Tyr kinase substrate with five SH3 domains), which display partially overlapping but non-redundant functions. Both associate with the ADAMs family of transmembrane metalloproteases, which function as sheddases and mediators of cell and matrix interactions. Tks5 interacts with N-WASP and Nck, while Tks4 is essential for the localization of MT1-MMP (membrane-type 1 matrix metalloproteinase) to invadopodia. Tks proteins contain an N-terminal Phox homology (PX) domain and four or five SH3 domains. This model characterizes the first SH3 domain of Tks proteins. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. Pssm-ID: 212948 Cd Length: 53 Bit Score: 58.59 E-value: 7.09e-11
|
||||||||||||||||||
SH3 | cd00174 | Src Homology 3 domain superfamily; Src Homology 3 (SH3) domains are protein interaction ... |
1083-1131 | 8.06e-11 | ||||||||||||||
Src Homology 3 domain superfamily; Src Homology 3 (SH3) domains are protein interaction domains that bind proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. Thus, they are referred to as proline-recognition domains (PRDs). SH3 domains are less selective and show more diverse specificity compared to other PRDs. They have been shown to bind peptide sequences that lack the PxxP motif; examples include the PxxDY motif of Eps8 and the RKxxYxxY sequence in SKAP55. SH3 domain containing proteins play versatile and diverse roles in the cell, including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies, among others. Many members of this superfamily are adaptor proteins that associate with a number of protein partners, facilitating complex formation and signal transduction. Pssm-ID: 212690 [Multi-domain] Cd Length: 51 Bit Score: 58.24 E-value: 8.06e-11
|
||||||||||||||||||
SH3_1 | pfam00018 | SH3 domain; SH3 (Src homology 3) domains are often indicative of a protein involved in signal ... |
1083-1128 | 9.80e-11 | ||||||||||||||
SH3 domain; SH3 (Src homology 3) domains are often indicative of a protein involved in signal transduction related to cytoskeletal organization. First described in the Src cytoplasmic tyrosine kinase. The structure is a partly opened beta barrel. Pssm-ID: 394975 [Multi-domain] Cd Length: 47 Bit Score: 57.98 E-value: 9.80e-11
|
||||||||||||||||||
SH3_Sdc25 | cd11883 | Src Homology 3 domain of Sdc25/Cdc25 guanine nucleotide exchange factors; This subfamily is ... |
1083-1131 | 7.86e-10 | ||||||||||||||
Src Homology 3 domain of Sdc25/Cdc25 guanine nucleotide exchange factors; This subfamily is composed of the Saccharomyces cerevisiae guanine nucleotide exchange factors (GEFs) Sdc25 and Cdc25, and similar proteins. These GEFs regulate Ras by stimulating the GDP/GTP exchange on Ras. Cdc25 is involved in the Ras/PKA pathway that plays an important role in the regulation of metabolism, stress responses, and proliferation, depending on available nutrients and conditions. Proteins in this subfamily contain an N-terminal SH3 domain as well as REM (Ras exchanger motif) and RasGEF domains at the C-terminus. SH3 domains bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs; they play a role in the regulation of enzymes by intramolecular interactions, changing the subcellular localization of signal pathway components and mediate multiprotein complex assemblies. Pssm-ID: 212816 Cd Length: 55 Bit Score: 55.75 E-value: 7.86e-10
|
||||||||||||||||||
SH3_p47phox_1 | cd12021 | First or N-terminal Src homology 3 domain of the p47phox subunit of NADPH oxidase, also called ... |
1083-1133 | 1.33e-09 | ||||||||||||||
First or N-terminal Src homology 3 domain of the p47phox subunit of NADPH oxidase, also called Neutrophil Cytosolic Factor 1; p47phox, or NCF1, is a cytosolic subunit of the phagocytic NADPH oxidase complex (also called Nox2 or gp91phox), which plays a key role in the ability of phagocytes to defend against bacterial infections. NADPH oxidase catalyzes the transfer of electrons from NADPH to oxygen during phagocytosis forming superoxide and reactive oxygen species. p47phox is required for activation of NADH oxidase and plays a role in translocation. It contains an N-terminal Phox homology (PX) domain, tandem SH3 domains (N-SH3 and C-SH3), a polybasic/autoinhibitory region, and a C-terminal proline-rich region (PRR). This model characterizes the first SH3 domain (or N-SH3) of p47phox. In its inactive state, the tandem SH3 domains interact intramolecularly with the autoinhibitory region; upon activation, the tandem SH3 domains are exposed through a conformational change, resulting in their binding to the PRR of p22phox and the activation of NADPH oxidase. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. Pssm-ID: 212954 [Multi-domain] Cd Length: 53 Bit Score: 54.96 E-value: 1.33e-09
|
||||||||||||||||||
SH3_Sla1p_3 | cd11775 | Third Src Homology 3 domain of the fungal endocytic adaptor protein Sla1p; Sla1p facilitates ... |
1083-1133 | 1.89e-09 | ||||||||||||||
Third Src Homology 3 domain of the fungal endocytic adaptor protein Sla1p; Sla1p facilitates endocytosis by playing a role as an adaptor protein in coupling components of the actin cytoskeleton to the endocytic machinery. It interacts with Abp1p, Las17p and Pan1p, which are activator proteins of actin-related protein 2/3 (Arp2/3). Sla1p contains multiple domains including three SH3 domains, a SAM (sterile alpha motif) domain, and a Sla1 homology domain 1 (SHD1), which binds to the NPFXD motif that is found in many integral membrane proteins such as the Golgi-localized Arf-binding protein Lsb5p and the P4-ATPases, Drs2p and Dnf1p. The third SH3 domain of Sla1p can bind ubiquitin while retaining the ability to bind proline-rich ligands; monoubiquitination of target proteins signals internalization and sorting through the endocytic pathway. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. Pssm-ID: 212709 [Multi-domain] Cd Length: 57 Bit Score: 54.63 E-value: 1.89e-09
|
||||||||||||||||||
SH3_SNX9_like | cd11763 | Src Homology 3 domain of Sorting Nexin 9 and similar proteins; Sorting nexins (SNXs) are Phox ... |
1083-1134 | 1.97e-09 | ||||||||||||||
Src Homology 3 domain of Sorting Nexin 9 and similar proteins; Sorting nexins (SNXs) are Phox homology (PX) domain containing proteins that are involved in regulating membrane traffic and protein sorting in the endosomal system. SNXs differ from each other in their lipid-binding specificity, subcellular localization and specific function in the endocytic pathway. This subfamily consists of SH3 domain containing SNXs including SNX9, SNX18, SNX33, and similar proteins. SNX9 is localized to plasma membrane endocytic sites and acts primarily in clathrin-mediated endocytosis, while SNX18 is localized to peripheral endosomal structures, and acts in a trafficking pathway that is clathrin-independent but relies on AP-1 and PACS1. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. Pssm-ID: 212697 [Multi-domain] Cd Length: 55 Bit Score: 54.64 E-value: 1.97e-09
|
||||||||||||||||||
SH3_Nephrocystin | cd11770 | Src Homology 3 domain of Nephrocystin (or Nephrocystin-1); Nephrocystin contains an SH3 domain ... |
1083-1134 | 2.10e-09 | ||||||||||||||
Src Homology 3 domain of Nephrocystin (or Nephrocystin-1); Nephrocystin contains an SH3 domain involved in signaling pathways that regulate cell adhesion and cytoskeletal organization. It is a protein that in humans is associated with juvenile nephronophthisis, an inherited kidney disease characterized by renal fibrosis that lead to chronic renal failure in children. It is localized in cell-cell junctions in renal duct cells, and is known to interact with Ack1, an activated Cdc42-associated kinase. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. Pssm-ID: 212704 [Multi-domain] Cd Length: 54 Bit Score: 54.24 E-value: 2.10e-09
|
||||||||||||||||||
SH3_Tks4_1 | cd12075 | First Src homology 3 domain of Tyrosine kinase substrate with four SH3 domains; Tks4, also ... |
1083-1135 | 2.94e-09 | ||||||||||||||
First Src homology 3 domain of Tyrosine kinase substrate with four SH3 domains; Tks4, also called SH3 and PX domain-containing protein 2B (SH3PXD2B) or HOFI, is a Src substrate and scaffolding protein that plays an important role in the formation of podosomes and invadopodia, the dynamic actin-rich structures that are related to cell migration and cancer cell invasion. It is required in the formation of functional podosomes, EGF-induced membrane ruffling, and lamellipodia generation. It plays an important role in cellular attachment and cell spreading. Tks4 is essential for the localization of MT1-MMP (membrane-type 1 matrix metalloproteinase) to invadopodia. It contains an N-terminal Phox homology (PX) domain and four SH3 domains. This model characterizes the first SH3 domain of Tks4. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. Pssm-ID: 213008 Cd Length: 55 Bit Score: 53.92 E-value: 2.94e-09
|
||||||||||||||||||
SH3_PSTPIP1 | cd11824 | Src homology 3 domain of Proline-Serine-Threonine Phosphatase-Interacting Protein 1; PSTPIP1, ... |
1083-1133 | 3.10e-09 | ||||||||||||||
Src homology 3 domain of Proline-Serine-Threonine Phosphatase-Interacting Protein 1; PSTPIP1, also called CD2 Binding Protein 1 (CD2BP1), is mainly expressed in hematopoietic cells. It is a binding partner of the cell surface receptor CD2 and PTP-PEST, a tyrosine phosphatase which functions in cell motility and Rac1 regulation. It also plays a role in the activation of the Wiskott-Aldrich syndrome protein (WASP), which couples actin rearrangement and T cell activation. Mutations in the gene encoding PSTPIP1 cause the autoinflammatory disorder known as PAPA (pyogenic sterile arthritis, pyoderma gangrenosum, and acne) syndrome. PSTPIP1 contains an N-terminal F-BAR domain, PEST motifs, and a C-terminal SH3 domain. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. Pssm-ID: 212758 [Multi-domain] Cd Length: 53 Bit Score: 53.92 E-value: 3.10e-09
|
||||||||||||||||||
SH3_DBS | cd11857 | Src homology 3 domain of DBL's Big Sister (DBS), a guanine nucleotide exchange factor; DBS, ... |
1083-1132 | 1.21e-07 | ||||||||||||||
Src homology 3 domain of DBL's Big Sister (DBS), a guanine nucleotide exchange factor; DBS, also called MCF2L (MCF2-transforming sequence-like protein) or OST, is a Rho GTPase guanine nucleotide exchange factor (RhoGEF), facilitating the exchange of GDP and GTP. It was originally isolated from a cDNA screen for sequences that cause malignant growth. It plays roles in regulating clathrin-mediated endocytosis and cell migration through its activation of Rac1 and Cdc42. Depending on cell type, DBS can also activate RhoA and RhoG. DBS contains a Sec14-like domain, spectrin-like repeats, a RhoGEF [or Dbl homology (DH)] domain, a Pleckstrin homology (PH) domain, and an SH3 domain. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. Pssm-ID: 212791 Cd Length: 55 Bit Score: 49.59 E-value: 1.21e-07
|
||||||||||||||||||
SH3_2 | pfam07653 | Variant SH3 domain; SH3 (Src homology 3) domains are often indicative of a protein involved in ... |
1083-1135 | 2.98e-07 | ||||||||||||||
Variant SH3 domain; SH3 (Src homology 3) domains are often indicative of a protein involved in signal transduction related to cytoskeletal organization. First described in the Src cytoplasmic tyrosine kinase. The structure is a partly opened beta barrel. Pssm-ID: 429575 [Multi-domain] Cd Length: 54 Bit Score: 48.36 E-value: 2.98e-07
|
||||||||||||||||||
SH3_Nbp2-like | cd11865 | Src Homology 3 domain of Saccharomyces cerevisiae Nap1-binding protein 2 and similar fungal ... |
1084-1133 | 3.78e-07 | ||||||||||||||
Src Homology 3 domain of Saccharomyces cerevisiae Nap1-binding protein 2 and similar fungal proteins; This subfamily includes Saccharomyces cerevisiae Nbp2 (Nucleosome assembly protein 1 (Nap1)-binding protein 2), Schizosaccharomyces pombe Skb5, and similar proteins. Nbp2 interacts with Nap1, which is essential for maintaining proper nucleosome structures in transcription and replication. It is also the binding partner of the yeast type II protein phosphatase Ptc1p and serves as a scaffolding protein that brings seven kinases in close contact to Ptc1p. Nbp2 plays a role many cell processes including organelle inheritance, mating hormone response, cell wall stress, mitotic cell growth at elevated temperatures, and high osmolarity. Skb5 interacts with the p21-activated kinase (PAK) homolog Shk1, which is critical for fission yeast cell viability. Skb5 activates Shk1 and plays a role in regulating cell morphology and growth under hypertonic conditions. Nbp2 and Skb5 contain an SH3 domain. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. Pssm-ID: 212799 Cd Length: 55 Bit Score: 47.90 E-value: 3.78e-07
|
||||||||||||||||||
SH3_VAV_2 | cd11830 | C-terminal (or second) Src homology 3 domain of VAV proteins; VAV proteins function both as ... |
1085-1134 | 3.79e-07 | ||||||||||||||
C-terminal (or second) Src homology 3 domain of VAV proteins; VAV proteins function both as cytoplasmic guanine nucleotide exchange factors (GEFs) for Rho GTPases and scaffold proteins and they play important roles in cell signaling by coupling cell surface receptors to various effector functions. They play key roles in processes that require cytoskeletal reorganization including immune synapse formation, phagocytosis, cell spreading, and platelet aggregation, among others. Vertebrates have three VAV proteins (VAV1, VAV2, and VAV3). VAV proteins contain several domains that enable their function: N-terminal calponin homology (CH), acidic, RhoGEF (also called Dbl-homologous or DH), Pleckstrin Homology (PH), C1 (zinc finger), SH2, and two SH3 domains. The SH3 domain of VAV is involved in the localization of proteins to specific sites within the cell, by interacting with proline-rich sequences within target proteins. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. Pssm-ID: 212764 [Multi-domain] Cd Length: 54 Bit Score: 48.01 E-value: 3.79e-07
|
||||||||||||||||||
SH3_Eps8 | cd11764 | Src Homology 3 domain of Epidermal growth factor receptor kinase substrate 8 and similar ... |
1083-1133 | 8.47e-07 | ||||||||||||||
Src Homology 3 domain of Epidermal growth factor receptor kinase substrate 8 and similar proteins; This group is composed of Eps8 and Eps8-like proteins including Eps8-like 1-3, among others. These proteins contain N-terminal Phosphotyrosine-binding (PTB), central SH3, and C-terminal effector domains. Eps8 binds either Abi1 (also called E3b1) or Rab5 GTPase activating protein RN-tre through its SH3 domain. With Abi1 and Sos1, it becomes part of a trimeric complex that is required to activate Rac. Together with RN-tre, it inhibits the internalization of EGFR. The SH3 domains of Eps8 and similar proteins recognize peptides containing a PxxDY motif, instead of the classical PxxP motif. SH3 domains are protein interaction domains that usually bind to proline-rich ligands with moderate affinity and selectivity. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. Pssm-ID: 212698 [Multi-domain] Cd Length: 54 Bit Score: 46.87 E-value: 8.47e-07
