Mannosylfructose-phosphate phosphatase [Candidatus Brocadiaceae bacterium]
HAD family hydrolase( domain architecture ID 229399)
HAD (haloacid dehalogenase) family hydrolase; the HAD family includes phosphoesterases, ATPases, phosphonatases, dehalogenases, and sugar phosphomutases acting on a remarkably diverse set of substrates
List of domain hits
Name | Accession | Description | Interval | E-value | |||||
HAD_like super family | cl21460 | Haloacid Dehalogenase-like Hydrolases; The haloacid dehalogenase (HAD) superfamily includes ... |
5-264 | 3.22e-64 | |||||
Haloacid Dehalogenase-like Hydrolases; The haloacid dehalogenase (HAD) superfamily includes carbon and phosphorus hydrolases such as 2-haloalkonoate dehalogenase, epoxide hydrolase, phosphoserine phosphatase, phosphomannomutase, phosphoglycolate phosphatase, P-type ATPase, among others. These proteins catalyze nucleophilic substitution reactions at phosphorus or carbon centers, using a conserved Asp carboxylate in covalent catalysis. All members possess a conserve alpha/beta core domain, and many also possess a small cap domain, with varying folds and functions. The actual alignment was detected with superfamily member cd02605: Pssm-ID: 473868 [Multi-domain] Cd Length: 245 Bit Score: 201.81 E-value: 3.22e-64
|
|||||||||
Name | Accession | Description | Interval | E-value | |||||
HAD_SPP | cd02605 | sucrose-phosphatase, similar to Synechocystis sp PCC 6803 SPP; Sucrose-phosphatase (SPP; EC 3. ... |
5-264 | 3.22e-64 | |||||
sucrose-phosphatase, similar to Synechocystis sp PCC 6803 SPP; Sucrose-phosphatase (SPP; EC 3.1.3.24) catalyzes the dephosphorylation of sucrose-6(F)-phosphate (Suc6P)-the final step in the pathway of sucrose biosynthesis in plants and cyanobacteria. This family belongs to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. Pssm-ID: 319792 [Multi-domain] Cd Length: 245 Bit Score: 201.81 E-value: 3.22e-64
|
|||||||||
S6PP | pfam05116 | Sucrose-6F-phosphate phosphohydrolase; This family consists of Sucrose-6F-phosphate ... |
2-265 | 6.60e-59 | |||||
Sucrose-6F-phosphate phosphohydrolase; This family consists of Sucrose-6F-phosphate phosphohydrolase proteins found in plants and cyanobacteria. Sucrose-6(F)-phosphate phosphohydrolase catalyzes the final step in the pathway of sucrose biosynthesis. Pssm-ID: 428314 [Multi-domain] Cd Length: 246 Bit Score: 187.86 E-value: 6.60e-59
|
|||||||||
Cof | COG0561 | Hydroxymethylpyrimidine pyrophosphatase and other HAD family phosphatases [Coenzyme transport ... |
1-264 | 2.63e-30 | |||||
Hydroxymethylpyrimidine pyrophosphatase and other HAD family phosphatases [Coenzyme transport and metabolism, General function prediction only]; Pssm-ID: 440327 [Multi-domain] Cd Length: 192 Bit Score: 112.54 E-value: 2.63e-30
|
|||||||||
SPP_plant-cyano | TIGR01485 | sucrose-6F-phosphate phosphohydrolase; This model describes the sucrose phosphate ... |
3-264 | 6.97e-27 | |||||
sucrose-6F-phosphate phosphohydrolase; This model describes the sucrose phosphate phosphohydrolase from plants and cyanobacteria (SPP). SPP is a member of the Class IIB subfamily (TIGR01484) of the Haloacid Dehalogenase (HAD) superfamily of aspartate-nucleophile hydrolases. SPP catalyzes the final step in the biosynthesis of sucrose, a critically important molecule for plants. Sucrose phosphate synthase (SPS), the prior step in the biosynthesis of sucrose, contains a domain which exhibits considerable similarity to SPP albeit without conservation of the catalytic residues. The catalytic machinery of the synthase resides in another domain. It seems likely that the phosphatase-like domain is involved in substrate binding, possibly binding both substrates in a "product-like" orientation prior to ligation by the synthase catalytic domain. Pssm-ID: 130549 Cd Length: 249 Bit Score: 104.89 E-value: 6.97e-27
