endonuclease [Listeria monocytogenes]
endonuclease/exonuclease/phosphatase family protein( domain architecture ID 10173375)
endonuclease/exonuclease/phosphatase (EEP) family protein is among a diverse set of enzymes that share a common catalytic mechanism of cleaving phosphodiester bonds; their substrates range from nucleic acids to phospholipids and perhaps proteins
List of domain hits
Name | Accession | Description | Interval | E-value | |||||
EEP-1 | cd09083 | Exonuclease-Endonuclease-Phosphatase domain; uncharacterized family 1; This family of ... |
3-253 | 2.46e-111 | |||||
Exonuclease-Endonuclease-Phosphatase domain; uncharacterized family 1; This family of uncharacterized proteins belongs to a superfamily that includes the catalytic domain (exonuclease/endonuclease/phosphatase, EEP, domain) of a diverse set of proteins including the ExoIII family of apurinic/apyrimidinic (AP) endonucleases, inositol polyphosphate 5-phosphatases (INPP5), neutral sphingomyelinases (nSMases), deadenylases (such as the vertebrate circadian-clock regulated nocturnin), bacterial cytolethal distending toxin B (CdtB), deoxyribonuclease 1 (DNase1), the endonuclease domain of the non-LTR retrotransposon LINE-1, and related domains. These diverse enzymes share a common catalytic mechanism of cleaving phosphodiester bonds. Their substrates range from nucleic acids to phospholipids and perhaps, proteins. : Pssm-ID: 197317 [Multi-domain] Cd Length: 252 Bit Score: 320.70 E-value: 2.46e-111
|
|||||||||
Name | Accession | Description | Interval | E-value | |||||
EEP-1 | cd09083 | Exonuclease-Endonuclease-Phosphatase domain; uncharacterized family 1; This family of ... |
3-253 | 2.46e-111 | |||||
Exonuclease-Endonuclease-Phosphatase domain; uncharacterized family 1; This family of uncharacterized proteins belongs to a superfamily that includes the catalytic domain (exonuclease/endonuclease/phosphatase, EEP, domain) of a diverse set of proteins including the ExoIII family of apurinic/apyrimidinic (AP) endonucleases, inositol polyphosphate 5-phosphatases (INPP5), neutral sphingomyelinases (nSMases), deadenylases (such as the vertebrate circadian-clock regulated nocturnin), bacterial cytolethal distending toxin B (CdtB), deoxyribonuclease 1 (DNase1), the endonuclease domain of the non-LTR retrotransposon LINE-1, and related domains. These diverse enzymes share a common catalytic mechanism of cleaving phosphodiester bonds. Their substrates range from nucleic acids to phospholipids and perhaps, proteins. Pssm-ID: 197317 [Multi-domain] Cd Length: 252 Bit Score: 320.70 E-value: 2.46e-111
|
|||||||||
ElsH | COG3568 | Metal-dependent hydrolase, endonuclease/exonuclease/phosphatase family [General function ... |
1-256 | 6.38e-31 | |||||
Metal-dependent hydrolase, endonuclease/exonuclease/phosphatase family [General function prediction only]; Pssm-ID: 442789 [Multi-domain] Cd Length: 167 Bit Score: 112.69 E-value: 6.38e-31
|
|||||||||
Exo_endo_phos | pfam03372 | Endonuclease/Exonuclease/phosphatase family; This large family of proteins includes magnesium ... |
6-246 | 6.09e-09 | |||||
Endonuclease/Exonuclease/phosphatase family; This large family of proteins includes magnesium dependent endonucleases and a large number of phosphatases involved in intracellular signalling. This family includes: AP endonuclease proteins EC:4.2.99.18, DNase I proteins EC:3.1.21.1, Synaptojanin an inositol-1,4,5-trisphosphate phosphatase EC:3.1.3.56, Sphingomyelinase EC:3.1.4.12 and Nocturnin. Pssm-ID: 460902 [Multi-domain] Cd Length: 183 Bit Score: 54.15 E-value: 6.09e-09
|
|||||||||
PRK08068 | PRK08068 | transaminase; Reviewed |
144-228 | 4.86e-03 | |||||
transaminase; Reviewed Pssm-ID: 181219 Cd Length: 389 Bit Score: 37.60 E-value: 4.86e-03
|
|||||||||
Name | Accession | Description | Interval | E-value | |||||
EEP-1 | cd09083 | Exonuclease-Endonuclease-Phosphatase domain; uncharacterized family 1; This family of ... |