|
||||||||||||||||||
SH3_VAV3_2 | cd11978 | C-terminal (or second) Src homology 3 domain of VAV3 protein; VAV3 is ubiquitously expressed ... |
1085-1135 | 8.73e-07 | ||||||||||||||
C-terminal (or second) Src homology 3 domain of VAV3 protein; VAV3 is ubiquitously expressed and functions as a phosphorylation-dependent guanine nucleotide exchange factor (GEF) for RhoA, RhoG, and Rac1. It has been implicated to function in the hematopoietic, bone, cerebellar, and cardiovascular systems. VAV3 is essential in axon guidance in neurons that control blood pressure and respiration. It is overexpressed in prostate cancer cells and it plays a role in regulating androgen receptor transcriptional activity. VAV proteins contain several domains that enable their function: N-terminal calponin homology (CH), acidic, RhoGEF (also called Dbl-homologous or DH), Pleckstrin Homology (PH), C1 (zinc finger), SH2, and two SH3 domains. The SH3 domain of VAV is involved in the localization of proteins to specific sites within the cell, by interacting with proline-rich sequences within target proteins. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. Pssm-ID: 212911 [Multi-domain] Cd Length: 56 Bit Score: 46.94 E-value: 8.73e-07
|
||||||||||||||||||
SH3_VAV1_2 | cd11976 | C-terminal (or second) Src homology 3 domain of VAV1 protein; VAV1 is expressed predominantly ... |
1085-1134 | 1.10e-06 | ||||||||||||||
C-terminal (or second) Src homology 3 domain of VAV1 protein; VAV1 is expressed predominantly in the hematopoietic system and it plays an important role in the development and activation of B and T cells. It is activated by tyrosine phosphorylation to function as a guanine nucleotide exchange factor (GEF) for Rho GTPases following cell surface receptor activation, triggering various effects such as cytoskeletal reorganization, transcription regulation, cell cycle progression, and calcium mobilization. It also serves as a scaffold protein and has been shown to interact with Ku70, Socs1, Janus kinase 2, SIAH2, S100B, Abl gene, ZAP-70, SLP76, and Syk, among others. VAV proteins contain several domains that enable their function: N-terminal calponin homology (CH), acidic, RhoGEF (also called Dbl-homologous or DH), Pleckstrin Homology (PH), C1 (zinc finger), SH2, and two SH3 domains. The C-terminal SH3 domain of Vav1 interacts with a wide variety of proteins including cytoskeletal regulators (zyxin), RNA-binding proteins (Sam68), transcriptional regulators, viral proteins, and dynamin 2. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. Pssm-ID: 212909 [Multi-domain] Cd Length: 54 Bit Score: 46.86 E-value: 1.10e-06
|
||||||||||||||||||
SH3_Src | cd12008 | Src homology 3 domain of Src Protein Tyrosine Kinase; Src (or c-Src) is a cytoplasmic (or ... |
1084-1132 | 1.33e-06 | ||||||||||||||
Src homology 3 domain of Src Protein Tyrosine Kinase; Src (or c-Src) is a cytoplasmic (or non-receptor) PTK and is the vertebrate homolog of the oncogenic protein (v-Src) from Rous sarcoma virus. Together with other Src subfamily proteins, it is involved in signaling pathways that regulate cytokine and growth factor responses, cytoskeleton dynamics, cell proliferation, survival, and differentiation. Src also play a role in regulating cell adhesion, invasion, and motility in cancer cells, and tumor vasculature, contributing to cancer progression and metastasis. Elevated levels of Src kinase activity have been reported in a variety of human cancers. Several inhibitors of Src have been developed as anti-cancer drugs. Src is also implicated in acute inflammatory responses and osteoclast function. Src kinases contain an N-terminal SH4 domain with a myristoylation site, followed by SH3 and SH2 domains, a tyr kinase domain, and a regulatory C-terminal region containing a conserved tyr. They are activated by autophosphorylation at the tyr kinase domain, but are negatively regulated by phosphorylation at the C-terminal tyr by Csk (C-terminal Src Kinase). The SH3 domain of Src kinases contributes to substrate recruitment by binding adaptor proteins/substrates, and regulation of kinase activity through an intramolecular interaction. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. Pssm-ID: 212941 [Multi-domain] Cd Length: 56 Bit Score: 46.64 E-value: 1.33e-06
|
||||||||||||||||||
SH3_Blk | cd12009 | Src homology 3 domain of Blk Protein Tyrosine Kinase; Blk is a member of the Src subfamily of ... |
1084-1132 | 1.98e-06 | ||||||||||||||
Src homology 3 domain of Blk Protein Tyrosine Kinase; Blk is a member of the Src subfamily of proteins, which are cytoplasmic (or non-receptor) PTKs. It is expressed specifically in B-cells and is involved in pre-BCR (B-cell receptor) signaling. Src kinases contain an N-terminal SH4 domain with a myristoylation site, followed by SH3 and SH2 domains, a tyr kinase domain, and a regulatory C-terminal region containing a conserved tyr. They are activated by autophosphorylation at the tyr kinase domain, but are negatively regulated by phosphorylation at the C-terminal tyr by Csk (C-terminal Src Kinase). The SH3 domain of Src kinases contributes to substrate recruitment by binding adaptor proteins/substrates, and regulation of kinase activity through an intramolecular interaction. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. Pssm-ID: 212942 [Multi-domain] Cd Length: 54 Bit Score: 45.96 E-value: 1.98e-06
|
||||||||||||||||||
SH3_CIP4-like | cd11911 | Src Homology 3 domain of Cdc42-Interacting Protein 4; This subfamily is composed of ... |
1083-1133 | 1.98e-06 | ||||||||||||||
Src Homology 3 domain of Cdc42-Interacting Protein 4; This subfamily is composed of Cdc42-Interacting Protein 4 (CIP4), Formin Binding Protein 17 (FBP17), FormiN Binding Protein 1-Like (FNBP1L), and similar proteins. CIP4 and FNBP1L are Cdc42 effectors that bind Wiskott-Aldrich syndrome protein (WASP) and function in endocytosis. CIP4 and FBP17 bind to the Fas ligand and may be implicated in the inflammatory response. CIP4 may also play a role in phagocytosis. It functions downstream of Cdc42 in PDGF-dependent actin reorganization and cell migration, and also regulates the activity of PDGFRbeta. It uses Src as a substrate in regulating the invasiveness of breast tumor cells. CIP4 may also play a role in the pathogenesis of Huntington's disease. Members of this subfamily typically contain an N-terminal F-BAR (FES-CIP4 Homology and Bin/Amphiphysin/Rvs) domain, a central Cdc42-binding HR1 domain, and a C-terminal SH3 domain. The SH3 domain of CIP4 associates with Gapex-5, a Rab31 GEF. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. Pssm-ID: 212844 [Multi-domain] Cd Length: 55 Bit Score: 46.10 E-value: 1.98e-06
|
||||||||||||||||||
SH3_Abl | cd11850 | Src homology 3 domain of the Protein Tyrosine Kinase, Abelson kinase; Abl (or c-Abl) is a ... |
1083-1131 | 2.16e-06 | ||||||||||||||
Src homology 3 domain of the Protein Tyrosine Kinase, Abelson kinase; Abl (or c-Abl) is a ubiquitously-expressed cytoplasmic (or nonreceptor) PTK that contains SH3, SH2, and tyr kinase domains in its N-terminal region, as well as nuclear localization motifs, a putative DNA-binding domain, and F- and G-actin binding domains in its C-terminal tail. It also contains a short autoinhibitory cap region in its N-terminus. Abl function depends on its subcellular localization. In the cytoplasm, Abl plays a role in cell proliferation and survival. In response to DNA damage or oxidative stress, Abl is transported to the nucleus where it induces apoptosis. In chronic myelogenous leukemia (CML) patients, an aberrant translocation results in the replacement of the first exon of Abl with the BCR (breakpoint cluster region) gene. The resulting BCR-Abl fusion protein is constitutively active and associates into tetramers, resulting in a hyperactive kinase sending a continuous signal. This leads to uncontrolled proliferation, morphological transformation and anti-apoptotic effects. BCR-Abl is the target of selective inhibitors, such as imatinib (Gleevec), used in the treatment of CML. Abl2, also known as ARG (Abelson-related gene), is thought to play a cooperative role with Abl in the proper development of the nervous system. The Tel-ARG fusion protein, resulting from reciprocal translocation between chromosomes 1 and 12, is associated with acute myeloid leukemia (AML). SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. Pssm-ID: 212784 Cd Length: 56 Bit Score: 45.87 E-value: 2.16e-06
|
||||||||||||||||||
SH3_Src_like | cd11845 | Src homology 3 domain of Src kinase-like Protein Tyrosine Kinases; Src subfamily members ... |
1084-1131 | 2.22e-06 | ||||||||||||||
Src homology 3 domain of Src kinase-like Protein Tyrosine Kinases; Src subfamily members include Src, Lck, Hck, Blk, Lyn, Fgr, Fyn, Yrk, Yes, and Brk. Src (or c-Src) proteins are cytoplasmic (or non-receptor) PTKs which are anchored to the plasma membrane. They contain an N-terminal SH4 domain with a myristoylation site, followed by SH3 and SH2 domains, a tyr kinase domain, and a regulatory C-terminal region containing a conserved tyr. They are activated by autophosphorylation at the tyr kinase domain, but are negatively regulated by phosphorylation at the C-terminal tyr by Csk (C-terminal Src Kinase). However, Brk lacks the N-terminal myristoylation sites. Src proteins are involved in signaling pathways that regulate cytokine and growth factor responses, cytoskeleton dynamics, cell proliferation, survival, and differentiation. They were identified as the first proto-oncogene products, and they regulate cell adhesion, invasion, and motility in cancer cells, and tumor vasculature, contributing to cancer progression and metastasis. Src kinases are overexpressed in a variety of human cancers, making them attractive targets for therapy. They are also implicated in acute inflammatory responses and osteoclast function. Src, Fyn, Yes, and Yrk are widely expressed, while Blk, Lck, Hck, Fgr, Lyn, and Brk show a limited expression pattern. This subfamily also includes Drosophila Src42A, Src oncogene at 42A (also known as Dsrc41) which accumulates at sites of cell-cell or cell-matrix adhesion, and participates in Drosphila development and wound healing. It has been shown to promote tube elongation in the tracheal system, is essential for proper cell-cell matching during dorsal closure, and regulates cell-cell contacts in developing Drosophila eyes. The SH3 domain of Src kinases contributes to substrate recruitment by binding adaptor proteins/substrates, and regulation of kinase activity through an intramolecular interaction. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. Pssm-ID: 212779 [Multi-domain] Cd Length: 52 Bit Score: 45.65 E-value: 2.22e-06
|
||||||||||||||||||
SH3_PLCgamma | cd11825 | Src homology 3 domain of Phospholipase C (PLC) gamma; PLC catalyzes the hydrolysis of ... |
1084-1134 | 2.52e-06 | ||||||||||||||
Src homology 3 domain of Phospholipase C (PLC) gamma; PLC catalyzes the hydrolysis of phosphatidylinositol (4,5)-bisphosphate [PtdIns(4,5)P2] to produce Ins(1,4,5)P3 and diacylglycerol (DAG) in response to various receptors. Ins(1,4,5)P3 initiates the calcium signaling cascade while DAG functions as an activator of PKC. PLCgamma catalyzes this reaction in tyrosine kinase-dependent signaling pathways. It is activated and recruited to its substrate at the membrane. Vertebrates contain two forms of PLCgamma, PLCgamma1, which is widely expressed, and PLCgamma2, which is primarily found in haematopoietic cells. PLCgamma contains a Pleckstrin homology (PH) domain followed by an elongation factor (EF) domain, two catalytic regions of PLC domains that flank two tandem SH2 domains, followed by a SH3 domain and C2 domain. The SH3 domain of PLCgamma1 directly interacts with dynamin-1 and can serve as a guanine nucleotide exchange factor (GEF). It also interacts with Cbl, inhibiting its phosphorylation and activity. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. Pssm-ID: 212759 [Multi-domain] Cd Length: 54 Bit Score: 45.79 E-value: 2.52e-06
|
||||||||||||||||||
SH3_Brk | cd11847 | Src homology 3 domain of Brk (Breast tumor kinase) Protein Tyrosine Kinase (PTK), also called ... |
1084-1134 | 5.49e-06 | ||||||||||||||
Src homology 3 domain of Brk (Breast tumor kinase) Protein Tyrosine Kinase (PTK), also called PTK6; Brk is a cytoplasmic (or non-receptor) PTK with limited homology to Src kinases. It has been found to be overexpressed in a majority of breast tumors. It plays roles in normal cell differentiation, proliferation, survival, migration, and cell cycle progression. Brk substrates include RNA-binding proteins (SLM-1/2, Sam68), transcription factors (STAT3/5), and signaling molecules (Akt, paxillin, IRS-4). Src kinases in general contain an N-terminal SH4 domain with a myristoylation site, followed by SH3 and SH2 domains, a tyr kinase domain, and a regulatory C-terminal region containing a conserved tyr; they are activated by autophosphorylation at the tyr kinase domain, but are negatively regulated by phosphorylation at the C-terminal tyr by Csk (C-terminal Src Kinase). However, Brk lacks the N-terminal myristoylation site. The SH3 domain of Src kinases contributes to substrate recruitment by binding adaptor proteins/substrates, and regulation of kinase activity through an intramolecular interaction. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. Pssm-ID: 212781 [Multi-domain] Cd Length: 58 Bit Score: 44.86 E-value: 5.49e-06
|
||||||||||||||||||
SH3_Fyn_Yrk | cd12006 | Src homology 3 domain of Fyn and Yrk Protein Tyrosine Kinases; Fyn and Yrk (Yes-related kinase) ... |
1084-1132 | 6.05e-06 | ||||||||||||||
Src homology 3 domain of Fyn and Yrk Protein Tyrosine Kinases; Fyn and Yrk (Yes-related kinase) are members of the Src subfamily of proteins, which are cytoplasmic (or non-receptor) PTKs. Fyn, together with Lck, plays a critical role in T-cell signal transduction by phosphorylating ITAM (immunoreceptor tyr activation motif) sequences on T-cell receptors, ultimately leading to the proliferation and differentiation of T-cells. In addition, Fyn is involved in the myelination of neurons, and is implicated in Alzheimer's and Parkinson's diseases. Yrk has been detected only in chickens. It is primarily found in neuronal and epithelial cells and in macrophages. It may play a role in inflammation and in response to injury. Src kinases contain an N-terminal SH4 domain with a myristoylation site, followed by SH3 and SH2 domains, a tyr kinase domain, and a regulatory C-terminal region containing a conserved tyr. They are activated by autophosphorylation at the tyr kinase domain, but are negatively regulated by phosphorylation at the C-terminal tyr by Csk (C-terminal Src Kinase). The SH3 domain of Src kinases contributes to substrate recruitment by binding adaptor proteins/substrates, and regulation of kinase activity through an intramolecular interaction. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. Pssm-ID: 212939 [Multi-domain] Cd Length: 56 Bit Score: 44.65 E-value: 6.05e-06