|
|||||||||
PLN02382 | PLN02382 | probable sucrose-phosphatase |
2-264 | 2.74e-22 | |||||
probable sucrose-phosphatase Pssm-ID: 178008 [Multi-domain] Cd Length: 413 Bit Score: 95.44 E-value: 2.74e-22
|
|||||||||
Name | Accession | Description | Interval | E-value | |||||
HAD_SPP | cd02605 | sucrose-phosphatase, similar to Synechocystis sp PCC 6803 SPP; Sucrose-phosphatase (SPP; EC 3. ... |
5-264 | 3.22e-64 | |||||
sucrose-phosphatase, similar to Synechocystis sp PCC 6803 SPP; Sucrose-phosphatase (SPP; EC 3.1.3.24) catalyzes the dephosphorylation of sucrose-6(F)-phosphate (Suc6P)-the final step in the pathway of sucrose biosynthesis in plants and cyanobacteria. This family belongs to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. Pssm-ID: 319792 [Multi-domain] Cd Length: 245 Bit Score: 201.81 E-value: 3.22e-64
|
|||||||||
S6PP | pfam05116 | Sucrose-6F-phosphate phosphohydrolase; This family consists of Sucrose-6F-phosphate ... |
2-265 | 6.60e-59 | |||||
Sucrose-6F-phosphate phosphohydrolase; This family consists of Sucrose-6F-phosphate phosphohydrolase proteins found in plants and cyanobacteria. Sucrose-6(F)-phosphate phosphohydrolase catalyzes the final step in the pathway of sucrose biosynthesis. Pssm-ID: 428314 [Multi-domain] Cd Length: 246 Bit Score: 187.86 E-value: 6.60e-59
|
|||||||||
Cof | COG0561 | Hydroxymethylpyrimidine pyrophosphatase and other HAD family phosphatases [Coenzyme transport ... |
1-264 | 2.63e-30 | |||||
Hydroxymethylpyrimidine pyrophosphatase and other HAD family phosphatases [Coenzyme transport and metabolism, General function prediction only]; Pssm-ID: 440327 [Multi-domain] Cd Length: 192 Bit Score: 112.54 E-value: 2.63e-30
|
|||||||||
SPP_plant-cyano | TIGR01485 | sucrose-6F-phosphate phosphohydrolase; This model describes the sucrose phosphate ... |
3-264 | 6.97e-27 | |||||
sucrose-6F-phosphate phosphohydrolase; This model describes the sucrose phosphate phosphohydrolase from plants and cyanobacteria (SPP). SPP is a member of the Class IIB subfamily (TIGR01484) of the Haloacid Dehalogenase (HAD) superfamily of aspartate-nucleophile hydrolases. SPP catalyzes the final step in the biosynthesis of sucrose, a critically important molecule for plants. Sucrose phosphate synthase (SPS), the prior step in the biosynthesis of sucrose, contains a domain which exhibits considerable similarity to SPP albeit without conservation of the catalytic residues. The catalytic machinery of the synthase resides in another domain. It seems likely that the phosphatase-like domain is involved in substrate binding, possibly binding both substrates in a "product-like" orientation prior to ligation by the synthase catalytic domain. Pssm-ID: 130549 Cd Length: 249 Bit Score: 104.89 E-value: 6.97e-27
|
|||||||||
PLN02382 | PLN02382 | probable sucrose-phosphatase |
2-264 | 2.74e-22 | |||||
probable sucrose-phosphatase Pssm-ID: 178008 [Multi-domain] Cd Length: 413 Bit Score: 95.44 E-value: 2.74e-22
|
|||||||||
SPP-subfamily | TIGR01482 | sucrose-phosphate phosphatase subfamily; This model includes both the members of the SPP ... |
6-240 | 1.32e-17 | |||||