3-253 | 2.46e-111 | |||||
Exonuclease-Endonuclease-Phosphatase domain; uncharacterized family 1; This family of uncharacterized proteins belongs to a superfamily that includes the catalytic domain (exonuclease/endonuclease/phosphatase, EEP, domain) of a diverse set of proteins including the ExoIII family of apurinic/apyrimidinic (AP) endonucleases, inositol polyphosphate 5-phosphatases (INPP5), neutral sphingomyelinases (nSMases), deadenylases (such as the vertebrate circadian-clock regulated nocturnin), bacterial cytolethal distending toxin B (CdtB), deoxyribonuclease 1 (DNase1), the endonuclease domain of the non-LTR retrotransposon LINE-1, and related domains. These diverse enzymes share a common catalytic mechanism of cleaving phosphodiester bonds. Their substrates range from nucleic acids to phospholipids and perhaps, proteins. Pssm-ID: 197317 [Multi-domain] Cd Length: 252 Bit Score: 320.70 E-value: 2.46e-111
|
|||||||||
ElsH | COG3568 | Metal-dependent hydrolase, endonuclease/exonuclease/phosphatase family [General function ... |
1-256 | 6.38e-31 | |||||
Metal-dependent hydrolase, endonuclease/exonuclease/phosphatase family [General function prediction only]; Pssm-ID: 442789 [Multi-domain] Cd Length: 167 Bit Score: 112.69 E-value: 6.38e-31
|
|||||||||
EEP | cd08372 | Exonuclease-Endonuclease-Phosphatase (EEP) domain superfamily; This large superfamily includes ... |
4-253 | 8.83e-18 | |||||
Exonuclease-Endonuclease-Phosphatase (EEP) domain superfamily; This large superfamily includes the catalytic domain (exonuclease/endonuclease/phosphatase or EEP domain) of a diverse set of proteins including the ExoIII family of apurinic/apyrimidinic (AP) endonucleases, inositol polyphosphate 5-phosphatases (INPP5), neutral sphingomyelinases (nSMases), deadenylases (such as the vertebrate circadian-clock regulated nocturnin), bacterial cytolethal distending toxin B (CdtB), deoxyribonuclease 1 (DNase1), the endonuclease domain of the non-LTR retrotransposon LINE-1, and related domains. These diverse enzymes share a common catalytic mechanism of cleaving phosphodiester bonds; their substrates range from nucleic acids to phospholipids and perhaps proteins. Pssm-ID: 197306 [Multi-domain] Cd Length: 241 Bit Score: 79.83 E-value: 8.83e-18
|
|||||||||
COG2374 | COG2374 | Predicted extracellular nuclease [General function prediction only]; |
76-256 | 7.19e-16 | |||||
Predicted extracellular nuclease [General function prediction only]; Pssm-ID: 441941 [Multi-domain] Cd Length: 362 Bit Score: 75.83 E-value: 7.19e-16
|
|||||||||
YafD | COG3021 | Uncharacterized conserved protein YafD, endonuclease/exonuclease/phosphatase (EEP) superfamily ... |
2-256 | 1.96e-12 | |||||
Uncharacterized conserved protein YafD, endonuclease/exonuclease/phosphatase (EEP) superfamily [General function prediction only]; Pssm-ID: 442257 [Multi-domain] Cd Length: 310 Bit Score: 65.79 E-value: 1.96e-12
|
|||||||||
EEP-2 | cd09084 | Exonuclease-Endonuclease-Phosphatase (EEP) domain superfamily; uncharacterized family 2; This ... |
153-253 | 1.28e-11 | |||||
Exonuclease-Endonuclease-Phosphatase (EEP) domain superfamily; uncharacterized family 2; This family of uncharacterized proteins belongs to a superfamily that includes the catalytic domain (exonuclease/endonuclease/phosphatase, EEP, domain) of a diverse set of proteins including the ExoIII family of apurinic/apyrimidinic (AP) endonucleases, inositol polyphosphate 5-phosphatases (INPP5), neutral sphingomyelinases (nSMases), deadenylases (such as the vertebrate circadian-clock regulated nocturnin), bacterial cytolethal distending toxin B (CdtB), deoxyribonuclease 1 (DNase1), the endonuclease domain of the non-LTR retrotransposon LINE-1, and related domains. These diverse enzymes share a common catalytic mechanism of cleaving phosphodiester bonds; their substrates range from nucleic acids to phospholipids and perhaps, proteins. Pssm-ID: 197318 [Multi-domain] Cd Length: 246 Bit Score: 62.70 E-value: 1.28e-11