|
||||||||||||||||||
SH3_ephexin1_like | cd11793 | Src homology 3 domain of ephexin-1-like SH3 domain containing Rho guanine nucleotide exchange ... |
1083-1134 | 6.74e-06 | ||||||||||||||
Src homology 3 domain of ephexin-1-like SH3 domain containing Rho guanine nucleotide exchange factors; Members of this family contain RhoGEF (also called Dbl-homologous or DH), Pleckstrin Homology (PH), and C-terminal SH3 domains. They include the Rho guanine nucleotide exchange factors ARHGEF5, ARHGEF16, ARHGEF19, ARHGEF26, ARHGEF27 (also called ephexin-1), and similar proteins, and are also called ephexins because they interact directly with ephrin A receptors. GEFs interact with Rho GTPases via their DH domains to catalyze nucleotide exchange by stabilizing the nucleotide-free GTPase intermediate. They play important roles in neuronal development. The SH3 domains of ARHGEFs play an autoinhibitory role through intramolecular interactions with a proline-rich region N-terminal to the DH domain. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. Pssm-ID: 212727 [Multi-domain] Cd Length: 55 Bit Score: 44.63 E-value: 6.74e-06
|
||||||||||||||||||
SH3_Intersectin_4 | cd11839 | Fourth Src homology 3 domain (or SH3D) of Intersectin; Intersectins (ITSNs) are adaptor ... |
1083-1133 | 7.34e-06 | ||||||||||||||
Fourth Src homology 3 domain (or SH3D) of Intersectin; Intersectins (ITSNs) are adaptor proteins that function in exo- and endocytosis, actin cytoskeletal reorganization, and signal transduction. They are essential for initiating clathrin-coated pit formation. They bind to many proteins through their multidomain structure and facilitate the assembly of multimeric complexes. Vertebrates contain two ITSN proteins, ITSN1 and ITSN2, which exist in alternatively spliced short and long isoforms. The short isoforms contain two Eps15 homology domains (EH1 and EH2), a coiled-coil region and five SH3 domains (SH3A-E), while the long isoforms, in addition, contain RhoGEF (also called Dbl-homologous or DH), Pleckstrin homology (PH) and C2 domains. ITSN1 and ITSN2 are both widely expressed, with variations depending on tissue type and stage of development. The fourth SH3 domain (or SH3D) of ITSN1 has been shown to bind SHIP2, Numb, CdGAP, and N-WASP. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. Pssm-ID: 212773 [Multi-domain] Cd Length: 58 Bit Score: 44.64 E-value: 7.34e-06
|
||||||||||||||||||
SH3_Nostrin | cd11823 | Src homology 3 domain of Nitric Oxide Synthase TRaffic INducer; Nostrin is expressed in ... |
1084-1134 | 9.72e-06 | ||||||||||||||
Src homology 3 domain of Nitric Oxide Synthase TRaffic INducer; Nostrin is expressed in endothelial and epithelial cells and is involved in the regulation, trafficking and targeting of endothelial NOS (eNOS). It facilitates the endocytosis of eNOS by coordinating the functions of dynamin and the Wiskott-Aldrich syndrome protein (WASP). Increased expression of Nostrin may be correlated to preeclampsia. Nostrin contains an N-terminal F-BAR domain and a C-terminal SH3 domain. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. Pssm-ID: 212757 [Multi-domain] Cd Length: 53 Bit Score: 43.87 E-value: 9.72e-06
|
||||||||||||||||||
SH3_AHI-1 | cd11812 | Src Homology 3 domain of Abelson helper integration site-1 (AHI-1); AHI-1, also called ... |
1084-1132 | 1.06e-05 | ||||||||||||||
Src Homology 3 domain of Abelson helper integration site-1 (AHI-1); AHI-1, also called Jouberin, is expressed in high levels in the brain, gonad tissues, and skeletal muscle. It is an adaptor protein that interacts with the small GTPase Rab8a and regulates it distribution and function, affecting cilium formation and vesicle transport. Mutations in the AHI-1 gene can cause Joubert syndrome, a disorder characterized by brainstem malformations, cerebellar aplasia/hypoplasia, and retinal dystrophy. AHI-1 variation is also associated with susceptibility to schizophrenia and type 2 diabetes mellitus progression. AHI-1 contains WD40 and SH3 domains. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. Pssm-ID: 212746 [Multi-domain] Cd Length: 52 Bit Score: 44.04 E-value: 1.06e-05
|
||||||||||||||||||
SH3_Nck_3 | cd11767 | Third Src Homology 3 domain of Nck adaptor proteins; This group contains the third SH3 domain ... |
1084-1134 | 1.53e-05 | ||||||||||||||
Third Src Homology 3 domain of Nck adaptor proteins; This group contains the third SH3 domain of Nck, the first SH3 domain of Caenorhabditis elegans Ced-2 (Cell death abnormality protein 2), and similar domains. Nck adaptor proteins regulate actin cytoskeleton dynamics by linking proline-rich effector molecules to protein tyrosine kinases and phosphorylated signaling intermediates. They contain three SH3 domains and a C-terminal SH2 domain. They function downstream of the PDGFbeta receptor and are involved in Rho GTPase signaling and actin dynamics. Vertebrates contain two Nck adaptor proteins: Nck1 (also called Nckalpha) and Nck2 (also called Nckbeta or Growth factor receptor-bound protein 4, Grb4), which show partly overlapping functions but also bind distinct targets. Their SH3 domains are involved in recruiting downstream effector molecules, such as the N-WASP/Arp2/3 complex, which when activated induces actin polymerization that results in the production of pedestals, or protrusions of the plasma membrane. The third SH3 domain of Nck appears to prefer ligands with a PxAPxR motif. SH3 domains are protein interaction domains that usually bind to proline-rich ligands with moderate affinity and selectivity, preferentially a PxxP motif. Ced-2 is a cell corpse engulfment protein that interacts with Ced-5 in a pathway that regulates the activation of Ced-10, a Rac small GTPase. Pssm-ID: 212701 [Multi-domain] Cd Length: 56 Bit Score: 43.45 E-value: 1.53e-05
|
||||||||||||||||||
SH3_CD2AP-like_1 | cd11873 | First Src Homology 3 domain (SH3A) of CD2-associated protein and similar proteins; This ... |
1083-1114 | 2.14e-05 | ||||||||||||||
First Src Homology 3 domain (SH3A) of CD2-associated protein and similar proteins; This subfamily is composed of the first SH3 domain (SH3A) of CD2AP, CIN85 (Cbl-interacting protein of 85 kDa), and similar domains. CD2AP and CIN85 are adaptor proteins that bind to protein partners and assemble complexes that have been implicated in T cell activation, kidney function, and apoptosis of neuronal cells. They also associate with endocytic proteins, actin cytoskeleton components, and other adaptor proteins involved in receptor tyrosine kinase (RTK) signaling. CD2AP and the main isoform of CIN85 contain three SH3 domains, a proline-rich region, and a C-terminal coiled-coil domain. All of these domains enable CD2AP and CIN85 to bind various protein partners and assemble complexes that have been implicated in many different functions. SH3A of both proteins bind to an atypical PXXXPR motif at the C-terminus of Cbl and the cytoplasmic domain of the cell adhesion protein CD2. CIN85 SH3A binds to internal proline-rich motifs within the proline-rich region; this intramolecular interaction serves as a regulatory mechanism to keep CIN85 in a closed conformation, preventing the recruitment of other proteins. CIN85 SH3A has also been shown to bind ubiquitin. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. Pssm-ID: 212806 [Multi-domain] Cd Length: 53 Bit Score: 43.02 E-value: 2.14e-05
|
||||||||||||||||||
SH3_Yes | cd12007 | Src homology 3 domain of Yes Protein Tyrosine Kinase; Yes (or c-Yes) is a member of the Src ... |
1084-1132 | 2.54e-05 | ||||||||||||||
Src homology 3 domain of Yes Protein Tyrosine Kinase; Yes (or c-Yes) is a member of the Src subfamily of proteins, which are cytoplasmic (or non-receptor) PTKs. c-Yes kinase is the cellular homolog of the oncogenic protein (v-Yes) encoded by the Yamaguchi 73 and Esh sarcoma viruses. It displays functional overlap with other Src subfamily members, particularly Src. It also shows some unique functions such as binding to occludins, transmembrane proteins that regulate extracellular interactions in tight junctions. Yes also associates with a number of proteins in different cell types that Src does not interact with, like JAK2 and gp130 in pre-adipocytes, and Pyk2 in treated pulmonary vein endothelial cells. Although the biological function of Yes remains unclear, it appears to have a role in regulating cell-cell interactions and vesicle trafficking in polarized cells. Src kinases contain an N-terminal SH4 domain with a myristoylation site, followed by SH3 and SH2 domains, a tyr kinase domain, and a regulatory C-terminal region containing a conserved tyr. They are activated by autophosphorylation at the tyr kinase domain, but are negatively regulated by phosphorylation at the C-terminal tyr by Csk (C-terminal Src Kinase). The SH3 domain of Src kinases contributes to substrate recruitment by binding adaptor proteins/substrates, and regulation of kinase activity through an intramolecular interaction. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. Pssm-ID: 212940 [Multi-domain] Cd Length: 58 Bit Score: 43.10 E-value: 2.54e-05
|
||||||||||||||||||
SH3_DNMBP_C2_like | cd11800 | Second C-terminal Src homology 3 domain of Dynamin Binding Protein, also called Tuba, and ... |
1084-1132 | 2.68e-05 | ||||||||||||||
Second C-terminal Src homology 3 domain of Dynamin Binding Protein, also called Tuba, and similar domains; DNMBP or Tuba is a cdc42-specific guanine nucleotide exchange factor (GEF) that contains four N-terminal SH3 domains, a central RhoGEF [or Dbl homology (DH)] domain followed by a Bin/Amphiphysin/Rvs (BAR) domain, and two C-terminal SH3 domains. It provides a functional link between dynamin, Rho GTPase signaling, and actin dynamics. It plays an important role in regulating cell junction configuration. The C-terminal SH3 domains of DNMBP bind to N-WASP and Ena/VASP proteins, which are key regulatory proteins of the actin cytoskeleton. Also included in this subfamily is the second C-terminal SH3 domain of Rho guanine nucleotide exchange factor 37 (ARHGEF37), whose function is still unknown. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. Pssm-ID: 212734 [Multi-domain] Cd Length: 57 Bit Score: 42.74 E-value: 2.68e-05
|
||||||||||||||||||
SH3_Nck_2 | cd11766 | Second Src Homology 3 domain of Nck adaptor proteins; Nck adaptor proteins regulate actin ... |
1083-1134 | 2.91e-05 | ||||||||||||||
Second Src Homology 3 domain of Nck adaptor proteins; Nck adaptor proteins regulate actin cytoskeleton dynamics by linking proline-rich effector molecules to protein tyrosine kinases and phosphorylated signaling intermediates. They contain three SH3 domains and a C-terminal SH2 domain. They function downstream of the PDGFbeta receptor and are involved in Rho GTPase signaling and actin dynamics. Vertebrates contain two Nck adaptor proteins: Nck1 (also called Nckalpha) and Nck2 (also called Nckbeta or Growth factor receptor-bound protein 4, Grb4), which show partly overlapping functions but also bind distinct targets. Their SH3 domains are involved in recruiting downstream effector molecules, such as the N-WASP/Arp2/3 complex, which when activated induces actin polymerization that results in the production of pedestals, or protrusions of the plasma membrane. The second SH3 domain of Nck appears to prefer ligands containing the APxxPxR motif. SH3 domains are protein interaction domains that usually bind to proline-rich ligands with moderate affinity and selectivity, preferentially a PxxP motif. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. Pssm-ID: 212700 [Multi-domain] Cd Length: 53 Bit Score: 42.64 E-value: 2.91e-05
|
||||||||||||||||||
SH3_PIX | cd11877 | Src Homology 3 domain of Pak Interactive eXchange factors; PIX proteins are Rho guanine ... |
1083-1134 | 3.56e-05 | ||||||||||||||
Src Homology 3 domain of Pak Interactive eXchange factors; PIX proteins are Rho guanine nucleotide exchange factors (GEFs), which activate small GTPases by exchanging bound GDP for free GTP. They act as GEFs for both Cdc42 and Rac 1, and have been implicated in cell motility, adhesion, neurite outgrowth, and cell polarity. Vertebrates contain two proteins from the PIX subfamily, alpha-PIX and beta-PIX. Alpha-PIX, also called ARHGEF6, is localized in dendritic spines where it regulates spine morphogenesis. Mutations in the ARHGEF6 gene cause X-linked intellectual disability in humans. Beta-PIX play roles in regulating neuroendocrine exocytosis, focal adhesion maturation, cell migration, synaptic vesicle localization, and insulin secretion. PIX proteins contain an N-terminal SH3 domain followed by RhoGEF (also called Dbl-homologous or DH) and Pleckstrin Homology (PH) domains, and a C-terminal leucine-zipper domain for dimerization. The SH3 domain of PIX binds to an atypical PxxxPR motif in p21-activated kinases (PAKs) with high affinity. The binding of PAKs to PIX facilitate the localization of PAKs to focal complexes and also localizes PAKs to PIX targets Cdc43 and Rac, leading to the activation of PAKs. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. Pssm-ID: 212810 [Multi-domain] Cd Length: 53 Bit Score: 42.30 E-value: 3.56e-05
|
||||||||||||||||||
SH3_CIN85_1 | cd12052 | First Src Homology 3 domain (SH3A) of Cbl-interacting protein of 85 kDa; CIN85, also called ... |
1083-1114 | 3.69e-05 | ||||||||||||||
First Src Homology 3 domain (SH3A) of Cbl-interacting protein of 85 kDa; CIN85, also called SH3 domain-containing kinase-binding protein 1 (SH3KBP1) or CD2-binding protein 3 (CD2BP3) or Ruk, is an adaptor protein that is involved in the downregulation of receptor tyrosine kinases by facilitating endocytosis through interaction with endophilin-associated ubiquitin ligase Cbl proteins. It is also important in many other cellular processes including vesicle-mediated transport, cytoskeletal remodelling, apoptosis, cell adhesion and migration, and viral infection, among others. CIN85 exists as multiple variants from alternative splicing; the main variant contains three SH3 domains, a proline-rich region, and a C-terminal coiled-coil domain. All of these domains enable CIN85 to bind various protein partners and assemble complexes that have been implicated in many different functions. This alignment model represents the first SH3 domain (SH3A) of CIN85; SH3A binds to internal proline-rich motifs within the proline-rich region. This intramolecular interaction serves as a regulatory mechanism to keep CIN85 in a closed conformation, preventing the recruitment of other proteins. SH3A has also been shown to bind ubiquitin and to an atypical PXXXPR motif at the C-terminus of Cbl and the cytoplasmic end of the cell adhesion protein CD2. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. Pssm-ID: 212985 [Multi-domain] Cd Length: 53 Bit Score: 42.57 E-value: 3.69e-05
