dioxygenase (plasmid) [Cupriavidus pauculus]
VOC family protein( domain architecture ID 10007568)
vicinal oxygen chelate (VOC) family protein uses a metal center to coordinate a substrate, intermediate, or transition state through vicinal oxygen atoms
List of domain hits
Name | Accession | Description | Interval | E-value | |||
COG3565 | COG3565 | Predicted dioxygenase of extradiol dioxygenase family [General function prediction only]; |
1-137 | 9.33e-83 | |||
Predicted dioxygenase of extradiol dioxygenase family [General function prediction only]; : Pssm-ID: 442786 Cd Length: 139 Bit Score: 238.92 E-value: 9.33e-83
|
|||||||
Name | Accession | Description | Interval | E-value | |||
COG3565 | COG3565 | Predicted dioxygenase of extradiol dioxygenase family [General function prediction only]; |
1-137 | 9.33e-83 | |||
Predicted dioxygenase of extradiol dioxygenase family [General function prediction only]; Pssm-ID: 442786 Cd Length: 139 Bit Score: 238.92 E-value: 9.33e-83
|
|||||||
VOC_like | cd08357 | uncharacterized subfamily of vicinal oxygen chelate (VOC) familyprotein, glyoxalase I, and ... |
5-128 | 6.42e-65 | |||
uncharacterized subfamily of vicinal oxygen chelate (VOC) familyprotein, glyoxalase I, and type I ring-cleaving dioxygenases; The vicinal oxygen chelate (VOC) superfamily is composed of structurally related proteins with paired beta.alpha.beta.beta.beta motifs that provide a metal coordination environment with two or three open or readily accessible coordination sites to promote direct electrophilic participation of the metal ion in catalysis. VOC domain is found in a variety of structurally related metalloproteins, including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. A bound metal ion is required for protein activities for the members of this superfamily. A variety of metal ions have been found in the catalytic centers of these proteins including Fe(II), Mn(II), Zn(II), Ni(II) and Mg(II). The protein superfamily contains members with or without domain swapping. The proteins of this family share three conserved metal binding amino acids with the type I extradiol dioxygenases, which shows no domain swapping. Pssm-ID: 319945 [Multi-domain] Cd Length: 124 Bit Score: 193.37 E-value: 6.42e-65
|
|||||||
Glyoxalase | pfam00903 | Glyoxalase/Bleomycin resistance protein/Dioxygenase superfamily; |
6-125 | 1.60e-06 | |||
Glyoxalase/Bleomycin resistance protein/Dioxygenase superfamily; Pssm-ID: 395724 [Multi-domain] Cd Length: 121 Bit Score: 43.98 E-value: 1.60e-06
|
|||||||
Name | Accession | Description | Interval | E-value | |||
COG3565 | COG3565 | Predicted dioxygenase of extradiol dioxygenase family [General function prediction only]; |
1-137 | 9.33e-83 | |||
Predicted dioxygenase of extradiol dioxygenase family [General function prediction only]; Pssm-ID: 442786 Cd Length: 139 Bit Score: 238.92 E-value: 9.33e-83
|
|||||||
VOC_like | cd08357 | uncharacterized subfamily of vicinal oxygen chelate (VOC) familyprotein, glyoxalase I, and ... |
5-128 | 6.42e-65 | |||
uncharacterized subfamily of vicinal oxygen chelate (VOC) familyprotein, glyoxalase I, and type I ring-cleaving dioxygenases; The vicinal oxygen chelate (VOC) superfamily is composed of structurally related proteins with paired beta.alpha.beta.beta.beta motifs that provide a metal coordination environment with two or three open or readily accessible coordination sites to promote direct electrophilic participation of the metal ion in catalysis. VOC domain is found in a variety of structurally related metalloproteins, including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. A bound metal ion is required for protein activities for the members of this superfamily. A variety of metal ions have been found in the catalytic centers of these proteins including Fe(II), Mn(II), Zn(II), Ni(II) and Mg(II). The protein superfamily contains members with or without domain swapping. The proteins of this family share three conserved metal binding amino acids with the type I extradiol dioxygenases, which shows no domain swapping. Pssm-ID: 319945 [Multi-domain] Cd Length: 124 Bit Score: 193.37 E-value: 6.42e-65