|
|||||||||
RgfB-like | cd09079 | Streptococcus agalactiae RgfB, part of a putative two component signal transduction system, ... |
123-253 | 2.19e-10 | |||||
Streptococcus agalactiae RgfB, part of a putative two component signal transduction system, and related proteins; This family includes Streptococcus agalactiae RgfB (for regulator of fibrinogen binding) and related proteins. The function of RgfB is unknown. It is part of a putative two component signal transduction system designated rgfBDAC (the rgf locus was identified in a screen for mutants of Streptococcus agalactiae with altered binding to fibrinogen). RgfA,-C,and -D do not belong to this superfamily: rgfA encodes a putative response regulator, and rgfC, a putative histidine kinase. All four genes are co-transcribed, and may be involved in regulating expression of bacterial cell surface components. This family belongs to the large EEP (exonuclease/endonuclease/phosphatase) superfamily that contains functionally diverse enzymes that share a common catalytic mechanism of cleaving phosphodiester bonds. Pssm-ID: 197313 [Multi-domain] Cd Length: 259 Bit Score: 59.20 E-value: 2.19e-10
|
|||||||||
Exo_endo_phos | pfam03372 | Endonuclease/Exonuclease/phosphatase family; This large family of proteins includes magnesium ... |
6-246 | 6.09e-09 | |||||
Endonuclease/Exonuclease/phosphatase family; This large family of proteins includes magnesium dependent endonucleases and a large number of phosphatases involved in intracellular signalling. This family includes: AP endonuclease proteins EC:4.2.99.18, DNase I proteins EC:3.1.21.1, Synaptojanin an inositol-1,4,5-trisphosphate phosphatase EC:3.1.3.56, Sphingomyelinase EC:3.1.4.12 and Nocturnin. Pssm-ID: 460902 [Multi-domain] Cd Length: 183 Bit Score: 54.15 E-value: 6.09e-09
|
|||||||||
nSMase | cd09078 | Neutral sphingomyelinases (nSMase) catalyze the hydrolysis of sphingomyelin in biological ... |
121-253 | 9.40e-08 | |||||
Neutral sphingomyelinases (nSMase) catalyze the hydrolysis of sphingomyelin in biological membranes to ceramide and phosphorylcholine; Sphingomyelinases (SMase) are phosphodiesterases that catalyze the hydrolysis of sphingomyelin to ceramide and phosphorylcholine. Eukaryotic SMases have been classified according to their pH optima and are known as acid SMase, alkaline SMase, and neutral SMase (nSMase). Eukaryotic proteins in this family are nSMases, and are activated by a variety of stress-inducing agents such as cytokines or UV radiation. Ceramides and other metabolic derivatives, including sphingosine, are lipid "second messenger" molecules that participate in the regulation of stress-induced cellular responses, including cell death, adhesion, differentiation, and proliferation. Bacterial neutral SMases, which also belong to this domain family, are secreted proteins that act as membrane-damaging virulence factors. They promote colonization of the host tissue. This family belongs to the large EEP (exonuclease/endonuclease/phosphatase) superfamily that contains functionally diverse enzymes that share a common catalytic mechanism of cleaving phosphodiester bonds. Pssm-ID: 197312 [Multi-domain] Cd Length: 280 Bit Score: 51.57 E-value: 9.40e-08
|
|||||||||
TDP2 | cd09080 | Phosphodiesterase domain of human TDP2, a 5'-tyrosyl DNA phosphodiesterase, and related ... |
2-187 | 2.17e-06 | |||||