|
||||||||||||||||||
SH3_MyoIe_If_like | cd11827 | Src homology 3 domain of Myosins Ie, If, and similar proteins; Myosins Ie (MyoIe) and If ... |
1084-1115 | 3.70e-05 | ||||||||||||||
Src homology 3 domain of Myosins Ie, If, and similar proteins; Myosins Ie (MyoIe) and If (MyoIf) are nonmuscle, unconventional, long tailed, class I myosins containing an N-terminal motor domain and a myosin tail with TH1, TH2, and SH3 domains. MyoIe interacts with the endocytic proteins, dynamin and synaptojanin-1, through its SH3 domain; it may play a role in clathrin-dependent endocytosis. In the kidney, MyoIe is critical for podocyte function and normal glomerular filtration. Mutations in MyoIe is associated with focal segmental glomerulosclerosis, a disease characterized by massive proteinuria and progression to end-stage kidney disease. MyoIf is predominantly expressed in the immune system; it plays a role in immune cell motility and innate immunity. Mutations in MyoIf may be associated with the loss of hearing. The MyoIf gene has also been found to be fused to the MLL (Mixed lineage leukemia) gene in infant acute myeloid leukemias (AML). SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. Pssm-ID: 212761 [Multi-domain] Cd Length: 53 Bit Score: 42.40 E-value: 3.70e-05
|
||||||||||||||||||
SH3_OSTF1 | cd11772 | Src Homology 3 domain of metazoan osteoclast stimulating factor 1; OSTF1, also named OSF or ... |
1084-1134 | 4.20e-05 | ||||||||||||||
Src Homology 3 domain of metazoan osteoclast stimulating factor 1; OSTF1, also named OSF or SH3P2, is a signaling protein containing SH3 and ankyrin-repeat domains. It acts through a Src-related pathway to enhance the formation of osteoclasts and bone resorption. It also acts as a negative regulator of cell motility. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. Pssm-ID: 212706 [Multi-domain] Cd Length: 53 Bit Score: 42.29 E-value: 4.20e-05
|
||||||||||||||||||
SH3_Bem1p_1 | cd11878 | First Src Homology 3 domain of Bud emergence protein 1 and similar domains; Members of this ... |
1084-1131 | 4.30e-05 | ||||||||||||||
First Src Homology 3 domain of Bud emergence protein 1 and similar domains; Members of this subfamily bear similarity to Saccharomyces cerevisiae Bem1p, containing two Src Homology 3 (SH3) domains at the N-terminus, a central PX domain, and a C-terminal PB1 domain. Bem1p is a scaffolding protein that is critical for proper Cdc42p activation during bud formation in yeast. During budding and mating, Bem1p migrates to the plasma membrane where it can serve as an adaptor for Cdc42p and some other proteins. Bem1p also functions as an effector of the G1 cyclin Cln3p and the cyclin-dependent kinase Cdc28p in promoting vacuolar fusion. SH3 domains bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs; they play a role in the regulation of enzymes by intramolecular interactions, changing the subcellular localization of signal pathway components and mediate multiprotein complex assemblies. Pssm-ID: 212811 [Multi-domain] Cd Length: 54 Bit Score: 42.28 E-value: 4.30e-05
|
||||||||||||||||||
SH3_NoxO1_2 | cd12024 | Second or C-terminal Src homology 3 domain of NADPH oxidase (Nox) Organizing protein 1; Nox ... |
1087-1132 | 4.39e-05 | ||||||||||||||
Second or C-terminal Src homology 3 domain of NADPH oxidase (Nox) Organizing protein 1; Nox Organizing protein 1 (NoxO1) is a critical regulator of enzyme kinetics of the nonphagocytic NADPH oxidase Nox1, which catalyzes the transfer of electrons from NADPH to molecular oxygen to form superoxide. Nox1 is expressed in colon, stomach, uterus, prostate, and vascular smooth muscle cells. NoxO1 is involved in targeting activator subunits (such as NoxA1) to Nox1. It is co-localized with Nox1 in the membranes of resting cells and directs the subcellular localization of Nox1. NoxO1 contains an N-terminal Phox homology (PX) domain, tandem SH3 domains (N-SH3 and C-SH3), and a C-terminal proline-rich region (PRR). This model characterizes the second SH3 domain (or C-SH3) of NoxO1. The tandem SH3 domains of NoxO1 interact with the PRR of p22phox, which also complexes with Nox1. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. Pssm-ID: 212957 Cd Length: 53 Bit Score: 42.32 E-value: 4.39e-05
|
||||||||||||||||||
SH3_SNX9 | cd11898 | Src Homology 3 domain of Sorting nexin 9; Sorting nexin 9 (SNX9), also known as SH3PX1, is a ... |
1083-1133 | 6.58e-05 | ||||||||||||||
Src Homology 3 domain of Sorting nexin 9; Sorting nexin 9 (SNX9), also known as SH3PX1, is a cytosolic protein that interacts with proteins associated with clathrin-coated pits such as Cdc-42-associated tyrosine kinase 2 (ACK2). It binds class I polyproline sequences found in dynamin 1/2 and the WASP/N-WASP actin regulators. SNX9 is localized to plasma membrane endocytic sites and acts primarily in clathrin-mediated endocytosis. Its array of interacting partners suggests that SNX9 functions at the interface between endocytosis and actin cytoskeletal organization. SNXs are Phox homology (PX) domain containing proteins that are involved in regulating membrane traffic and protein sorting in the endosomal system. SNX9 also contains BAR and SH3 domains. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. Pssm-ID: 212831 Cd Length: 57 Bit Score: 41.77 E-value: 6.58e-05
|
||||||||||||||||||
SH3_betaPIX | cd12061 | Src Homology 3 domain of beta-Pak Interactive eXchange factor; Beta-PIX, also called Rho ... |
1087-1134 | 7.80e-05 | ||||||||||||||
Src Homology 3 domain of beta-Pak Interactive eXchange factor; Beta-PIX, also called Rho guanine nucleotide exchange factor 7 (ARHGEF7) or Cool (Cloned out of Library)-1, activates small GTPases by exchanging bound GDP for free GTP. It acts as a GEF for both Cdc42 and Rac 1, and plays important roles in regulating neuroendocrine exocytosis, focal adhesion maturation, cell migration, synaptic vesicle localization, and insulin secretion. PIX proteins contain an N-terminal SH3 domain followed by RhoGEF (also called Dbl-homologous or DH) and Pleckstrin Homology (PH) domains, and a C-terminal leucine-zipper domain for dimerization. The SH3 domain of PIX binds to an atypical PxxxPR motif in p21-activated kinases (PAKs) with high affinity. The binding of PAKs to PIX facilitate the localization of PAKs to focal complexes and also localizes PAKs to PIX targets Cdc43 and Rac, leading to the activation of PAKs. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. Pssm-ID: 212994 [Multi-domain] Cd Length: 54 Bit Score: 41.59 E-value: 7.80e-05
|
||||||||||||||||||
SH3_VAV2_2 | cd11977 | C-terminal (or second) Src homology 3 domain of VAV2 protein; VAV2 is widely expressed and ... |
1085-1135 | 8.91e-05 | ||||||||||||||
C-terminal (or second) Src homology 3 domain of VAV2 protein; VAV2 is widely expressed and functions as a guanine nucleotide exchange factor (GEF) for RhoA, RhoB and RhoG and also activates Rac1 and Cdc42. It is implicated in many cellular and physiological functions including blood pressure control, eye development, neurite outgrowth and branching, EGFR endocytosis and degradation, and cell cluster morphology, among others. It has been reported to associate with Nek3. VAV proteins contain several domains that enable their function: N-terminal calponin homology (CH), acidic, RhoGEF (also called Dbl-homologous or DH), Pleckstrin Homology (PH), C1 (zinc finger), SH2, and two SH3 domains. The SH3 domain of VAV is involved in the localization of proteins to specific sites within the cell, by interacting with proline-rich sequences within target proteins. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. Pssm-ID: 212910 [Multi-domain] Cd Length: 58 Bit Score: 41.54 E-value: 8.91e-05
|
||||||||||||||||||
SH3_STAM1 | cd11964 | Src homology 3 domain of Signal Transducing Adaptor Molecule 1; STAM1 is part of the endosomal ... |
1084-1114 | 8.97e-05 | ||||||||||||||
Src homology 3 domain of Signal Transducing Adaptor Molecule 1; STAM1 is part of the endosomal sorting complex required for transport (ESCRT-0) and is involved in sorting ubiquitinated cargo proteins from the endosome. It may also be involved in the regulation of IL2 and GM-CSF mediated signaling, and has been implicated in neural cell survival. STAMs were discovered as proteins that are highly phosphorylated following cytokine and growth factor stimulation. They function in cytokine signaling and surface receptor degradation, as well as regulate Golgi morphology. They associate with many proteins including Jak2 and Jak3 tyrosine kinases, Hrs, AMSH, and UBPY. STAM adaptor proteins contain VHS (Vps27, Hrs, STAM homology), ubiquitin interacting (UIM), and SH3 domains. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. Pssm-ID: 212897 [Multi-domain] Cd Length: 55 Bit Score: 41.47 E-value: 8.97e-05
|
||||||||||||||||||
SH3_PLCgamma1 | cd11970 | Src homology 3 domain of Phospholipase C (PLC) gamma 1; PLCgamma1 is widely expressed and is ... |
1084-1136 | 9.45e-05 | ||||||||||||||
Src homology 3 domain of Phospholipase C (PLC) gamma 1; PLCgamma1 is widely expressed and is essential in growth and development. It is activated by the TrkA receptor tyrosine kinase and functions as a key regulator of cell differentiation. It is also the predominant PLCgamma in T cells and is required for T cell and NK cell function. PLCs catalyze the hydrolysis of phosphatidylinositol (4,5)-bisphosphate [PtdIns(4,5)P2] to produce Ins(1,4,5)P3 and diacylglycerol (DAG). Ins(1,4,5)P3 initiates the calcium signaling cascade while DAG functions as an activator of PKC. PLCgamma contains a Pleckstrin homology (PH) domain followed by an elongation factor (EF) domain, two catalytic regions of PLC domains that flank two tandem SH2 domains, followed by a SH3 domain and C2 domain. The SH3 domain of PLCgamma1 directly interacts with dynamin-1 and can serve as a guanine nucleotide exchange factor (GEF). It also interacts with Cbl, inhibiting its phosphorylation and activity. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. Pssm-ID: 212903 Cd Length: 60 Bit Score: 41.51 E-value: 9.45e-05
|
||||||||||||||||||
SH3_Abi | cd11826 | Src homology 3 domain of Abl Interactor proteins; Abl interactor (Abi) proteins are adaptor ... |
1083-1114 | 1.01e-04 | ||||||||||||||
Src homology 3 domain of Abl Interactor proteins; Abl interactor (Abi) proteins are adaptor proteins serving as binding partners and substrates of Abl tyrosine kinases. They are involved in regulating actin cytoskeletal reorganization and play important roles in membrane-ruffling, endocytosis, cell motility, and cell migration. They localize to sites of actin polymerization in epithelial adherens junction and immune synapses, as well as to the leading edge of lamellipodia. Vertebrates contain two Abi proteins, Abi1 and Abi2. Abi1 displays a wide expression pattern while Abi2 is highly expressed in the eye and brain. Abi proteins contain a homeobox homology domain, a proline-rich region, and a SH3 domain. The SH3 domain of Abi binds to a PxxP motif in Abl. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. Pssm-ID: 212760 [Multi-domain] Cd Length: 52 Bit Score: 41.15 E-value: 1.01e-04
|
||||||||||||||||||
SH3_Tks_3 | cd12017 | Third Src homology 3 domain of Tyrosine kinase substrate (Tks) proteins; Tks proteins are Src ... |
1086-1134 | 1.06e-04 | ||||||||||||||
Third Src homology 3 domain of Tyrosine kinase substrate (Tks) proteins; Tks proteins are Src substrates and scaffolding proteins that play important roles in the formation of podosomes and invadopodia, the dynamic actin-rich structures that are related to cell migration and cancer cell invasion. Vertebrates contain two Tks proteins, Tks4 (Tyr kinase substrate with four SH3 domains) and Tks5 (Tyr kinase substrate with five SH3 domains), which display partially overlapping but non-redundant functions. Both associate with the ADAMs family of transmembrane metalloproteases, which function as sheddases and mediators of cell and matrix interactions. Tks5 interacts with N-WASP and Nck, while Tks4 is essential for the localization of MT1-MMP (membrane-type 1 matrix metalloproteinase) to invadopodia. Tks proteins contain an N-terminal Phox homology (PX) domain and four or five SH3 domains. This model characterizes the third SH3 domain of Tks proteins. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. Pssm-ID: 212950 Cd Length: 53 Bit Score: 40.90 E-value: 1.06e-04
|
||||||||||||||||||
SH3_Tks4_2 | cd12076 | Second Src homology 3 domain of Tyrosine kinase substrate with four SH3 domains; Tks4, also ... |
1083-1134 | 1.10e-04 | ||||||||||||||
Second Src homology 3 domain of Tyrosine kinase substrate with four SH3 domains; Tks4, also called SH3 and PX domain-containing protein 2B (SH3PXD2B) or HOFI, is a Src substrate and scaffolding protein that plays an important role in the formation of podosomes and invadopodia, the dynamic actin-rich structures that are related to cell migration and cancer cell invasion. It is required in the formation of functional podosomes, EGF-induced membrane ruffling, and lamellipodia generation. It plays an important role in cellular attachment and cell spreading. Tks4 is essential for the localization of MT1-MMP (membrane-type 1 matrix metalloproteinase) to invadopodia. It contains an N-terminal Phox homology (PX) domain and four SH3 domains. This model characterizes the second SH3 domain of Tks4. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. Pssm-ID: 213009 [Multi-domain] Cd Length: 54 Bit Score: 41.17 E-value: 1.10e-04
|
||||||||||||||||||
SH3_9 | pfam14604 | Variant SH3 domain; |
1083-1133 | 1.16e-04 | ||||||||||||||
Variant SH3 domain; Pssm-ID: 434066 [Multi-domain] Cd Length: 49 Bit Score: 40.68 E-value: 1.16e-04
|
||||||||||||||||||
SH3_FCHSD_1 | cd11761 | First Src Homology 3 domain of FCH and double SH3 domains proteins; This group is composed of ... |
1083-1133 | 1.23e-04 | ||||||||||||||
First Src Homology 3 domain of FCH and double SH3 domains proteins; This group is composed of FCH and double SH3 domains protein 1 (FCHSD1) and FCHSD2. These proteins have a common domain structure consisting of an N-terminal F-BAR (FES-CIP4 Homology and Bin/Amphiphysin/Rvs), two SH3, and C-terminal proline-rich domains. They have only been characterized in silico and their functions remain unknown. This group also includes the insect protein, nervous wreck, which acts as a regulator of synaptic growth signaling. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. Pssm-ID: 212695 [Multi-domain] Cd Length: 57 Bit Score: 41.19 E-value: 1.23e-04
|
||||||||||||||||||
SH3_Pex13p_fungal | cd11771 | Src Homology 3 domain of fungal peroxisomal membrane protein Pex13p; Pex13p, located in the ... |
1083-1134 | 1.41e-04 | ||||||||||||||
