phthalate 4,5-dioxygenase [Pandoraea pulmonicola]
aromatic ring-hydroxylating dioxygenase subunit alpha( domain architecture ID 10231820)
aromatic ring-hydroxylating dioxygenase subunit alpha is the catalytic component of a complex that catalyzes the addition of hydroxyl groups to the aromatic ring, an initial step in the oxidative degradation of aromatic compounds
List of domain hits
Name | Accession | Description | Interval | E-value | ||||||
Rieske super family | cl00938 | Rieske domain; a [2Fe-2S] cluster binding domain commonly found in Rieske non-heme iron ... |
7-149 | 3.97e-63 | ||||||
Rieske domain; a [2Fe-2S] cluster binding domain commonly found in Rieske non-heme iron oxygenase (RO) systems such as naphthalene and biphenyl dioxygenases, as well as in plant/cyanobacterial chloroplast b6f and mitochondrial cytochrome bc(1) complexes. The Rieske domain can be divided into two subdomains, with an incomplete six-stranded, antiparallel beta-barrel at one end, and an iron-sulfur cluster binding subdomain at the other. The Rieske iron-sulfur center contains a [2Fe-2S] cluster, which is involved in electron transfer, and is liganded to two histidine and two cysteine residues present in conserved sequences called Rieske motifs. In RO systems, the N-terminal Rieske domain of the alpha subunit acts as an electron shuttle that accepts electrons from a reductase or ferredoxin component and transfers them to the mononuclear iron in the alpha subunit C-terminal domain to be used for catalysis. The actual alignment was detected with superfamily member cd03479: Pssm-ID: 445190 [Multi-domain] Cd Length: 144 Bit Score: 200.55 E-value: 3.97e-63
|
||||||||||
PobA super family | cl47407 | Chlorophyllide a oxygenase/letal leaf spot protein [Coenzyme transport and metabolism]; |
11-339 | 6.98e-55 | ||||||
Chlorophyllide a oxygenase/letal leaf spot protein [Coenzyme transport and metabolism]; The actual alignment was detected with superfamily member COG5749: Pssm-ID: 444459 [Multi-domain] Cd Length: 349 Bit Score: 185.97 E-value: 6.98e-55
|
||||||||||
Name | Accession | Description | Interval | E-value | ||||||
Rieske_RO_Alpha_PhDO_like | cd03479 | Rieske non-heme iron oxygenase (RO) family, Phthalate 4,5-dioxygenase (PhDO)-like subfamily, ... |
7-149 | 3.97e-63 | ||||||
Rieske non-heme iron oxygenase (RO) family, Phthalate 4,5-dioxygenase (PhDO)-like subfamily, N-terminal Rieske domain of the oxygenase alpha subunit; composed of the oxygenase alpha subunits of PhDO and similar proteins including 3-chlorobenzoate 3,4-dioxygenase (CBDO), phenoxybenzoate dioxygenase (POB-dioxygenase) and 3-nitrobenzoate oxygenase (MnbA). ROs comprise a large class of aromatic ring-hydroxylating dioxygenases that enable microorganisms to tolerate and utilize aromatic compounds for growth. The oxygenase alpha subunit contains an N-terminal Rieske domain with an [2Fe-2S] cluster and a C-terminal catalytic domain with a mononuclear Fe(II) binding site. The Rieske [2Fe-2S] cluster accepts electrons from a reductase or ferredoxin component and transfers them to the mononuclear iron for catalysis. PhDO and CBDO are two-component RO systems, containing oxygenase and reductase components. PhDO catalyzes the dihydroxylation of phthalate to form the 4,5-dihydro-cis-dihydrodiol of phthalate (DHD). CBDO, together with CbaC dehydrogenase, converts the environmental pollutant 3CBA to protocatechuate (PCA) and 5-Cl-PCA, which are then metabolized by the chromosomal PCA meta (extradiol) ring fission pathway. POB-dioxygenase catalyzes the initial catabolic step in the angular dioxygenation of phenoxybenzoate, converting mono- and dichlorinated phenoxybenzoates to protocatechuate and chlorophenols. These phenoxybenzoates are metabolic products formed during the degradation of pyrethroid insecticides. Pssm-ID: 239561 [Multi-domain] Cd Length: 144 Bit Score: 200.55 E-value: 3.97e-63