|
|||||||
GloA | COG0346 | Catechol 2,3-dioxygenase or related enzyme, vicinal oxygen chelate (VOC) family [Secondary ... |
6-125 | 8.64e-12 | |||
Catechol 2,3-dioxygenase or related enzyme, vicinal oxygen chelate (VOC) family [Secondary metabolites biosynthesis, transport and catabolism]; Pssm-ID: 440115 [Multi-domain] Cd Length: 125 Bit Score: 58.08 E-value: 8.64e-12
|
|||||||
CatE | COG2514 | Catechol-2,3-dioxygenase [Secondary metabolites biosynthesis, transport and catabolism]; |
6-125 | 1.02e-11 | |||
Catechol-2,3-dioxygenase [Secondary metabolites biosynthesis, transport and catabolism]; Pssm-ID: 442004 [Multi-domain] Cd Length: 141 Bit Score: 58.43 E-value: 1.02e-11
|
|||||||
GLOD5 | cd07253 | Human glyoxalase domain-containing protein 5 and similar proteins; Uncharacterized subfamily ... |
6-127 | 1.64e-09 | |||
Human glyoxalase domain-containing protein 5 and similar proteins; Uncharacterized subfamily of VOC family contains human glyoxalase domain-containing protein 5 and similar proteins. The vicinal oxygen chelate (VOC) superfamily is composed of structurally related proteins with paired beta.alpha.beta.beta.beta motifs that provide a metal coordination environment with two or three open or readily accessible coordination sites to promote direct electrophilic participation of the metal ion in catalysis. VOC domain is found in a variety of structurally related metalloproteins, including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. A bound metal ion is required for protein activities for the members of this superfamily. A variety of metal ions have been found in the catalytic centers of these proteins including Fe(II), Mn(II), Zn(II), Ni(II) and Mg(II). The protein superfamily contains members with or without domain swapping. The proteins of this family share three conserved metal binding amino acids with the type I extradiol dioxygenases, which shows no domain swapping. Pssm-ID: 319916 [Multi-domain] Cd Length: 123 Bit Score: 52.23 E-value: 1.64e-09
|
|||||||
VOC | cd06587 | vicinal oxygen chelate (VOC) family; The vicinal oxygen chelate (VOC) superfamily is composed ... |
6-125 | 9.83e-08 | |||
vicinal oxygen chelate (VOC) family; The vicinal oxygen chelate (VOC) superfamily is composed of structurally related proteins with paired beta.alpha.beta.beta.beta motifs that provide a metal coordination environment with two or three open or readily accessible coordination sites to promote direct electrophilic participation of the metal ion in catalysis. VOC is found in a variety of structurally related metalloproteins, including the type I extradiol dioxygenases, glyoxalase I and a group of antibiotic resistance proteins. A bound metal ion is required for protein activities for the members of this superfamily. A variety of metal ions have been found in the catalytic centers of these proteins including Fe(II), Mn(II), Zn(II), Ni(II) and Mg(II). Type I extradiol dioxygenases catalyze the incorporation of both atoms of molecular oxygen into aromatic substrates, which results in the cleavage of aromatic rings. They are key enzymes in the degradation of aromatic compounds. Type I extradiol dioxygenases include class I and class II enzymes. Class I and II enzymes show sequence similarity; the two-domain class II enzymes evolved from a class I enzyme through gene duplication. Glyoxylase I catalyzes the glutathione-dependent inactivation of toxic methylglyoxal, requiring zinc or nickel ions for activity. The antibiotic resistance proteins in this family use a variety of mechanisms to block the function of antibiotics. Bleomycin resistance protein (BLMA) sequesters bleomycin's activity by directly binding to it. Whereas, three types of fosfomycin resistance proteins employ different mechanisms to render fosfomycin inactive by modifying the fosfomycin molecule. Although the proteins in this superfamily are functionally distinct, their structures are similar. The difference among the three dimensional structures of the three types of proteins in this superfamily is interesting from an evolutionary perspective. Both glyoxalase I and BLMA show domain swapping between subunits. However, there is no domain swapping for type 1 extradiol dioxygenases. Pssm-ID: 319898 [Multi-domain] Cd Length: 112 Bit Score: 47.13 E-value: 9.83e-08