Src Homology 3 domain of fungal peroxisomal membrane protein Pex13p; Pex13p, located in the peroxisomal membrane, contains two transmembrane regions and a C-terminal SH3 domain. It binds to the peroxisomal targeting type I (PTS1) receptor Pex5p and the docking factor Pex14p through its SH3 domain. It is essential for both PTS1 and PTS2 protein import pathways into the peroxisomal matrix. Pex13p binds Pex14p, which contains a PxxP motif, in a classical fashion to the proline-rich ligand binding site of its SH3 domain. It binds the WxxxF/Y motif of Pex5p in a novel site that does not compete with Pex14p binding. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. Pssm-ID: 212705 [Multi-domain] Cd Length: 60 Bit Score: 41.11 E-value: 1.41e-04
|
||||||||||||||||||
SH3_D21-like | cd12142 | Src Homology 3 domain of SH3 domain-containing protein 21 (SH3D21) and similar proteins; ... |
1083-1114 | 1.50e-04 | ||||||||||||||
Src Homology 3 domain of SH3 domain-containing protein 21 (SH3D21) and similar proteins; N-terminal SH3 domain of the uncharacterized protein SH3 domain-containing protein 21, and similar uncharacterized domains, it belongs to the CD2AP-like_3 subfamily of proteins. The CD2AP-like_3 subfamily is composed of the third SH3 domain (SH3C) of CD2AP, CIN85 (Cbl-interacting protein of 85 kDa), and similar domains. CD2AP and CIN85 are adaptor proteins that bind to protein partners and assemble complexes that have been implicated in T cell activation, kidney function, and apoptosis of neuronal cells. They also associate with endocytic proteins, actin cytoskeleton components, and other adaptor proteins involved in receptor tyrosine kinase (RTK) signaling. CD2AP and the main isoform of CIN85 contain three SH3 domains, a proline-rich region, and a C-terminal coiled-coil domain. All of these domains enable CD2AP and CIN85 to bind various protein partners and assemble complexes that have been implicated in many different functions. SH3C of both proteins have been shown to bind to ubiquitin. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. Pssm-ID: 213018 [Multi-domain] Cd Length: 55 Bit Score: 40.91 E-value: 1.50e-04
|
||||||||||||||||||
SH3_Tks5_4 | cd12019 | Fourth Src homology 3 domain of Tyrosine kinase substrate with five SH3 domains; Tks5, also ... |
1091-1134 | 1.74e-04 | ||||||||||||||
Fourth Src homology 3 domain of Tyrosine kinase substrate with five SH3 domains; Tks5, also called SH3 and PX domain-containing protein 2A (SH3PXD2A) or Five SH (FISH), is a scaffolding protein and Src substrate that is localized in podosomes, which are electron-dense structures found in Src-transformed fibroblasts, osteoclasts, macrophages, and some invasive cancer cells. It binds and regulates some members of the ADAMs family of transmembrane metalloproteases, which function as sheddases and mediators of cell and matrix interactions. It is required for podosome formation, degradation of the extracellular matrix, and cancer cell invasion. Tks5 contains an N-terminal Phox homology (PX) domain and five SH3 domains. This model characterizes the fourth SH3 domain of Tks5. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. Pssm-ID: 212952 Cd Length: 53 Bit Score: 40.35 E-value: 1.74e-04
|
||||||||||||||||||
SH3_Irsp53_BAIAP2L | cd11779 | Src Homology 3 domain of Insulin Receptor tyrosine kinase Substrate p53, Brain-specific ... |
1084-1133 | 1.91e-04 | ||||||||||||||
Src Homology 3 domain of Insulin Receptor tyrosine kinase Substrate p53, Brain-specific Angiogenesis Inhibitor 1-Associated Protein 2 (BAIAP2)-Like proteins, and similar proteins; Proteins in this family include IRSp53, BAIAP2L1, BAIAP2L2, and similar proteins. They all contain an Inverse-Bin/Amphiphysin/Rvs (I-BAR) or IMD domain in addition to the SH3 domain. IRSp53, also known as BAIAP2, is a scaffolding protein that takes part in many signaling pathways including Cdc42-induced filopodia formation, Rac-mediated lamellipodia extension, and spine morphogenesis. IRSp53 exists as multiple splicing variants that differ mainly at the C-termini. BAIAP2L1, also called IRTKS (Insulin Receptor Tyrosine Kinase Substrate), serves as a substrate for the insulin receptor and binds the small GTPase Rac. It plays a role in regulating the actin cytoskeleton and colocalizes with F-actin, cortactin, VASP, and vinculin. IRSp53 and IRTKS also mediate the recruitment of effector proteins Tir and EspFu, which regulate host cell actin reorganization, to bacterial attachment sites. BAIAP2L2 co-localizes with clathrin plaques but its function has not been determined. The SH3 domains of IRSp53 and IRTKS have been shown to bind the proline-rich C-terminus of EspFu. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. Pssm-ID: 212713 [Multi-domain] Cd Length: 57 Bit Score: 40.38 E-value: 1.91e-04
|
||||||||||||||||||
SH3_SPIN90 | cd11849 | Src homology 3 domain of SH3 protein interacting with Nck, 90 kDa (SPIN90); SPIN90 is also ... |
1084-1133 | 1.91e-04 | ||||||||||||||
Src homology 3 domain of SH3 protein interacting with Nck, 90 kDa (SPIN90); SPIN90 is also called NCK interacting protein with SH3 domain (NCKIPSD), Dia-interacting protein (DIP), 54 kDa vimentin-interacting protein (VIP54), or WASP-interacting SH3-domain protein (WISH). It is an F-actin binding protein that regulates actin polymerization and endocytosis. It associates with the Arp2/3 complex near actin filaments and determines filament localization at the leading edge of lamellipodia. SPIN90 is expressed in the early stages of neuronal differentiation and plays a role in regulating growth cone dynamics and neurite outgrowth. It also interacts with IRSp53 and regulates cell motility by playing a role in the formation of membrane protrusions. SPIN90 contains an N-terminal SH3 domain, a proline-rich domain, and a C-terminal VCA (verprolin-homology and cofilin-like acidic) domain. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. Pssm-ID: 212783 [Multi-domain] Cd Length: 53 Bit Score: 40.38 E-value: 1.91e-04
|
||||||||||||||||||
SH3_CD2AP-like_3 | cd11875 | Third Src Homology 3 domain (SH3C) of CD2-associated protein and similar proteins; This ... |
1083-1114 | 2.06e-04 | ||||||||||||||
Third Src Homology 3 domain (SH3C) of CD2-associated protein and similar proteins; This subfamily is composed of the third SH3 domain (SH3C) of CD2AP, CIN85 (Cbl-interacting protein of 85 kDa), and similar domains. CD2AP and CIN85 are adaptor proteins that bind to protein partners and assemble complexes that have been implicated in T cell activation, kidney function, and apoptosis of neuronal cells. They also associate with endocytic proteins, actin cytoskeleton components, and other adaptor proteins involved in receptor tyrosine kinase (RTK) signaling. CD2AP and the main isoform of CIN85 contain three SH3 domains, a proline-rich region, and a C-terminal coiled-coil domain. All of these domains enable CD2AP and CIN85 to bind various protein partners and assemble complexes that have been implicated in many different functions. SH3C of both proteins have been shown to bind to ubiquitin. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. Pssm-ID: 212808 [Multi-domain] Cd Length: 55 Bit Score: 40.41 E-value: 2.06e-04
|
||||||||||||||||||
SH3_PACSIN | cd11843 | Src homology 3 domain of Protein kinase C and Casein kinase Substrate in Neurons (PACSIN) ... |
1084-1133 | 2.14e-04 | ||||||||||||||
Src homology 3 domain of Protein kinase C and Casein kinase Substrate in Neurons (PACSIN) proteins; PACSINs, also called Synaptic dynamin-associated proteins (Syndapins), act as regulators of cytoskeletal and membrane dynamics. They bind both dynamin and Wiskott-Aldrich syndrome protein (WASP), and may provide direct links between the actin cytoskeletal machinery through WASP and dynamin-dependent endocytosis. Vetebrates harbor three isoforms with distinct expression patterns and specific functions. PACSINs contain an N-terminal F-BAR domain and a C-terminal SH3 domain. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. Pssm-ID: 212777 [Multi-domain] Cd Length: 53 Bit Score: 40.10 E-value: 2.14e-04
|
||||||||||||||||||
SH3_BOI | cd11886 | Src Homology 3 domain of fungal BOI-like proteins; This subfamily includes the Saccharomyces ... |
1083-1131 | 2.39e-04 | ||||||||||||||
Src Homology 3 domain of fungal BOI-like proteins; This subfamily includes the Saccharomyces cerevisiae proteins BOI1 and BOI2, and similar proteins. They contain an N-terminal SH3 domain, a Sterile alpha motif (SAM), and a Pleckstrin homology (PH) domain at the C-terminus. BOI1 and BOI2 interact with the SH3 domain of Bem1p, a protein involved in bud formation. They promote polarized cell growth and participates in the NoCut signaling pathway, which is involved in the control of cytokinesis. SH3 domains bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs; they play a role in the regulation of enzymes by intramolecular interactions, changing the subcellular localization of signal pathway components and mediate multiprotein complex assemblies. Pssm-ID: 212819 Cd Length: 55 Bit Score: 40.01 E-value: 2.39e-04
|
||||||||||||||||||
SH3_Bzz1_1 | cd11912 | First Src Homology 3 domain of Bzz1 and similar domains; Bzz1 (or Bzz1p) is a WASP ... |
1083-1133 | 2.41e-04 | ||||||||||||||
First Src Homology 3 domain of Bzz1 and similar domains; Bzz1 (or Bzz1p) is a WASP/Las17-interacting protein involved in endocytosis and trafficking to the vacuole. It physically interacts with type I myosins and functions in the early steps of endocytosis. Together with other proteins, it induces membrane scission in yeast. Bzz1 contains an N-terminal F-BAR (FES-CIP4 Homology and Bin/Amphiphysin/Rvs), a central coiled-coil, and two C-terminal SH3 domains. This model represents the first C-terminal SH3 domain. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. Pssm-ID: 212845 [Multi-domain] Cd Length: 55 Bit Score: 40.28 E-value: 2.41e-04
|
||||||||||||||||||
SH3_PLCgamma2 | cd11969 | Src homology 3 domain of Phospholipase C (PLC) gamma 2; PLCgamma2 is primarily expressed in ... |
1084-1134 | 2.77e-04 | ||||||||||||||
Src homology 3 domain of Phospholipase C (PLC) gamma 2; PLCgamma2 is primarily expressed in haematopoietic cells, specifically in B cells. It is activated by tyrosine phosphorylation by B cell receptor (BCR) kinases and is recruited to the plasma membrane where its substrate is located. It is required in pre-BCR signaling and in the maturation of B cells. PLCs catalyze the hydrolysis of phosphatidylinositol (4,5)-bisphosphate [PtdIns(4,5)P2] to produce Ins(1,4,5)P3 and diacylglycerol (DAG). Ins(1,4,5)P3 initiates the calcium signaling cascade while DAG functions as an activator of PKC. PLCgamma contains a Pleckstrin homology (PH) domain followed by an elongation factor (EF) domain, two catalytic regions of PLC domains that flank two tandem SH2 domains, followed by a SH3 domain and C2 domain. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. Pssm-ID: 212902 Cd Length: 55 Bit Score: 39.82 E-value: 2.77e-04
|
||||||||||||||||||
SH3_SKAP2 | cd12045 | Src Homology 3 domain of Src Kinase-Associated Phosphoprotein 2; SKAP2, also called ... |
1084-1132 | 3.32e-04 | ||||||||||||||
Src Homology 3 domain of Src Kinase-Associated Phosphoprotein 2; SKAP2, also called SKAP55-Related (SKAP55R) or SKAP55 homolog (SKAP-HOM or SKAP55-HOM), is an immune cell-specific adaptor protein that plays an important role in adhesion and migration of B-cells and macrophages. Binding partners include ADAP (adhesion and degranulation-promoting adaptor protein), YopH, SHPS1, and HPK1. SKAP2 has also been identified as a substrate for lymphoid-specific tyrosine phosphatase (Lyp), which has been implicated in a wide variety of autoimmune diseases. It contains a pleckstrin homology (PH) domain, a C-terminal SH3 domain, and several tyrosine phosphorylation sites. Like SKAP1, SKAP2 is expected to bind primarily to a proline-rich region of ADAP through its SH3 domain; its degradation may be regulated by ADAP. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. Pssm-ID: 212978 Cd Length: 53 Bit Score: 39.88 E-value: 3.32e-04
|
||||||||||||||||||
SH3_CRK_N | cd11758 | N-terminal Src Homology 3 domain of Ct10 Regulator of Kinase adaptor proteins; CRK adaptor ... |
1084-1134 | 3.34e-04 | ||||||||||||||
N-terminal Src Homology 3 domain of Ct10 Regulator of Kinase adaptor proteins; CRK adaptor proteins consists of SH2 and SH3 domains, which bind tyrosine-phosphorylated peptides and proline-rich motifs, respectively. They function downstream of protein tyrosine kinases in many signaling pathways started by various extracellular signals, including growth and differentiation factors. Cellular CRK (c-CRK) contains a single SH2 domain, followed by N-terminal and C-terminal SH3 domains. It is involved in the regulation of many cellular processes including cell growth, motility, adhesion, and apoptosis. CRK has been implicated in the malignancy of various human cancers. The N-terminal SH3 domain of CRK binds a number of target proteins including DOCK180, C3G, SOS, and cABL. The CRK family includes two alternatively spliced protein forms, CRKI and CRKII, that are expressed by the CRK gene, and the CRK-like (CRKL) protein, which is expressed by a distinct gene (CRKL). SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. Pssm-ID: 212692 [Multi-domain] Cd Length: 55 Bit Score: 39.65 E-value: 3.34e-04
|
||||||||||||||||||
SH3_alphaPIX | cd12060 | Src Homology 3 domain of alpha-Pak Interactive eXchange factor; Alpha-PIX, also called Rho ... |
1085-1134 | 4.04e-04 | ||||||||||||||
Src Homology 3 domain of alpha-Pak Interactive eXchange factor; Alpha-PIX, also called Rho guanine nucleotide exchange factor 6 (ARHGEF6) or Cool (Cloned out of Library)-2, activates small GTPases by exchanging bound GDP for free GTP. It acts as a GEF for both Cdc42 and Rac 1, and is localized in dendritic spines where it regulates spine morphogenesis. It controls dendritic length and spine density in the hippocampus. Mutations in the ARHGEF6 gene cause X-linked intellectual disability in humans. PIX proteins contain an N-terminal SH3 domain followed by RhoGEF (also called Dbl-homologous or DH) and Pleckstrin Homology (PH) domains, and a C-terminal leucine-zipper domain for dimerization. The SH3 domain of PIX binds to an atypical PxxxPR motif in p21-activated kinases (PAKs) with high affinity. The binding of PAKs to PIX facilitate the localization of PAKs to focal complexes and also localizes PAKs to PIX targets Cdc43 and Rac, leading to the activation of PAKs. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. Pssm-ID: 212993 Cd Length: 58 Bit Score: 39.60 E-value: 4.04e-04
|
||||||||||||||||||
SH3_SNX18 | cd11897 | Src Homology 3 domain of Sorting nexin 18; SNX18 is localized to peripheral endosomal ... |
1084-1133 | 4.73e-04 | ||||||||||||||
Src Homology 3 domain of Sorting nexin 18; SNX18 is localized to peripheral endosomal structures, and acts in a trafficking pathway that is clathrin-independent but relies on AP-1 and PACS1. It binds FIP5 and is required for apical lumen formation. It may also play a role in axonal elongation. SNXs are Phox homology (PX) domain containing proteins that are involved in regulating membrane traffic and protein sorting in the endosomal system. SNX18 also contains BAR and SH3 domains. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. Pssm-ID: 212830 [Multi-domain] Cd Length: 55 Bit Score: 39.20 E-value: 4.73e-04