sucrose-phosphate phosphatase subfamily; This model includes both the members of the SPP equivalog model (TIGR01485), encompassing plants and cyanobacteria, as well as those archaeal sequences which are the closest relatives (TIGR01487). It remains to be shown whether these archaeal sequences catalyze the same reaction as SPP. Pssm-ID: 273650 [Multi-domain] Cd Length: 225 Bit Score: 79.43 E-value: 1.32e-17
|
|||||||||
Hydrolase_3 | pfam08282 | haloacid dehalogenase-like hydrolase; This family contains haloacid dehalogenase-like ... |
6-230 | 4.25e-16 | |||||
haloacid dehalogenase-like hydrolase; This family contains haloacid dehalogenase-like hydrolase enzymes. Pssm-ID: 429897 [Multi-domain] Cd Length: 255 Bit Score: 75.74 E-value: 4.25e-16
|
|||||||||
HAD-SF-IIB | TIGR01484 | HAD-superfamily hydrolase, subfamily IIB; This subfamily falls within the Haloacid ... |
5-210 | 1.41e-15 | |||||
HAD-superfamily hydrolase, subfamily IIB; This subfamily falls within the Haloacid Dehalogenase (HAD) superfamily of aspartate-nucleophile hydrolases. The Class II subfamilies are characterized by a domain that is located between the second and third conserved catalytic motifs of the superfamily domain. The IIB subfamily is distinguished from the IIA subfamily (TIGR01460) by homology and the predicted secondary structure of this domain by PSI-PRED. The IIB subfamily's Class II domain has the following predicted structure: Helix-Sheet-Sheet-(Helix or Sheet)-Helix-Sheet-(variable)-Helix-Sheet-Sheet. The IIB subfamily consists of Trehalose-6-phosphatase (TIGR00685), plant and cyanobacterial Sucrose-phosphatase and a closely related group of bacterial and archaeal sequences, eukaryotic phosphomannomutase (pfam03332), a large subfamily ("Cof-like hydrolases", TIGR00099) containing many closely related bacterial sequences, a hypothetical equivalog containing the E. coli YedP protein, as well as two small clusters containing OMNI|TC0379 and OMNI|SA2196 whose relationship to the other groups is unclear. [Unknown function, Enzymes of unknown specificity] Pssm-ID: 273651 [Multi-domain] Cd Length: 207 Bit Score: 73.57 E-value: 1.41e-15
|
|||||||||
Cof-subfamily | TIGR00099 | Cof subfamily of IIB subfamily of haloacid dehalogenase superfamily; This subfamily of ... |
5-230 | 2.89e-10 | |||||
Cof subfamily of IIB subfamily of haloacid dehalogenase superfamily; This subfamily of sequences falls within the Class-IIB subfamily (TIGR01484) of the Haloacid Dehalogenase superfamily of aspartate-nucleophile hydrolases. The use of the name "Cof" as an identifier here is arbitrary and refers to the E. coli Cof protein. This subfamily is notable for the large number of recent paralogs in many species. Listeria, for instance, has 12, Clostridium, Lactococcus and Streptococcus pneumoniae have 8 each, Enterococcus and Salmonella have 7 each, and Bacillus subtilus, Mycoplasma, Staphylococcus and E. coli have 6 each. This high degree of gene duplication is limited to the gamma proteobacteria and low-GC gram positive lineages. The profusion of genes in this subfamily is not coupled with a high degree of divergence, so it is impossible to determine an accurate phylogeny at the equivalog level. Considering the relationship of this subfamily to the other known members of the HAD-IIB subfamily (TIGR01484), sucrose and trehalose phosphatases and phosphomannomutase, it seems a reasonable hypothesis that these enzymes act on phosphorylated sugars. Possibly the diversification of genes in this subfamily represents