|
||||||||||
PobA | COG5749 | Chlorophyllide a oxygenase/letal leaf spot protein [Coenzyme transport and metabolism]; |
11-339 | 6.98e-55 | ||||||
Chlorophyllide a oxygenase/letal leaf spot protein [Coenzyme transport and metabolism]; Pssm-ID: 444459 [Multi-domain] Cd Length: 349 Bit Score: 185.97 E-value: 6.98e-55
|
||||||||||
RHO_alpha_C_DMO-like | cd08878 | C-terminal catalytic domain of the oxygenase alpha subunit of dicamba O-demethylase and ... |
153-343 | 1.92e-41 | ||||||
C-terminal catalytic domain of the oxygenase alpha subunit of dicamba O-demethylase and related aromatic ring hydroxylating dioxygenases; C-terminal catalytic domain of the oxygenase alpha subunit of Stenotrophomonas maltophilia dicamba O-demethylase (DMO) and related Rieske-type non-heme iron aromatic ring-hydroxylating oxygenases (RHOs, also known as aromatic ring hydroxylating dioxygenases). RHOs utilize non-heme Fe(II) to catalyze the addition of hydroxyl groups to the aromatic ring, an initial step in the oxidative degradation of aromatic compounds. RHOs are composed of either two or three protein components, and are comprised of an electron transport chain (ETC) and an oxygenase. The ETC transfers reducing equivalents from the electron donor to the oxygenase component, which in turn transfers electrons to the oxygen molecules. The oxygenase components are oligomers, either (alpha)n or (alpha)n(beta)n. The alpha subunits are the catalytic components and have an N-terminal domain, which binds a Rieske-like 2Fe-2S cluster, and the C-terminal catalytic domain which binds the non-heme Fe(II). The Fe(II) is co-ordinated by conserved His and Asp residues. Oxygenases belonging to this subgroup include the alpha subunits of carbazole 1,9a-dioxygenase, phthalate dioxygenase, vanillate O-demethylase, Pseudomonas putida 2-oxoquinoline 8-monooxygenase, and Comamonas testosteroni T-2 p-toluenesulfonate dioxygenase. It also includes the C-terminal domain of the lignin biphenyl-specific O-demethylase (LigX) of the 5,5'-dehydrodivanillic acid O- demethylation system of Sphingomonas paucimobilis SYK-6. This subfamily belongs to the SRPBCC (START/RHO_alpha_C/PITP/Bet_v1/CoxG/CalC) domain superfamily of proteins that bind hydrophobic ligands. SRPBCC domains have a deep hydrophobic ligand-binding pocket. Pssm-ID: 176887 Cd Length: 196 Bit Score: 145.65 E-value: 1.92e-41
|
||||||||||
Rieske | pfam00355 | Rieske [2Fe-2S] domain; The rieske domain has a [2Fe-2S] centre. Two conserved cysteines ... |
27-125 | 2.01e-19 | ||||||
Rieske [2Fe-2S] domain; The rieske domain has a [2Fe-2S] centre. Two conserved cysteines coordinate one Fe ion, while the other Fe ion is coordinated by two conserved histidines. In hyperthermophilic archaea there is a SKTPCX(2-3)C motif at the C-terminus. The cysteines in this motif form a disulphide bridge, which stabilizes the protein. Pssm-ID: 425632 [Multi-domain] Cd Length: 89 Bit Score: 82.40 E-value: 2.01e-19
|
||||||||||
PLN02281 | PLN02281 | chlorophyllide a oxygenase |
14-191 | 4.69e-18 | ||||||
chlorophyllide a oxygenase Pssm-ID: 177920 [Multi-domain] Cd Length: 536 Bit Score: 86.32 E-value: 4.69e-18