|
||||||||||||||||||
SH3_Abp1_fungi_C1 | cd11962 | First C-terminal Src homology 3 domain of Fungal Actin-binding protein 1; Abp1 is an adaptor ... |
1083-1133 | 4.88e-04 | ||||||||||||||
First C-terminal Src homology 3 domain of Fungal Actin-binding protein 1; Abp1 is an adaptor protein that functions in receptor-mediated endocytosis and vesicle trafficking. It contains an N-terminal actin-binding module, the actin-depolymerizing factor (ADF) homology domain, a central proline-rich region, and a C-terminal SH3 domain (many yeast Abp1 proteins contain two C-terminal SH3 domains). Yeast Abp1 also contains two acidic domains that bind directly to the Arp2/3 complex, which is required to initiate actin polymerization. The SH3 domain of yeast Abp1 binds and localizes the kinases, Ark1p and Prk1p, which facilitate actin patch disassembly following vesicle internalization. It also mediates the localization to the actin patch of the synaptojanin-like protein, Sjl2p, which plays a key role in endocytosis. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. Pssm-ID: 212895 [Multi-domain] Cd Length: 54 Bit Score: 39.39 E-value: 4.88e-04
|
||||||||||||||||||
SH3_PEX13_eumet | cd11864 | Src Homology 3 domain of eumetazoan Peroxisomal biogenesis factor 13; PEX13 is a peroxin and ... |
1083-1115 | 4.91e-04 | ||||||||||||||
Src Homology 3 domain of eumetazoan Peroxisomal biogenesis factor 13; PEX13 is a peroxin and is required for protein import into the peroxisomal matrix and membrane. It is an integral membrane protein that is essential for the localization of PEX14 and the import of proteins containing the peroxisome matrix targeting signals, PTS1 and PTS2. Mutations of the PEX13 gene in humans lead to a wide range of peroxisome biogenesis disorders (PBDs), the most severe of which is known as Zellweger syndrome (ZS), a severe multisystem disorder characterized by hypotonia, psychomotor retardation, and neuronal migration defects. PEX13 contains two transmembrane regions and a C-terminal SH3 domain. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. Pssm-ID: 212798 Cd Length: 58 Bit Score: 39.15 E-value: 4.91e-04
|
||||||||||||||||||
SH3_SKAP1 | cd12044 | Src Homology 3 domain of Src Kinase-Associated Phosphoprotein 1; SKAP1, also called SKAP55 ... |
1084-1132 | 5.33e-04 | ||||||||||||||
Src Homology 3 domain of Src Kinase-Associated Phosphoprotein 1; SKAP1, also called SKAP55 (Src kinase-associated protein of 55kDa), is an immune cell-specific adaptor protein that plays an important role in T-cell adhesion, migration, and integrin clustering. It is expressed exclusively in T-lymphocytes, mast cells, and macrophages. Binding partners include ADAP (adhesion and degranulation-promoting adaptor protein), Fyn, Riam, RapL, and RasGRP. It contains a pleckstrin homology (PH) domain, a C-terminal SH3 domain, and several tyrosine phosphorylation sites. The SH3 domain of SKAP1 is necessary for its ability to regulate T-cell conjugation with antigen-presenting cells and the formation of LFA-1 clusters. SKAP1 binds primarily to a proline-rich region of ADAP through its SH3 domain; its degradation is regulated by ADAP. A secondary interaction occurs via the ADAP SH3 domain and the RKxxYxxY motif in SKAP1. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. Pssm-ID: 212977 Cd Length: 53 Bit Score: 39.07 E-value: 5.33e-04
|
||||||||||||||||||
SH3_MLK4 | cd12058 | Src Homology 3 domain of Mixed Lineage Kinase 4; MLK4 is a Serine/Threonine Kinase (STK), ... |
1083-1114 | 6.25e-04 | ||||||||||||||
Src Homology 3 domain of Mixed Lineage Kinase 4; MLK4 is a Serine/Threonine Kinase (STK), catalyzing the transfer of the gamma-phosphoryl group from ATP to S/T residues on protein substrates. MLKs act as mitogen-activated protein kinase kinase kinases (MAP3Ks, MKKKs, MAPKKKs), which phosphorylate and activate MAPK kinases (MAPKKs or MKKs or MAP2Ks), which in turn phosphorylate and activate MAPKs during signaling cascades that are important in mediating cellular responses to extracellular signals. MLKs play roles in immunity and inflammation, as well as in cell death, proliferation, and cell cycle regulation. The specific function of MLK4 is yet to be determined. Mutations in the kinase domain of MLK4 have been detected in colorectal cancers. MLK4 contains an SH3 domain, a catalytic kinase domain, a leucine zipper, a proline-rich region, and a CRIB domain that mediates binding to GTP-bound Cdc42 and Rac. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. Pssm-ID: 212991 [Multi-domain] Cd Length: 58 Bit Score: 39.15 E-value: 6.25e-04
|
||||||||||||||||||
SH3_SLAP-like | cd11848 | Src homology 3 domain of Src-Like Adaptor Proteins; SLAPs are adaptor proteins with limited ... |
1083-1131 | 7.41e-04 | ||||||||||||||
Src homology 3 domain of Src-Like Adaptor Proteins; SLAPs are adaptor proteins with limited similarity to Src family tyrosine kinases. They contain an N-terminal SH3 domain followed by an SH2 domain, and a unique C-terminal sequence. They function in regulating the signaling, ubiquitination, and trafficking of T-cell receptor (TCR) and B-cell receptor (BCR) components. Vertebrates contain two SLAPs, named SLAP (or SLA1) and SLAP2 (or SLA2). SLAP has been shown to interact with the EphA receptor, EpoR, Lck, PDGFR, Syk, CD79a, among others, while SLAP2 interacts with CSF1R. Both SLAPs interact with c-Cbl, LAT, CD247, and Zap70. SLAP modulates TCR surface expression levels as well as surface and total BCR levels. As an adaptor to c-Cbl, SLAP increases the ubiquitination, intracellular retention, and targeted degradation of the BCR complex components. SLAP2 plays a role in c-Cbl-dependent regulation of CSF1R, a tyrosine kinase important for myeloid cell growth and differentiation. The SH3 domain of SLAP forms a complex with v-Abl. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. Pssm-ID: 212782 Cd Length: 55 Bit Score: 38.71 E-value: 7.41e-04
|
||||||||||||||||||
SH3_SKAP1-like | cd11866 | Src Homology 3 domain of Src Kinase-Associated Phosphoprotein 1 and similar proteins; This ... |
1084-1132 | 7.63e-04 | ||||||||||||||
Src Homology 3 domain of Src Kinase-Associated Phosphoprotein 1 and similar proteins; This subfamily is composed of SKAP1, SKAP2, and similar proteins. SKAP1 and SKAP2 are immune cell-specific adaptor proteins that play roles in T- and B-cell adhesion, respectively, and are thus important in the migration of T- and B-cells to sites of inflammation and for movement during T-cell conjugation with antigen-presenting cells. Both SKAP1 and SKAP2 bind to ADAP (adhesion and degranulation-promoting adaptor protein), among many other binding partners. They contain a pleckstrin homology (PH) domain, a C-terminal SH3 domain, and several tyrosine phosphorylation sites. The SH3 domain of SKAP1 is necessary for its ability to regulate T-cell conjugation with antigen-presenting cells and the formation of LFA-1 clusters. SKAP1 binds primarily to a proline-rich region of ADAP through its SH3 domain; its degradation is regulated by ADAP. A secondary interaction occurs via the ADAP SH3 domain and the RKxxYxxY motif in SKAP1. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. Pssm-ID: 212800 Cd Length: 53 Bit Score: 38.57 E-value: 7.63e-04
|
||||||||||||||||||
SH3_CD2AP-like_2 | cd11874 | Second Src Homology 3 domain (SH3B) of CD2-associated protein and similar proteins; This ... |
1083-1115 | 7.93e-04 | ||||||||||||||
Second Src Homology 3 domain (SH3B) of CD2-associated protein and similar proteins; This subfamily is composed of the second SH3 domain (SH3B) of CD2AP, CIN85 (Cbl-interacting protein of 85 kDa), and similar domains. CD2AP and CIN85 are adaptor proteins that bind to protein partners and assemble complexes that have been implicated in T cell activation, kidney function, and apoptosis of neuronal cells. They also associate with endocytic proteins, actin cytoskeleton components, and other adaptor proteins involved in receptor tyrosine kinase (RTK) signaling. CD2AP and the main isoform of CIN85 contain three SH3 domains, a proline-rich region, and a C-terminal coiled-coil domain. All of these domains enable CD2AP and CIN85 to bind various protein partners and assemble complexes that have been implicated in many different functions. SH3B of both proteins have been shown to bind to Cbl. In the case of CD2AP, its SH3B binds to Cbl at a site distinct from the c-Cbl/SH3A binding site. The CIN85 SH3B also binds ubiquitin. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. Pssm-ID: 212807 [Multi-domain] Cd Length: 53 Bit Score: 38.47 E-value: 7.93e-04
|
||||||||||||||||||
SH3_STAM2 | cd11963 | Src homology 3 domain of Signal Transducing Adaptor Molecule 2; STAM2, also called EAST ... |
1084-1114 | 8.07e-04 | ||||||||||||||
Src homology 3 domain of Signal Transducing Adaptor Molecule 2; STAM2, also called EAST (Epidermal growth factor receptor-associated protein with SH3 and TAM domain) or Hbp (Hrs binding protein), is part of the endosomal sorting complex required for transport (ESCRT-0). It plays a role in sorting mono-ubiquinated endosomal cargo for trafficking to the lysosome for degradation. It is also involved in the regulation of exocytosis. STAMs were discovered as proteins that are highly phosphorylated following cytokine and growth factor stimulation. They function in cytokine signaling and surface receptor degradation, as well as regulate Golgi morphology. They associate with many proteins including Jak2 and Jak3 tyrosine kinases, Hrs, AMSH, and UBPY. STAM adaptor proteins contain VHS (Vps27, Hrs, STAM homology), ubiquitin interacting (UIM), and SH3 domains. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. Pssm-ID: 212896 [Multi-domain] Cd Length: 57 Bit Score: 38.85 E-value: 8.07e-04
|
||||||||||||||||||
SH3_STAM | cd11820 | Src homology 3 domain of Signal Transducing Adaptor Molecules; STAMs were discovered as ... |
1084-1114 | 8.78e-04 | ||||||||||||||
Src homology 3 domain of Signal Transducing Adaptor Molecules; STAMs were discovered as proteins that are highly phosphorylated following cytokine and growth factor stimulation. They function in cytokine signaling and surface receptor degradation, as well as regulate Golgi morphology. They associate with many proteins including Jak2 and Jak3 tyrosine kinases, Hrs, AMSH, and UBPY. STAM adaptor proteins contain VHS (Vps27, Hrs, STAM homology), ubiquitin interacting (UIM), and SH3 domains. There are two vertebrate STAMs, STAM1 and STAM2, which may be functionally redundant; vertebrate STAMs contain ITAM motifs. They are part of the endosomal sorting complex required for transport (ESCRT-0). STAM2 deficiency in mice did not cause any obvious abnormality, while STAM1 deficiency resulted in growth retardation. Loss of both STAM1 and STAM2 in mice proved lethal, indicating that STAMs are important for embryonic development. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. Pssm-ID: 212754 [Multi-domain] Cd Length: 54 Bit Score: 38.60 E-value: 8.78e-04
|
||||||||||||||||||
SH3_CIN85_3 | cd12057 | Third Src Homology 3 domain (SH3C) of Cbl-interacting protein of 85 kDa; CIN85, also called ... |
1083-1114 | 9.06e-04 | ||||||||||||||
Third Src Homology 3 domain (SH3C) of Cbl-interacting protein of 85 kDa; CIN85, also called SH3 domain-containing kinase-binding protein 1 (SH3KBP1) or CD2-binding protein 3 (CD2BP3) or Ruk, is an adaptor protein that is involved in the downregulation of receptor tyrosine kinases by facilitating endocytosis through interaction with endophilin-associated ubiquitin ligase Cbl proteins. It is also important in many other cellular processes including vesicle-mediated transport, cytoskeletal remodelling, apoptosis, cell adhesion and migration, and viral infection, among others. CIN85 exists as multiple variants from alternative splicing; the main variant contains three SH3 domains, a proline-rich region, and a C-terminal coiled-coil domain. All of these domains enable CIN85 to bind various protein partners and assemble complexes that have been implicated in many different functions. This alignment model represents the third SH3 domain (SH3C) of CIN85. SH3C has been shown to bind ubiquitin. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. Pssm-ID: 212990 [Multi-domain] Cd Length: 56 Bit Score: 38.73 E-value: 9.06e-04
|
||||||||||||||||||
SH3_Intersectin_5 | cd11840 | Fifth Src homology 3 domain (or SH3E) of Intersectin; Intersectins (ITSNs) are adaptor ... |
1084-1114 | 9.30e-04 | ||||||||||||||
Fifth Src homology 3 domain (or SH3E) of Intersectin; Intersectins (ITSNs) are adaptor proteins that function in exo- and endocytosis, actin cytoskeletal reorganization, and signal transduction. They are essential for initiating clathrin-coated pit formation. They bind to many proteins through their multidomain structure and facilitate the assembly of multimeric complexes. Vertebrates contain two ITSN proteins, ITSN1 and ITSN2, which exist in alternatively spliced short and long isoforms. The short isoforms contain two Eps15 homology domains (EH1 and EH2), a coiled-coil region and five SH3 domains (SH3A-E), while the long isoforms, in addition, contain RhoGEF (also called Dbl-homologous or DH), Pleckstrin homology (PH) and C2 domains. ITSN1 and ITSN2 are both widely expressed, with variations depending on tissue type and stage of development. The fifth SH3 domain (or SH3E) of ITSN1 has been shown to bind many protein partners including SGIP1, Sos1, dynamin1/2, CIN85, c-Cbl, SHIP2, N-WASP, and synaptojanin-1, among others. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. Pssm-ID: 212774 [Multi-domain] Cd Length: 53 Bit Score: 38.55 E-value: 9.30e-04
|
||||||||||||||||||
SH3_Ysc84p_like | cd11842 | Src homology 3 domain of Ysc84p and similar fungal proteins; This family is composed of the ... |
1083-1114 | 1.02e-03 | ||||||||||||||
Src homology 3 domain of Ysc84p and similar fungal proteins; This family is composed of the Saccharomyces cerevisiae proteins, Ysc84p (also called LAS17-binding protein 4, Lsb4p) and Lsb3p, and similar fungal proteins. They contain an N-terminal SYLF domain (also called DUF500) and a C-terminal SH3 domain. Ysc84p localizes to actin patches and plays an important in actin polymerization during endocytosis. The N-terminal domain of both Ysc84p and Lsb3p can bind and bundle actin filaments. A study of the yeast SH3 domain interactome predicts that the SH3 domains of Lsb3p and Lsb4p may function as molecular hubs for the assembly of endocytic complexes. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. Pssm-ID: 212776 [Multi-domain] Cd Length: 55 Bit Score: 38.56 E-value: 1.02e-03
|
||||||||||||||||||