the diverse sugars and polysaccharides that various bacteria find in their biological niches. The members of this subfamily are restricted almost exclusively to bacteria (one sequences from S. pombe scores above trusted, while another is between trusted and noise). It is notable that no archaea are found in this group, the closest relations to the archaea found here being two Deinococcus sequences. [Unknown function, Enzymes of unknown specificity] Pssm-ID: 272905 [Multi-domain] Cd Length: 256 Bit Score: 59.20 E-value: 2.89e-10
|
|||||||||
HAD_Pase | cd07516 | phosphatase, similar to Escherichia coli Cof and Thermotoga maritima TM0651; belongs to the ... |
5-231 | 3.08e-09 | |||||
phosphatase, similar to Escherichia coli Cof and Thermotoga maritima TM0651; belongs to the haloacid dehalogenase-like superfamily; Escherichia coli Cof is involved in the hydrolysis of HMP-PP (4-amino-2-methyl-5-hydroxymethylpyrimidine pyrophosphate, an intermediate in thiamin biosynthesis), Cof also has phosphatase activity against the coenzymes pyridoxal phosphate (PLP) and FMN. Thermotoga maritima TM0651 acts as a phosphatase with a phosphorylated carbohydrate molecule as a possible substrate. Escherichia coli YbhA is also a member of this family and catalyzes the dephosphorylation of PLP, YbhA can also hydrolyze erythrose-4-phosphate and fructose-1,6-bis-phosphate. Members of this family belong to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. Pssm-ID: 319818 [Multi-domain] Cd Length: 253 Bit Score: 56.06 E-value: 3.08e-09
|
|||||||||
HAD_YbiV-Like | cd07518 | Escherichia coli YbiV sugar phosphatase/phosphotransferase and related proteins; belongs to ... |
5-236 | 5.32e-09 | |||||
Escherichia coli YbiV sugar phosphatase/phosphotransferase and related proteins; belongs to the haloacid dehalogenase-like superfamily; Escherichia coli YbiV can act as both a sugar phosphatase and as a phosphotransferase. Members of this family belong to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. Pssm-ID: 319820 [Multi-domain] Cd Length: 184 Bit Score: 54.51 E-value: 5.32e-09
|
|||||||||
SerB | COG0560 | Phosphoserine phosphatase [Amino acid transport and metabolism]; Phosphoserine phosphatase is ... |
169-235 | 5.63e-05 | |||||
Phosphoserine phosphatase [Amino acid transport and metabolism]; Phosphoserine phosphatase is part of the Pathway/BioSystem: Serine biosynthesis Pssm-ID: 440326 [Multi-domain] Cd Length: 221 Bit Score: 43.29 E-value: 5.63e-05
|
|||||||||
HAD_TPP | cd01627 | trehalose-phosphate phosphatase similar to Escherichia coli trehalose-6-phosphate phosphatase ... |
4-202 | 1.38e-04 | |||||
trehalose-phosphate phosphatase similar to Escherichia coli trehalose-6-phosphate phosphatase OtsB and Saccharomyces cerevisiae trehalose-phosphatase TPS2; Trehalose biosynthesis in bacteria is known through three pathways - OtsAB, TreYZ and TreS. The OtsAB pathway, also known as the trehalose 6-phosphate synthase (TSP)/ Trehalose-6-phosphate phosphatase (TPP) pathway, is the most common route known to be involved in the stress response of Escherichia coli. It involves converting glucose-6-phosphate and UDP-glucose to form trehalose-6-phosphate (T6P), catalyzed by TPS, the product of the otsA gene, this step is followed by the dephosphorylation of T6P to yield trehalose and inorganic phosphate, catalyzed by a specific TPP, the product of otsB gene. This OtsAB (or TSP/TPP) pathway, is also the most common route known to be involved in the stress response of yeast In Saccharomyces cerevisiae, the corresponding enzymes, TPS1p and TPS2p, form a multimeric synthase complex together with additional regulatory subunits encoded by Tsl1 and Tps3. Trehalose is a common disaccharide accumulated by organisms as a reservation of carbohydrate and in response to unfavorable growth conditions. This family belongs to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. Pssm-ID: 319767 [Multi-domain] Cd Length: 228 Bit Score: 42.28 E-value: 1.38e-04