|
|||||||
Glyoxalase | pfam00903 | Glyoxalase/Bleomycin resistance protein/Dioxygenase superfamily; |
6-125 | 1.60e-06 | |||
Glyoxalase/Bleomycin resistance protein/Dioxygenase superfamily; Pssm-ID: 395724 [Multi-domain] Cd Length: 121 Bit Score: 43.98 E-value: 1.60e-06
|
|||||||
VOC_like | cd07245 | uncharacterized subfamily of vicinal oxygen chelate (VOC) family; The vicinal oxygen chelate ... |
6-125 | 2.47e-06 | |||
uncharacterized subfamily of vicinal oxygen chelate (VOC) family; The vicinal oxygen chelate (VOC) superfamily is composed of structurally related proteins with paired beta.alpha.beta.beta.beta motifs that provide a metal coordination environment with two or three open or readily accessible coordination sites to promote direct electrophilic participation of the metal ion in catalysis. VOC domain is found in a variety of structurally related metalloproteins, including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. A bound metal ion is required for protein activities for the members of this superfamily. A variety of metal ions have been found in the catalytic centers of these proteins including Fe(II), Mn(II), Zn(II), Ni(II) and Mg(II). The protein superfamily contains members with or without domain swapping. The proteins of this family share three conserved metal binding amino acids with the type I extradiol dioxygenases, which shows no domain swapping. Pssm-ID: 319909 [Multi-domain] Cd Length: 117 Bit Score: 43.46 E-value: 2.47e-06
|
|||||||
VOC | COG3324 | Lactoylglutathione lyase-related enzyme, vicinal oxygen chelate (VOC) family [General function ... |
1-125 | 4.78e-06 | |||
Lactoylglutathione lyase-related enzyme, vicinal oxygen chelate (VOC) family [General function prediction only]; Pssm-ID: 442553 [Multi-domain] Cd Length: 119 Bit Score: 42.70 E-value: 4.78e-06
|
|||||||
VOC_ShValD_like | cd16361 | vicinal oxygen chelate (VOC) family protein similar to Streptomyces hygroscopicus ValD protein; ... |
3-125 | 8.39e-06 | |||
vicinal oxygen chelate (VOC) family protein similar to Streptomyces hygroscopicus ValD protein; This subfamily of vicinal oxygen chelate (VOC) family protein includes Streptomyces hygroscopicus ValD protein and similar proteins. ValD protein functions in validamycin biosynthetic pathway. The vicinal oxygen chelate (VOC) superfamily is composed of structurally related proteins with paired beta.alpha.beta.beta.beta motifs that provide a metal coordination environment with two or three open or readily accessible coordination sites to promote direct electrophilic participation of the metal ion in catalysis. VOC domain is found in a variety of structurally related metalloproteins, including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. A bound metal ion is required for protein activities for the members of this superfamily. A variety of metal ions have been found in the catalytic centers of these proteins including Fe(II), Mn(II), Zn(II), Ni(II) and Mg(II). The protein superfamily contains members with or without domain swapping. The proteins of this family share three conserved metal binding amino acids with the type I extradiol dioxygenases, which shows no domain swapping. Pssm-ID: 319968 Cd Length: 150 Bit Score: 42.70 E-value: 8.39e-06
|
|||||||
VOC_like | cd07262 | uncharacterized subfamily of vicinal oxygen chelate (VOC) family; The vicinal oxygen chelate ... |
6-125 | 1.04e-04 | |||