|
||||||||||
LigXa_C | pfam19301 | LigXa C-terminal domain like; This entry represents the C-terminal domain of a Rieske ... |
135-356 | 1.48e-14 | ||||||
LigXa C-terminal domain like; This entry represents the C-terminal domain of a Rieske oxygenase enzyme. This entry includes the 5,5'-dehydrodivanillate O-demethylase three-component monooxygenase which is composed of an oxygenase (LigXa) in this entry, a ferredoxin (LigXc) and a ferredoxin reductase (LigXd). Pssm-ID: 437133 Cd Length: 303 Bit Score: 74.00 E-value: 1.48e-14
|
||||||||||
NirD | COG2146 | Ferredoxin subunit of nitrite reductase or a ring-hydroxylating dioxygenase [Inorganic ion ... |
27-134 | 1.72e-12 | ||||||
Ferredoxin subunit of nitrite reductase or a ring-hydroxylating dioxygenase [Inorganic ion transport and metabolism, Secondary metabolites biosynthesis, transport and catabolism]; Pssm-ID: 441749 [Multi-domain] Cd Length: 103 Bit Score: 63.32 E-value: 1.72e-12
|
||||||||||
nirD_assim_sml | TIGR02378 | nitrite reductase [NAD(P)H], small subunit; This model describes NirD, the small subunit of ... |
27-134 | 4.73e-05 | ||||||
nitrite reductase [NAD(P)H], small subunit; This model describes NirD, the small subunit of nitrite reductase [NAD(P)H] (the assimilatory nitrite reductase), which associates with NirB, the large subunit (TIGR02374). In a few bacteria such as Klebsiella pneumoniae and in Fungi, the two regions are fused. [Central intermediary metabolism, Nitrogen metabolism] Pssm-ID: 131431 [Multi-domain] Cd Length: 105 Bit Score: 42.30 E-value: 4.73e-05
|
||||||||||
Name | Accession | Description | Interval | E-value | ||||||
Rieske_RO_Alpha_PhDO_like | cd03479 | Rieske non-heme iron oxygenase (RO) family, Phthalate 4,5-dioxygenase (PhDO)-like subfamily, ... |
7-149 | 3.97e-63 | ||||||
Rieske non-heme iron oxygenase (RO) family, Phthalate 4,5-dioxygenase (PhDO)-like subfamily, N-terminal Rieske domain of the oxygenase alpha subunit; composed of the oxygenase alpha subunits of PhDO and similar proteins including 3-chlorobenzoate 3,4-dioxygenase (CBDO), phenoxybenzoate dioxygenase (POB-dioxygenase) and 3-nitrobenzoate oxygenase (MnbA). ROs comprise a large class of aromatic ring-hydroxylating dioxygenases that enable microorganisms to tolerate and utilize aromatic compounds for growth. The oxygenase alpha subunit contains an N-terminal Rieske domain with an [2Fe-2S] cluster and a C-terminal catalytic domain with a mononuclear Fe(II) binding site. The Rieske [2Fe-2S] cluster accepts electrons from a reductase or ferredoxin component and transfers them to the mononuclear iron for catalysis. PhDO and CBDO are two-component RO systems, containing oxygenase and reductase components. PhDO catalyzes the dihydroxylation of phthalate to form the 4,5-dihydro-cis-dihydrodiol of phthalate (DHD). CBDO, together with CbaC dehydrogenase, converts the environmental pollutant 3CBA to protocatechuate (PCA) and 5-Cl-PCA, which are then metabolized by the chromosomal PCA meta (extradiol) ring fission pathway. POB-dioxygenase catalyzes the initial catabolic step in the angular dioxygenation of phenoxybenzoate, converting mono- and dichlorinated phenoxybenzoates to protocatechuate and chlorophenols. These phenoxybenzoates are metabolic products formed during the degradation of pyrethroid insecticides. Pssm-ID: 239561 [Multi-domain] Cd Length: 144 Bit Score: 200.55 E-value: 3.97e-63
|
||||||||||
PobA | COG5749 | Chlorophyllide a oxygenase/letal leaf spot protein [Coenzyme transport and metabolism]; |