SH3_MLK | cd11876 | Src Homology 3 domain of Mixed Lineage Kinases; MLKs are Serine/Threonine Kinases (STKs), ... |
1084-1114 | 1.15e-03 | ||||||||||||||
Src Homology 3 domain of Mixed Lineage Kinases; MLKs are Serine/Threonine Kinases (STKs), catalyzing the transfer of the gamma-phosphoryl group from ATP to S/T residues on protein substrates. MLKs act as mitogen-activated protein kinase kinase kinases (MAP3Ks, MKKKs, MAPKKKs), which phosphorylate and activate MAPK kinases (MAPKKs or MKKs or MAP2Ks), which in turn phosphorylate and activate MAPKs during signaling cascades that are important in mediating cellular responses to extracellular signals. MLKs play roles in immunity and inflammation, as well as in cell death, proliferation, and cell cycle regulation. Mammals have four MLKs (MLK1-4), mostly conserved in vertebrates, which contain an SH3 domain, a catalytic kinase domain, a leucine zipper, a proline-rich region, and a CRIB domain that mediates binding to GTP-bound Cdc42 and Rac. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. Pssm-ID: 212809 [Multi-domain] Cd Length: 58 Bit Score: 38.26 E-value: 1.15e-03
|
||||||||||||||||||
SH3_PACSIN1-2 | cd11998 | Src homology 3 domain of Protein kinase C and Casein kinase Substrate in Neurons 1 (PACSIN1) ... |
1084-1133 | 1.15e-03 | ||||||||||||||
Src homology 3 domain of Protein kinase C and Casein kinase Substrate in Neurons 1 (PACSIN1) and PACSIN 2; PACSIN 1 or Syndapin I (Synaptic dynamin-associated protein I) is expressed specifically in the brain and is localized in neurites and synaptic boutons. It binds the brain-specific proteins dynamin I, synaptojanin, synapsin I, and neural Wiskott-Aldrich syndrome protein (nWASP), and functions as a link between the cytoskeletal machinery and synaptic vesicle endocytosis. PACSIN 1 interacts with huntingtin and may be implicated in the neuropathology of Huntington's disease. PACSIN 2 or Syndapin II is expressed ubiquitously and is involved in the regulation of tubulin polymerization. It associates with Golgi membranes and forms a complex with dynamin II which is crucial in promoting vesicle formation from the trans-Golgi network. PACSINs act as regulators of cytoskeletal and membrane dynamics. Vetebrates harbor three isoforms with distinct expression patterns and specific functions. PACSINs contain an N-terminal F-BAR domain and a C-terminal SH3 domain. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. Pssm-ID: 212931 [Multi-domain] Cd Length: 56 Bit Score: 38.39 E-value: 1.15e-03
|
||||||||||||||||||
SH3_PACSIN_like | cd11999 | Src homology 3 domain of an unknown subfamily of proteins with similarity to Protein kinase C ... |
1084-1133 | 1.18e-03 | ||||||||||||||
Src homology 3 domain of an unknown subfamily of proteins with similarity to Protein kinase C and Casein kinase Substrate in Neurons (PACSIN) proteins; PACSINs, also called Synaptic dynamin-associated proteins (Syndapins), act as regulators of cytoskeletal and membrane dynamics. They bind both dynamin and Wiskott-Aldrich syndrome protein (WASP), and may provide direct links between the actin cytoskeletal machinery through WASP and dynamin-dependent endocytosis. Vetebrates harbor three isoforms with distinct expression patterns and specific functions. PACSINs contain an N-terminal F-BAR domain and a C-terminal SH3 domain. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. Pssm-ID: 212932 [Multi-domain] Cd Length: 56 Bit Score: 38.38 E-value: 1.18e-03
|
||||||||||||||||||
SH3_GAS7 | cd11829 | Src homology 3 domain of Growth Arrest Specific protein 7; GAS7 is mainly expressed in the ... |
1084-1132 | 1.22e-03 | ||||||||||||||
Src homology 3 domain of Growth Arrest Specific protein 7; GAS7 is mainly expressed in the brain and is required for neurite outgrowth. It may also play a role in the protection and migration of embryonic stem cells. Treatment-related acute myeloid leukemia (AML) has been reported resulting from mixed-lineage leukemia (MLL)-GAS7 translocations as a complication of primary cancer treatment. GAS7 contains an N-terminal SH3 domain, followed by a WW domain, and a central F-BAR domain. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. Pssm-ID: 212763 [Multi-domain] Cd Length: 52 Bit Score: 38.26 E-value: 1.22e-03
|
||||||||||||||||||
SH3_SLAP2 | cd12011 | Src homology 3 domain of Src-Like Adaptor Protein 2; SLAP2 plays a role in c-Cbl-dependent ... |
1084-1131 | 1.23e-03 | ||||||||||||||
Src homology 3 domain of Src-Like Adaptor Protein 2; SLAP2 plays a role in c-Cbl-dependent regulation of CSF1R, a tyrosine kinase important for myeloid cell growth and differentiation. It has been shown to interact with CSF1R, c-Cbl, LAT, CD247, and Zap70. SLAPs are adaptor proteins with limited similarity to Src family tyrosine kinases. They contain an N-terminal SH3 domain followed by an SH2 domain, and a unique C-terminal sequence. They function in regulating the signaling, ubiquitination, and trafficking of T-cell receptor (TCR) and B-cell receptor (BCR) components. The SH3 domain of SLAP forms a complex with v-Abl. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. Pssm-ID: 212944 Cd Length: 55 Bit Score: 38.19 E-value: 1.23e-03
|
||||||||||||||||||
SH3_iASPP | cd11952 | Src Homology 3 (SH3) domain of Inhibitor of ASPP protein (iASPP); iASPP, also called ... |
1084-1132 | 1.30e-03 | ||||||||||||||
Src Homology 3 (SH3) domain of Inhibitor of ASPP protein (iASPP); iASPP, also called RelA-associated inhibitor (RAI), is an oncoprotein that inhibits the apoptotic transactivation potential of p53. It is upregulated in human breast cancers expressing wild-type p53, in acute leukemias regardless of the p53 mutation status, as well as in ovarian cancer where it is associated with poor patient outcome and chemoresistance. iASPP is also a binding partner and negative regulator of p65RelA, which promotes cell proliferation and inhibits apoptosis; p65RelA has the opposite effect on cell growth compared to the p53 family. It contains a proline-rich region, four ankyrin (ANK) repeats, and an SH3 domain at its C-terminal half. The SH3 domain and the ANK repeats of iASPP contribute to the p53 binding site; they bind to the DNA binding domain of p53. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. Pssm-ID: 212885 [Multi-domain] Cd Length: 56 Bit Score: 37.99 E-value: 1.30e-03
|
||||||||||||||||||
SH3_ephexin1 | cd11939 | Src homology 3 domain of the Rho guanine nucleotide exchange factor, ephexin-1 (also called ... |
1084-1134 | 1.43e-03 | ||||||||||||||
Src homology 3 domain of the Rho guanine nucleotide exchange factor, ephexin-1 (also called NGEF or ARHGEF27); Ephexin-1, also called NGEF (neuronal GEF) or ARHGEF27, activates RhoA, Tac1, and Cdc42 by exchanging bound GDP for free GTP. It is expressed mainly in the brain in a region associated with movement control. It regulates the stability of postsynaptic acetylcholine receptor (AChR) clusters and thus, plays a critical role in the maturation and neurotransmission of neuromuscular junctions. Ephexin-1 directly interacts with the ephrin receptor EphA4 and their coexpression enhances the ability of ephexin-1 to activate RhoA. It is required for normal axon growth and EphA-induced growth cone collapse. Ephexin-1 contains RhoGEF (also called Dbl-homologous or DH), Pleckstrin Homology (PH), and SH3 domains. The SH3 domains of ARHGEFs play an autoinhibitory role through intramolecular interactions with a proline-rich region N-terminal to the DH domain. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. Pssm-ID: 212872 [Multi-domain] Cd Length: 55 Bit Score: 38.00 E-value: 1.43e-03
|
||||||||||||||||||
SH3_Sho1p | cd11855 | Src homology 3 domain of High osmolarity signaling protein Sho1p; Sho1p (or Sho1), also called ... |
1085-1133 | 1.80e-03 | ||||||||||||||
Src homology 3 domain of High osmolarity signaling protein Sho1p; Sho1p (or Sho1), also called SSU81 (Suppressor of SUA8-1 mutation), is a yeast membrane protein that regulates adaptation to high salt conditions by activating the HOG (high-osmolarity glycerol) pathway. High salt concentrations lead to the localization to the membrane of the MAPKK Pbs2, which is then activated by the MAPKK Ste11 and in turn, activates the MAPK Hog1. Pbs2 is localized to the membrane though the interaction of its PxxP motif with the SH3 domain of Sho1p. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. Pssm-ID: 212789 [Multi-domain] Cd Length: 55 Bit Score: 37.78 E-value: 1.80e-03
|
||||||||||||||||||
SH3_FCHSD_2 | cd11762 | Second Src Homology 3 domain of FCH and double SH3 domains proteins; This group is composed of ... |
1084-1114 | 2.16e-03 | ||||||||||||||
Second Src Homology 3 domain of FCH and double SH3 domains proteins; This group is composed of FCH and double SH3 domains protein 1 (FCHSD1) and FCHSD2. These proteins have a common domain structure consisting of an N-terminal F-BAR (FES-CIP4 Homology and Bin/Amphiphysin/Rvs), two SH3, and C-terminal proline-rich domains. They have only been characterized in silico and their functions remain unknown. This group also includes the insect protein, nervous wreck, which acts as a regulator of synaptic growth signaling. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. Pssm-ID: 212696 [Multi-domain] Cd Length: 57 Bit Score: 37.38 E-value: 2.16e-03
|
||||||||||||||||||
SH3_PACSIN3 | cd11997 | Src homology 3 domain of Protein kinase C and Casein kinase Substrate in Neurons 3 (PACSIN3); ... |
1084-1133 | 2.17e-03 | ||||||||||||||
Src homology 3 domain of Protein kinase C and Casein kinase Substrate in Neurons 3 (PACSIN3); PACSIN 3 or Syndapin III (Synaptic dynamin-associated protein III) is expressed ubiquitously and regulates glucose uptake in adipocytes through its role in GLUT1 trafficking. It also modulates the subcellular localization and stimulus-specific function of the cation channel TRPV4. PACSINs act as regulators of cytoskeletal and membrane dynamics. Vetebrates harbor three isoforms with distinct expression patterns and specific functions. PACSINs contain an N-terminal F-BAR domain and a C-terminal SH3 domain. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. Pssm-ID: 212930 [Multi-domain] Cd Length: 56 Bit Score: 37.63 E-value: 2.17e-03
|
||||||||||||||||||
SH3_CAS | cd11844 | Src homology 3 domain of CAS (Crk-Associated Substrate) scaffolding proteins; CAS proteins ... |
1084-1117 | 2.36e-03 | ||||||||||||||
Src homology 3 domain of CAS (Crk-Associated Substrate) scaffolding proteins; CAS proteins function as molecular scaffolds to regulate protein complexes that are involved in many cellular processes including migration, chemotaxis, apoptosis, differentiation, and progenitor cell function. They mediate the signaling of integrins at focal adhesions where they localize, and thus, regulate cell invasion and survival. Over-expression of these proteins is implicated in poor prognosis, increased metastasis, and resistance to chemotherapeutics in many cancers such as breast, lung, melanoma, and glioblastoma. CAS proteins have also been linked to the pathogenesis of inflammatory disorders, Alzheimer's, Parkinson's, and developmental defects. They share a common domain structure that includes an N-terminal SH3 domain, an unstructured substrate domain that contains many YxxP motifs, a serine-rich four-helix bundle, and a FAT-like C-terminal domain. Vertebrates contain four CAS proteins: BCAR1 (or p130Cas), NEDD9 (or HEF1), EFS (or SIN), and CASS4 (or HEPL). The SH3 domain of CAS proteins binds to diverse partners including FAK, FRNK, Pyk2, PTP-PEST, DOCK180, among others. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. Pssm-ID: 212778 Cd Length: 56 Bit Score: 37.33 E-value: 2.36e-03
|
||||||||||||||||||
SH3_Sorbs_2 | cd11782 | Second Src Homology 3 domain of Sorbin and SH3 domain containing (Sorbs) proteins and similar ... |
1085-1133 | 2.56e-03 | ||||||||||||||
Second Src Homology 3 domain of Sorbin and SH3 domain containing (Sorbs) proteins and similar domains; This family, also called the vinexin family, is composed predominantly of adaptor proteins containing one sorbin homology (SoHo) and three SH3 domains. Members include the second SH3 domains of Sorbs1 (or ponsin), Sorbs2 (or ArgBP2), Vinexin (or Sorbs3), and similar domains. They are involved in the regulation of cytoskeletal organization, cell adhesion, and growth factor signaling. Members of this family bind multiple partners including signaling molecules like c-Abl, c-Arg, Sos, and c-Cbl, as well as cytoskeletal molecules such as vinculin and afadin. They may have overlapping functions. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. Pssm-ID: 212716 [Multi-domain] Cd Length: 53 Bit Score: 37.33 E-value: 2.56e-03
|
||||||||||||||||||
SH3_CD2AP_2 | cd12054 | Second Src Homology 3 domain (SH3B) of CD2-associated protein; CD2AP, also called CMS (Cas ... |
1083-1114 | 2.67e-03 | ||||||||||||||
Second Src Homology 3 domain (SH3B) of CD2-associated protein; CD2AP, also called CMS (Cas ligand with Multiple SH3 domains) or METS1 (Mesenchyme-to-Epithelium Transition protein with SH3 domains), is a cytosolic adaptor protein that plays a role in regulating the cytoskeleton. It is critical in cell-to-cell union necessary for kidney function. It also stabilizes the contact between a T cell and antigen-presenting cells. It is primarily expressed in podocytes at the cytoplasmic face of the slit diaphragm and serves as a linker anchoring podocin and nephrin to the actin cytoskeleton. CD2AP contains three SH3 domains, a proline-rich region, and a C-terminal coiled-coil domain. All of these domains enable CD2AP to bind various protein partners and assemble complexes that have been implicated in many different functions. This alignment model represents the second SH3 domain (SH3B) of CD2AP. SH3B binds to c-Cbl in a site (TPSSRPLR is the core binding motif) distinct from the c-Cbl/SH3A binding site. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. Pssm-ID: 212987 [Multi-domain] Cd Length: 55 Bit Score: 37.25 E-value: 2.67e-03
|
||||||||||||||||||
SH3_Tks_2 | cd12016 | Second Src homology 3 domain of Tyrosine kinase substrate (Tks) proteins; Tks proteins are Src ... |
1083-1133 | 3.02e-03 | ||||||||||||||
Second Src homology 3 domain of Tyrosine kinase substrate (Tks) proteins; Tks proteins are Src substrates and scaffolding proteins that play important roles in the formation of podosomes and invadopodia, the dynamic actin-rich structures that are related to cell migration and cancer cell invasion. Vertebrates contain two Tks proteins, Tks4 (Tyr kinase substrate with four SH3 domains) and Tks5 (Tyr kinase substrate with five SH3 domains), which display partially overlapping but non-redundant functions. Both associate with the ADAMs family of transmembrane metalloproteases, which function as sheddases and mediators of cell and matrix interactions. Tks5 interacts with N-WASP and Nck, while Tks4 is essential for the localization of MT1-MMP (membrane-type 1 matrix metalloproteinase) to invadopodia. Tks proteins contain an N-terminal Phox homology (PX) domain and four or five SH3 domains. This model characterizes the second SH3 domain of Tks proteins. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. Pssm-ID: 212949 Cd Length: 54 Bit Score: 37.05 E-value: 3.02e-03