uncharacterized subfamily of vicinal oxygen chelate (VOC) family; The vicinal oxygen chelate (VOC) superfamily is composed of structurally related proteins with paired beta.alpha.beta.beta.beta motifs that provide a metal coordination environment with two or three open or readily accessible coordination sites to promote direct electrophilic participation of the metal ion in catalysis. VOC domain is found in a variety of structurally related metalloproteins, including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. A bound metal ion is required for protein activities for the members of this superfamily. A variety of metal ions have been found in the catalytic centers of these proteins including Fe(II), Mn(II), Zn(II), Ni(II) and Mg(II). The protein superfamily contains members with or without domain swapping. The proteins of this family share three conserved metal binding amino acids with the type I extradiol dioxygenases, which shows no domain swapping. Pssm-ID: 319923 [Multi-domain] Cd Length: 121 Bit Score: 39.13 E-value: 1.04e-04
|
|||||||
VOC_like | cd08354 | uncharacterized subfamily of vicinal oxygen chelate (VOC) family; The vicinal oxygen chelate ... |
13-125 | 1.77e-04 | |||
uncharacterized subfamily of vicinal oxygen chelate (VOC) family; The vicinal oxygen chelate (VOC) superfamily is composed of structurally related proteins with paired beta.alpha.beta.beta.beta motifs that provide a metal coordination environment with two or three open or readily accessible coordination sites to promote direct electrophilic participation of the metal ion in catalysis. VOC domain is found in a variety of structurally related metalloproteins, including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. A bound metal ion is required for protein activities for the members of this superfamily. A variety of metal ions have been found in the catalytic centers of these proteins including Fe(II), Mn(II), Zn(II), Ni(II) and Mg(II). The protein superfamily contains members with or without domain swapping. The proteins of this family share three conserved metal binding amino acids with the type I extradiol dioxygenases, which shows no domain swapping. Pssm-ID: 319942 Cd Length: 122 Bit Score: 38.50 E-value: 1.77e-04
|
|||||||
HPCD_N_class_II | cd07266 | N-terminal domain of 3,4-dihydroxyphenylacetate 2,3-dioxygenase (HPCD); This subfamily ... |
6-124 | 8.23e-04 | |||
N-terminal domain of 3,4-dihydroxyphenylacetate 2,3-dioxygenase (HPCD); This subfamily contains the N-terminal, non-catalytic, domain of HPCD. HPCD catalyses the second step in the degradation of 4-hydroxyphenylacetate to succinate and pyruvate. The aromatic ring of 4-hydroxyphenylacetate is opened by this dioxygenase to yield the 3,4-diol product, 2-hydroxy-5-carboxymethylmuconate semialdehyde. HPCD is a homotetramer and each monomer contains two structurally homologous barrel-shaped domains at the N- and C-terminus. The active-site metal is located in the C-terminal barrel and plays an essential role in the catalytic mechanism. Most extradiol dioxygenases contain Fe(II) in their active site, but HPCD can be activated by either Mn(II) or Fe(II). These enzymes belong to the type I class II family of extradiol dioxygenases. The class III 3,4-dihydroxyphenylacetate 2,3-dioxygenases belong to a different superfamily. Pssm-ID: 319927 Cd Length: 118 Bit Score: 36.62 E-value: 8.23e-04
|
|||||||
VOC_like | cd07254 | uncharacterized subfamily of vicinal oxygen chelate (VOC) family; The vicinal oxygen chelate ... |
5-125 | 2.20e-03 | |||
uncharacterized subfamily of vicinal oxygen chelate (VOC) family; The vicinal oxygen chelate (VOC) superfamily is composed of structurally related proteins with paired beta.alpha.beta.beta.beta motifs that provide a metal coordination environment with two or three open or readily accessible coordination sites to promote direct electrophilic participation of the metal ion in catalysis. VOC domain is found in a variety of structurally related metalloproteins, including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. A bound metal ion is required for protein activities for the members of this superfamily. A variety of metal ions have been found in the catalytic centers of these proteins including Fe(II), Mn(II), Zn(II), Ni(II) and Mg(II). The protein superfamily contains members with or without domain swapping. The proteins of this family share three conserved metal binding amino acids with the type I extradiol dioxygenases, which shows no domain swapping. Pssm-ID: 319917 [Multi-domain] Cd Length: 120 Bit Score: 35.52 E-value: 2.20e-03
|
|||||||
Blast search parameters | ||||
|