|
|||||||||
HAD_KDO-like | cd01630 | haloacid dehalogenase-like (HAD) hydrolase, similar to Escherichia coli ... |
164-231 | 1.54e-04 | |||||
haloacid dehalogenase-like (HAD) hydrolase, similar to Escherichia coli 3-deoxy-D-manno-octulosonate 8-phosphate (KDO 8-P) phosphatase KdsC, and rainbow trout N-acylneuraminate cytidylyltransferase; KDO 8-P phosphatase catalyzes the hydrolysis of KDO 8-P to KDO (3-deoxy-D-manno-octulosonate) and inorganic phosphate and is the last enzyme in the KDO biosynthetic pathway. KDO is an 8-carbon sugar that links the lipid A and polysaccharide moieties of the lipopolysaccharide region in Gram-negative bacteria. An interruption in KDO biosynthesis leads to the accumulation of lipid A precursors and subsequent arrest in cell growth. The KDO biosynthesis pathway involves five sequential enzymatic reactions. This family also includes rainbow trout CMP-sialic acid synthetase which effectively converts both deaminoneuraminic acid (KDN, 2-keto-3-deoxy-D-glycero-D-galacto-nononic acid) and N-acetylneuraminic acid (Neu5Ac) to CMP-KDN and CMP-Neu5Ac, respectively. This family belongs to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. Pssm-ID: 319769 [Multi-domain] Cd Length: 146 Bit Score: 40.97 E-value: 1.54e-04
|
|||||||||
Pglycolate_arch | TIGR01487 | phosphoglycolate phosphatase, TA0175-type; This group of Archaeal sequences, now known to be ... |
172-230 | 5.63e-04 | |||||
phosphoglycolate phosphatase, TA0175-type; This group of Archaeal sequences, now known to be phosphoglycolate phosphatases, is most closely related to the sucrose-phosphate phosphatases from plants and cyanobacteria (TIGR01485). Together, these two models comprise a subfamily model (TIGR01482). TIGR01482, in turn, is a member of the IIB subfamily (TIGR01484) of the Haloacid Dehalogenase (HAD) superfamily of aspartate-nucleophile hydrolases. Pssm-ID: 273652 [Multi-domain] Cd Length: 215 Bit Score: 40.11 E-value: 5.63e-04
|
|||||||||
HAD_Pase | cd07514 | phosphatase, similar to Thermoplasma acidophilum TA0175 phosphoglycolate phosphatase (PCPase), ... |
178-264 | 3.75e-03 | |||||
phosphatase, similar to Thermoplasma acidophilum TA0175 phosphoglycolate phosphatase (PCPase), and Pyrococcus horikoshii PH1421, a magnesium-dependent phosphatase; belongs to the haloacid dehalogenase-like superfamily; Thermoplasma acidophilum TA0175 phosphoglycolate phosphatase (PGPase) catalyzes the magnesium-dependent dephosphorylation of phosphoglycolate. This family also includes Pyrococcus horikoshii OT3 PH1421, a magnesium-dependent phosphatase. This family belongs to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. Pssm-ID: 319816 [Multi-domain] Cd Length: 139 Bit Score: 36.80 E-value: 3.75e-03
|
|||||||||
PRK01158 | PRK01158 | phosphoglycolate phosphatase; Provisional |
158-230 | 7.79e-03 | |||||
phosphoglycolate phosphatase; Provisional Pssm-ID: 234910 [Multi-domain] Cd Length: 230 Bit Score: 36.87 E-value: 7.79e-03
|
|||||||||
Blast search parameters | ||||
|