Phosphodiesterase domain of human TDP2, a 5'-tyrosyl DNA phosphodiesterase, and related domains; Human TDP2, also known as TTRAP (TRAF/TNFR-associated factors, and tumor necrosis factor receptor/TNFR-associated protein), is a 5'-tyrosyl DNA phosphodiesterase. It is required for the efficient repair of topoisomerase II-induced DNA double strand breaks. The topoisomerase is covalently linked by a phosphotyrosyl bond to the 5'-terminus of the break. TDP2 cleaves the DNA 5'-phosphodiester bond and restores 5'-phosphate termini, needed for subsequent DNA ligation, and hence repair of the break. TDP2 and 3'-tyrosyl DNA phosphodiesterase (TDP1) are complementary activities; together, they allow cells to remove trapped topoisomerase from both 3'- and 5'-DNA termini. TTRAP has been reported as being involved in apoptosis, embryonic development, and transcriptional regulation, and it may inhibit the activation of nuclear factor-kB. This family belongs to the large EEP (exonuclease/endonuclease/phosphatase) superfamily that contains functionally diverse enzymes that share a common catalytic mechanism of cleaving phosphodiester bonds. Pssm-ID: 197314 [Multi-domain] Cd Length: 248 Bit Score: 47.34 E-value: 2.17e-06
|
|||||||||
Deadenylase_CCR4 | cd09097 | C-terminal deadenylase domain of CCR4 and related domains; This subfamily contains the ... |
77-255 | 6.95e-06 | |||||
C-terminal deadenylase domain of CCR4 and related domains; This subfamily contains the C-terminal catalytic domain of the deadenylases, Saccharomyces cerevisiae Ccr4p and two vertebrate homologs (CCR4a and CCR4b), and related domains. CCR4 belongs to the large EEP (exonuclease/endonuclease/phosphatase) superfamily that contains functionally diverse enzymes that share a common catalytic mechanism of cleaving phosphodiester bonds. CCR4 is the major deadenylase subunit of the CCR4-NOT transcription complex, which contains two deadenylase subunits and several noncatalytic subunits. The other deadenylase subunit, Caf1 (called Pop2 in yeast), is a DEDD-type protein and does not belong in this superfamily. Saccharomyces cerevisiae CCR4 (or Ccr4p) is a 3'-5' poly(A) RNA and ssDNA exonuclease. It is the catalytic subunit of the yeast mRNA deadenylase (Ccr4p/Pop2p/Not complex). This complex participates in various ways in mRNA metabolism, including transcription initiation and elongation, and mRNA degradation. Ccr4p degrades both poly(A) and single-stranded DNA. There are two vertebrate homologs of Ccr4p, CCR4a (also called CCR4-NOT transcription complex subunit 6 or CNOT6) and CCR4b (also called CNOT6-like or CNOT6L), which independently associate with other components to form distinct CCR4-NOT multisubunit complexes. The nuclease domain of CNOT6 and CNOT6L exhibits Mg2+-dependent deadenylase activity, with specificity for poly (A) RNA as substrate. CCR4a is a component of P-bodies and is necessary for foci formation. CCR4b regulates p27/Kip1 mRNA levels, thereby influencing cell cycle progression. They both contribute to the prevention of cell death by regulating insulin-like growth factor-binding protein 5. Pssm-ID: 197331 [Multi-domain] Cd Length: 329 Bit Score: 46.53 E-value: 6.95e-06
|
|||||||||
Ape2-like_AP-endo | cd09088 | Human Ape2-like subfamily of the ExoIII family purinic/apyrimidinic (AP) endonucleases; This ... |
122-253 | 1.25e-05 | |||||
Human Ape2-like subfamily of the ExoIII family purinic/apyrimidinic (AP) endonucleases; This subfamily includes human APE2, Saccharomyces cerevisiae Apn2/Eth1, and related proteins. These are Escherichia coli exonuclease III (ExoIII)-like AP endonucleases and they belong to the large EEP (exonuclease/endonuclease/phosphatase) superfamily that contains functionally diverse enzymes that share a common catalytic mechanism of cleaving phosphodiester bonds. AP endonucleases participate in the DNA base excision repair (BER) pathway. AP sites are one of the most common lesions in cellular DNA. During BER, the damaged DNA is first recognized by DNA glycosylase. AP endonucleases then catalyze the hydrolytic cleavage of the phosphodiester bond 5' to the AP site, and this is followed by the coordinated actions of DNA polymerase, deoxyribose phosphatase, and DNA ligase. If left unrepaired, AP sites block DNA