|
||||||||||||||||||
SH3_Tks4_4 | cd12018 | Fourth (C-terminal) Src homology 3 domain of Tyrosine kinase substrate with four SH3 domains; ... |
1086-1132 | 3.03e-03 | ||||||||||||||
Fourth (C-terminal) Src homology 3 domain of Tyrosine kinase substrate with four SH3 domains; Tks4, also called SH3 and PX domain-containing protein 2B (SH3PXD2B) or HOFI, is a Src substrate and scaffolding protein that plays an important role in the formation of podosomes and invadopodia, the dynamic actin-rich structures that are related to cell migration and cancer cell invasion. It is required in the formation of functional podosomes, EGF-induced membrane ruffling, and lamellipodia generation. It plays an important role in cellular attachment and cell spreading. Tks4 is essential for the localization of MT1-MMP (membrane-type 1 matrix metalloproteinase) to invadopodia. It contains an N-terminal Phox homology (PX) domain and four SH3 domains. This model characterizes the fourth (C-terminal) SH3 domain of Tks4. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. Pssm-ID: 212951 Cd Length: 56 Bit Score: 37.18 E-value: 3.03e-03
|
||||||||||||||||||
SH3_GRB2_C | cd11949 | C-terminal Src homology 3 domain of Growth factor receptor-bound protein 2; GRB2 is a critical ... |
1084-1114 | 3.18e-03 | ||||||||||||||
C-terminal Src homology 3 domain of Growth factor receptor-bound protein 2; GRB2 is a critical signaling molecule that regulates the Ras pathway by linking tyrosine kinases to the Ras guanine nucleotide releasing protein Sos (son of sevenless), which converts Ras to the active GTP-bound state. It is ubiquitously expressed in all tissues throughout development and is important in cell cycle progression, motility, morphogenesis, and angiogenesis. In lymphocytes, GRB2 is associated with antigen receptor signaling components. GRB2 contains an N-terminal SH3 domain, a central SH2 domain, and a C-terminal SH3 domain. The C-terminal SH3 domain of GRB2 binds to Gab2 (Grb2-associated binder 2) through epitopes containing RxxK motifs, as well as to the proline-rich C-terminus of FGRF2. SH3 domains are protein interaction domains that typically bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. Pssm-ID: 212882 [Multi-domain] Cd Length: 53 Bit Score: 37.13 E-value: 3.18e-03
|
||||||||||||||||||
SH3_Alpha_Spectrin | cd11808 | Src homology 3 domain of Alpha Spectrin; Spectrin is a major structural component of the red ... |
1083-1133 | 4.12e-03 | ||||||||||||||
Src homology 3 domain of Alpha Spectrin; Spectrin is a major structural component of the red blood cell membrane skeleton and is important in erythropoiesis and membrane biogenesis. It is a flexible, rope-like molecule composed of two subunits, alpha and beta, which consist of many spectrin-type repeats. Alpha and beta spectrin associate to form heterodimers and tetramers; spectrin tetramer formation is critical for red cell shape and deformability. Defects in alpha spectrin have been associated with inherited hemolytic anemias including hereditary spherocytosis (HSp), hereditary elliptocytosis (HE), and hereditary pyropoikilocytosis (HPP). Alpha spectrin contains a middle SH3 domain and a C-terminal EF-hand binding motif in addition to multiple spectrin repeats. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. Pssm-ID: 212742 [Multi-domain] Cd Length: 53 Bit Score: 36.69 E-value: 4.12e-03
|
||||||||||||||||||
SH3_Cortactin_like | cd11819 | Src homology 3 domain of Cortactin and related proteins; This subfamily includes cortactin, ... |
1083-1133 | 4.40e-03 | ||||||||||||||
Src homology 3 domain of Cortactin and related proteins; This subfamily includes cortactin, Abp1 (actin-binding protein 1), hematopoietic lineage cell-specific protein 1 (HS1), and similar proteins. These proteins are involved in regulating actin dynamics through direct or indirect interaction with the Arp2/3 complex, which is required to initiate actin polymerization. They all contain at least one C-terminal SH3 domain. Cortactin and HS1 bind Arp2/3 and actin through an N-terminal region that contains an acidic domain and several copies of a repeat domain found in cortactin and HS1. Abp1 binds actin via an N-terminal actin-depolymerizing factor (ADF) homology domain. Yeast Abp1 binds Arp2/3 directly through two acidic domains. Mammalian Abp1 does not directly interact with Arp2/3; instead, it regulates actin dynamics indirectly by interacting with dynamin and WASP family proteins. The C-terminal region of these proteins acts as an adaptor or scaffold that can connect membrane trafficking and signaling proteins that bind the SH3 domain within the actin network. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. Pssm-ID: 212753 [Multi-domain] Cd Length: 54 Bit Score: 36.52 E-value: 4.40e-03
|
||||||||||||||||||
SH3_SH3RF3_3 | cd11925 | Third Src Homology 3 domain of SH3 domain containing ring finger 3, an E3 ubiquitin-protein ... |
1084-1132 | 5.76e-03 | ||||||||||||||
Third Src Homology 3 domain of SH3 domain containing ring finger 3, an E3 ubiquitin-protein ligase; SH3RF3 is also called POSH2 (Plenty of SH3s 2) or SH3MD4 (SH3 multiple domains protein 4). It is a scaffold protein with E3 ubiquitin-protein ligase activity. It was identified in the screen for interacting partners of p21-activated kinase 2 (PAK2). It may play a role in regulating JNK mediated apoptosis in certain conditions. It also interacts with GTP-loaded Rac1. SH3RF3 is highly homologous to SH3RF1; it also contains an N-terminal RING finger domain and four SH3 domains. This model represents the third SH3 domain, located in the middle, of SH3RF3. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. Pssm-ID: 212858 Cd Length: 57 Bit Score: 36.51 E-value: 5.76e-03
|
||||||||||||||||||
SH3_Intersectin1_5 | cd11995 | Fifth Src homology 3 domain (or SH3E) of Intersectin-1; Intersectin-1 (ITSN1) is an adaptor ... |
1084-1114 | 5.89e-03 | ||||||||||||||
Fifth Src homology 3 domain (or SH3E) of Intersectin-1; Intersectin-1 (ITSN1) is an adaptor protein that functions in exo- and endocytosis, actin cytoskeletal reorganization, and signal transduction. It plays a role in clathrin-coated pit (CCP) formation. It binds to many proteins through its multidomain structure and facilitate the assembly of multimeric complexes. ITSN1 localizes in membranous organelles, CCPs, the Golgi complex, and may be involved in the cell membrane trafficking system. It exists in alternatively spliced short and long isoforms. The short isoform contains two Eps15 homology domains (EH1 and EH2), a coiled-coil region and five SH3 domains (SH3A-E), while the long isoform, in addition, contains RhoGEF (also called Dbl-homologous or DH), Pleckstrin homology (PH) and C2 domains. The fifth SH3 domain (or SH3E) of ITSN1 has been shown to bind many protein partners including SGIP1, Sos1, dynamin1/2, CIN85, c-Cbl, SHIP2, N-WASP, and synaptojanin-1, among others. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. Pssm-ID: 212928 [Multi-domain] Cd Length: 54 Bit Score: 36.09 E-value: 5.89e-03
|
||||||||||||||||||
SH3_Intersectin_1 | cd11836 | First Src homology 3 domain (or SH3A) of Intersectin; Intersectins (ITSNs) are adaptor ... |
1083-1133 | 6.06e-03 | ||||||||||||||
First Src homology 3 domain (or SH3A) of Intersectin; Intersectins (ITSNs) are adaptor proteins that function in exo- and endocytosis, actin cytoskeletal reorganization, and signal transduction. They are essential for initiating clathrin-coated pit formation. They bind to many proteins through their multidomain structure and facilitate the assembly of multimeric complexes. Vertebrates contain two ITSN proteins, ITSN1 and ITSN2, which exist in alternatively spliced short and long isoforms. The short isoforms contain two Eps15 homology domains (EH1 and EH2), a coiled-coil region and five SH3 domains (SH3A-E), while the long isoforms, in addition, contain RhoGEF (also called Dbl-homologous or DH), Pleckstrin homology (PH) and C2 domains. ITSN1 and ITSN2 are both widely expressed, with variations depending on tissue type and stage of development. The first SH3 domain (or SH3A) of ITSN1 has been shown to bind many proteins including Sos1, dynamin1/2, CIN85, c-Cbl, PI3K-C2, SHIP2, N-WASP, and CdGAP, among others. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. Pssm-ID: 212770 [Multi-domain] Cd Length: 55 Bit Score: 36.18 E-value: 6.06e-03
|
||||||||||||||||||
SH3_Vinexin_3 | cd11918 | Third (or C-terminal) Src Homology 3 domain of Vinexin, also called Sorbin and SH3 domain ... |
1084-1132 | 6.25e-03 | ||||||||||||||
Third (or C-terminal) Src Homology 3 domain of Vinexin, also called Sorbin and SH3 domain containing 3 (Sorbs3); Vinexin is also called Sorbs3, SH3P3, and SH3-containing adapter molecule 1 (SCAM-1). It is an adaptor protein containing one sorbin homology (SoHo) and three SH3 domains. Vinexin was first identified as a vinculin binding protein; it is co-localized with vinculin at cell-ECM and cell-cell adhesion sites. There are several splice variants of vinexin: alpha, which contains the SoHo and three SH3 domains and displays tissue-specific expression; and beta, which contains only the three SH3 domains and is widely expressed. Vinexin alpha stimulates the accumulation of F-actin at focal contact sites. Vinexin also promotes keratinocyte migration and wound healing. The SH3 domains of vinexin have been reported to bind a number of ligands including vinculin, WAVE2, DLG5, Abl, and Cbl. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. Pssm-ID: 212851 [Multi-domain] Cd Length: 58 Bit Score: 36.47 E-value: 6.25e-03
|
||||||||||||||||||
SH3_p47phox_2 | cd12022 | Second or C-terminal Src homology 3 domain of the p47phox subunit of NADPH oxidase, also ... |
1086-1134 | 8.12e-03 | ||||||||||||||
Second or C-terminal Src homology 3 domain of the p47phox subunit of NADPH oxidase, also called Neutrophil Cytosolic Factor 1; p47phox, or NCF1, is a cytosolic subunit of the phagocytic NADPH oxidase complex (also called Nox2 or gp91phox), which plays a key role in the ability of phagocytes to defend against bacterial infections. NADPH oxidase catalyzes the transfer of electrons from NADPH to oxygen during phagocytosis forming superoxide and reactive oxygen species. p47phox is required for activation of NADH oxidase and plays a role in translocation. It contains an N-terminal Phox homology (PX) domain, tandem SH3 domains (N-SH3 and C-SH3), a polybasic/autoinhibitory region, and a C-terminal proline-rich region (PRR). This model characterizes the second SH3 domain (or C-SH3) of p47phox. In its inactive state, the tandem SH3 domains interact intramolecularly with the autoinhibitory region; upon activation, the tandem SH3 domains are exposed through a conformational change, resulting in their binding to the PRR of p22phox and the activation of NADPH oxidase. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. Pssm-ID: 212955 [Multi-domain] Cd Length: 53 Bit Score: 35.97 E-value: 8.12e-03
|
||||||||||||||||||
SH3_Sla1p_1 | cd11773 | First Src Homology 3 domain of the fungal endocytic adaptor protein Sla1p; Sla1p facilitates ... |
1083-1117 | 8.27e-03 | ||||||||||||||
First Src Homology 3 domain of the fungal endocytic adaptor protein Sla1p; Sla1p facilitates endocytosis by playing a role as an adaptor protein in coupling components of the actin cytoskeleton to the endocytic machinery. It interacts with Abp1p, Las17p and Pan1p, which are activator proteins of actin-related protein 2/3 (Arp2/3). Sla1p contains multiple domains including three SH3 domains, a SAM (sterile alpha motif) domain, and a Sla1 homology domain 1 (SHD1), which binds to the NPFXD motif that is found in many integral membrane proteins such as the Golgi-localized Arf-binding protein Lsb5p and the P4-ATPases, Drs2p and Dnf1p. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. Pssm-ID: 212707 [Multi-domain] Cd Length: 57 Bit Score: 35.86 E-value: 8.27e-03
|
||||||||||||||||||
SH3_Bzz1_2 | cd11778 | Second Src Homology 3 domain of Bzz1 and similar domains; Bzz1 (or Bzz1p) is a WASP ... |
1083-1113 | 8.72e-03 | ||||||||||||||
Second Src Homology 3 domain of Bzz1 and similar domains; Bzz1 (or Bzz1p) is a WASP/Las17-interacting protein involved in endocytosis and trafficking to the vacuole. It physically interacts with type I myosins and functions in the early steps of endocytosis. Together with other proteins, it induces membrane scission in yeast. Bzz1 contains an N-terminal F-BAR (FES-CIP4 Homology and Bin/Amphiphysin/Rvs), a central coiled-coil, and two C-terminal SH3 domains. This model represents the second C-terminal SH3 domain. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. Pssm-ID: 212712 [Multi-domain] Cd Length: 51 Bit Score: 35.55 E-value: 8.72e-03
|
||||||||||||||||||
SH3_SH3YL1_like | cd11841 | Src homology 3 domain of SH3 domain containing Ysc84-like 1 (SH3YL1) protein; SH3YL1 localizes ... |
1084-1114 | 9.45e-03 | ||||||||||||||
Src homology 3 domain of SH3 domain containing Ysc84-like 1 (SH3YL1) protein; SH3YL1 localizes to the plasma membrane and is required for dorsal ruffle formation. It binds phosphoinositides (PIs) with high affinity through its N-terminal SYLF domain (also called DUF500). In addition, SH3YL1 contains a C-terminal SH3 domain which has been reported to bind to N-WASP, dynamin 2, and SHIP2 (a PI 5-phosphatase). SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. Pssm-ID: 212775 Cd Length: 54 Bit Score: 35.45 E-value: 9.45e-03
|
||||||||||||||||||
SH3_EFS | cd12003 | Src homology 3 domain of CAS (Crk-Associated Substrate) scaffolding protein family member, ... |
1084-1116 | 9.85e-03 | ||||||||||||||
Src homology 3 domain of CAS (Crk-Associated Substrate) scaffolding protein family member, Embryonal Fyn-associated Substrate; EFS is also called HEFS, CASS3 (Cas scaffolding protein family member 3) or SIN (Src-interacting protein). It was identified based on interactions with the Src kinases, Fyn and Yes. It plays a role in thymocyte development and acts as a negative regulator of T cell proliferation. CAS proteins function as molecular scaffolds to regulate protein complexes that are involved in many cellular processes. They share a common domain structure that includes an N-terminal SH3 domain, an unstructured substrate domain that contains many YxxP motifs, a serine-rich four-helix bundle, and a FAT-like C-terminal domain. The SH3 domain of CAS proteins binds to diverse partners including FAK, FRNK, Pyk2, PTP-PEST, DOCK180, among others. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. Pssm-ID: 212936 Cd Length: 62 Bit Score: 36.02 E-value: 9.85e-03
|
||||||||||||||||||
Blast search parameters | ||||
|