11-339 | 6.98e-55 | ||||||
Chlorophyllide a oxygenase/letal leaf spot protein [Coenzyme transport and metabolism]; Pssm-ID: 444459 [Multi-domain] Cd Length: 349 Bit Score: 185.97 E-value: 6.98e-55
|
||||||||||
RHO_alpha_C_DMO-like | cd08878 | C-terminal catalytic domain of the oxygenase alpha subunit of dicamba O-demethylase and ... |
153-343 | 1.92e-41 | ||||||
C-terminal catalytic domain of the oxygenase alpha subunit of dicamba O-demethylase and related aromatic ring hydroxylating dioxygenases; C-terminal catalytic domain of the oxygenase alpha subunit of Stenotrophomonas maltophilia dicamba O-demethylase (DMO) and related Rieske-type non-heme iron aromatic ring-hydroxylating oxygenases (RHOs, also known as aromatic ring hydroxylating dioxygenases). RHOs utilize non-heme Fe(II) to catalyze the addition of hydroxyl groups to the aromatic ring, an initial step in the oxidative degradation of aromatic compounds. RHOs are composed of either two or three protein components, and are comprised of an electron transport chain (ETC) and an oxygenase. The ETC transfers reducing equivalents from the electron donor to the oxygenase component, which in turn transfers electrons to the oxygen molecules. The oxygenase components are oligomers, either (alpha)n or (alpha)n(beta)n. The alpha subunits are the catalytic components and have an N-terminal domain, which binds a Rieske-like 2Fe-2S cluster, and the C-terminal catalytic domain which binds the non-heme Fe(II). The Fe(II) is co-ordinated by conserved His and Asp residues. Oxygenases belonging to this subgroup include the alpha subunits of carbazole 1,9a-dioxygenase, phthalate dioxygenase, vanillate O-demethylase, Pseudomonas putida 2-oxoquinoline 8-monooxygenase, and Comamonas testosteroni T-2 p-toluenesulfonate dioxygenase. It also includes the C-terminal domain of the lignin biphenyl-specific O-demethylase (LigX) of the 5,5'-dehydrodivanillic acid O- demethylation system of Sphingomonas paucimobilis SYK-6. This subfamily belongs to the SRPBCC (START/RHO_alpha_C/PITP/Bet_v1/CoxG/CalC) domain superfamily of proteins that bind hydrophobic ligands. SRPBCC domains have a deep hydrophobic ligand-binding pocket. Pssm-ID: 176887 Cd Length: 196 Bit Score: 145.65 E-value: 1.92e-41
|
||||||||||
HcaE | COG4638 | Phenylpropionate dioxygenase or related ring-hydroxylating dioxygenase, large terminal subunit ... |
22-338 | 4.41e-34 | ||||||
Phenylpropionate dioxygenase or related ring-hydroxylating dioxygenase, large terminal subunit [Inorganic ion transport and metabolism, General function prediction only]; Pssm-ID: 443676 [Multi-domain] Cd Length: 298 Bit Score: 128.95 E-value: 4.41e-34
|
||||||||||
Rieske_RO_Alpha_N | cd03469 | Rieske non-heme iron oxygenase (RO) family, N-terminal Rieske domain of the oxygenase alpha ... |
27-144 | 7.26e-26 | ||||||
Rieske non-heme iron oxygenase (RO) family, N-terminal Rieske domain of the oxygenase alpha subunit; The RO family comprise a large class of aromatic ring-hydroxylating dioxygenases found predominantly in microorganisms. These enzymes enable microorganisms to tolerate and even exclusively utilize aromatic compounds for growth. ROs consist of two or three components: reductase, oxygenase, and ferredoxin (in some cases) components. The oxygenase component may contain alpha and beta subunits, with the beta subunit having a purely structural function. Some oxygenase components contain only an alpha subunit. The oxygenase alpha subunit has two domains, an N-terminal Rieske domain with an [2Fe-2S] cluster and a C-terminal catalytic domain with a mononuclear Fe(II) binding site. The Rieske [2Fe-2S] cluster accepts electrons from the reductase or ferredoxin component and transfers them to the mononuclear iron for catalysis. Reduced pyridine nucleotide is used as the initial source of two electrons for dioxygen activation. Pssm-ID: 239551 [Multi-domain] Cd Length: 118 Bit Score: 101.13 E-value: 7.26e-26