replication, and have both mutagenic and cytotoxic effects. AP endonucleases can carry out a variety of excision and incision reactions on DNA, including 3'-5' exonuclease, 3'-deoxyribose phosphodiesterase, 3'-phosphatase, and occasionally, nonspecific DNase activities. Different AP endonuclease enzymes catalyze the different reactions with different efficiences. Many organisms have two AP endonucleases, usually one is the dominant AP endonuclease, the other has weak AP endonuclease activity. For examples, Ape1 and Ape2 in humans, and Apn1 and Apn2 in bakers yeast. Ape2 and Apn2/Eth1 are both found in this subfamily, and have the weaker AP endonuclease activity. Ape2 shows strong 3'-5' exonuclease and 3'-phosphodiesterase activities; it can reduce the mutagenic consequences of attack by reactive oxygen species by removing 3'-end adenine opposite from 8-oxoG, in addition to repairing 3'-damaged termini. Apn2/Eth1 exhibits AP endonuclease activity, but has 30-40 fold more active 3'-phosphodiesterase and 3'-5' exonuclease activities. Class II AP endonucleases have been classified into two families, designated ExoIII and EndoIV, based on their homology to the Escherichia coli enzymes exonuclease III (ExoIII) and endonuclease IV (EndoIV). This subfamily belongs to the ExoIII family; the EndoIV family belongs to a different superfamily. Pssm-ID: 197322 [Multi-domain] Cd Length: 309 Bit Score: 45.39 E-value: 1.25e-05
|
|||||||||
MnuA_DNase1-like | cd10283 | Mycoplasma pulmonis MnuA nuclease-like; This subfamily includes Mycoplasma pulmonis MnuA, a ... |
2-253 | 2.44e-05 | |||||
Mycoplasma pulmonis MnuA nuclease-like; This subfamily includes Mycoplasma pulmonis MnuA, a membrane-associated nuclease related to Deoxyribonuclease 1 (DNase1 or DNase I, EC 3.1.21.1). The in vivo role of MnuA is as yet undetermined. This subfamily belongs to the large EEP (exonuclease/endonuclease/phosphatase) superfamily that contains functionally diverse enzymes that share a common catalytic mechanism of cleaving phosphodiester bonds. Pssm-ID: 197338 [Multi-domain] Cd Length: 266 Bit Score: 44.31 E-value: 2.44e-05
|
|||||||||
Deadenylase_nocturnin | cd09096 | C-terminal deadenylase domain of nocturnin and related domains; This subfamily contains the ... |
77-224 | 2.72e-05 | |||||
C-terminal deadenylase domain of nocturnin and related domains; This subfamily contains the C-terminal catalytic domain of the deadenylase, nocturnin, and related domains. Nocturnin is a poly(A)-specific 3' exonuclease that specifically degrades the 3' poly(A) tail of RNA in a process known as deadenylation. This nuclease activity is manganese dependent. Nocturnin is expressed in the cytoplasm of Xenopus laevis retinal photoreceptor cells in a rhythmic fashion, and it has been proposed that it participates in posttranscriptional regulation of the circadian clock or its outputs, and that the mRNA target(s) of this deadenylase are circadian clock-related. In mouse, the nocturnin gene, mNoc, is expressed in a circadian pattern in a range of tissues including retina, spleen, heart, kidney, and liver. It is highly expressed in bone-marrow stromal cells, adipocytes and hepatocytes. In mammals, nocturnin plays a role in regulating mesenchymal stem-cell lineage allocation, perhaps through regulating PPAR-gamma (peroxisome proliferator-activated receptor-gamma) nuclear translocation. This subfamily belongs to the large EEP (exonuclease/endonuclease/phosphatase) superfamily that contains functionally diverse enzymes that share a common catalytic mechanism of cleaving phosphodiester bonds. Pssm-ID: 197330 [Multi-domain] Cd Length: 280 Bit Score: 44.34 E-value: 2.72e-05
|
|||||||||
PRK08068 | PRK08068 | transaminase; Reviewed |
144-228 | 4.86e-03 | |||||
transaminase; Reviewed Pssm-ID: 181219 Cd Length: 389 Bit Score: 37.60 E-value: 4.86e-03
|
|||||||||
Blast search parameters | ||||
|