|
||||||||||
Rieske | pfam00355 | Rieske [2Fe-2S] domain; The rieske domain has a [2Fe-2S] centre. Two conserved cysteines ... |
27-125 | 2.01e-19 | ||||||
Rieske [2Fe-2S] domain; The rieske domain has a [2Fe-2S] centre. Two conserved cysteines coordinate one Fe ion, while the other Fe ion is coordinated by two conserved histidines. In hyperthermophilic archaea there is a SKTPCX(2-3)C motif at the C-terminus. The cysteines in this motif form a disulphide bridge, which stabilizes the protein. Pssm-ID: 425632 [Multi-domain] Cd Length: 89 Bit Score: 82.40 E-value: 2.01e-19
|
||||||||||
Rieske_RO_Alpha_VanA_DdmC | cd03532 | Rieske non-heme iron oxygenase (RO) family, Vanillate-O-demethylase oxygenase (VanA) and ... |
37-138 | 6.07e-19 | ||||||
Rieske non-heme iron oxygenase (RO) family, Vanillate-O-demethylase oxygenase (VanA) and dicamba O-demethylase oxygenase (DdmC) subfamily, N-terminal Rieske domain of the oxygenase alpha subunit; ROs comprise a large class of aromatic ring-hydroxylating dioxygenases that enable microorganisms to tolerate and utilize aromatic compounds for growth. The oxygenase alpha subunit contains an N-terminal Rieske domain with an [2Fe-2S] cluster and a C-terminal catalytic domain with a mononuclear Fe(II) binding site. The Rieske [2Fe-2S] cluster accepts electrons from a reductase or ferredoxin component and transfers them to the mononuclear iron for catalysis. Vanillate-O-demethylase is a heterodimeric enzyme consisting of a terminal oxygenase (VanA) and reductase (VanB) components. This enzyme reductively catalyzes the conversion of vanillate into protocatechuate and formaldehyde. Protocatechuate and vanillate are important intermediate metabolites in the degradation pathway of lignin-derived compounds such as ferulic acid and vanillin by soil microbes. DDmC is the oxygenase component of a three-component dicamba O-demethylase found in Pseudomonas maltophila, that catalyzes the conversion of a widely used herbicide called herbicide dicamba (2-methoxy-3,6-dichlorobenzoic acid) to DCSA (3,6-dichlorosalicylic acid). Pssm-ID: 239608 [Multi-domain] Cd Length: 116 Bit Score: 82.03 E-value: 6.07e-19
|
||||||||||
PLN02281 | PLN02281 | chlorophyllide a oxygenase |
14-191 | 4.69e-18 | ||||||
chlorophyllide a oxygenase Pssm-ID: 177920 [Multi-domain] Cd Length: 536 Bit Score: 86.32 E-value: 4.69e-18
|
||||||||||
Rieske_RO_Alpha_Cao | cd04337 | Cao (chlorophyll a oxygenase) is a rieske non-heme iron-sulfur protein located within the ... |
13-146 | 2.19e-17 | ||||||
Cao (chlorophyll a oxygenase) is a rieske non-heme iron-sulfur protein located within the plastid-envelope inner and thylakoid membranes, that catalyzes the conversion of chlorophyllide a to chlorophyllide b. CAO is found not only in plants but also in chlorophytes and prochlorophytes. This domain represents the N-terminal rieske domain of the oxygenase alpha subunit. ROs comprise a large class of aromatic ring-hydroxylating dioxygenases that enable microorganisms to tolerate and utilize aromatic compounds for growth. The oxygenase alpha subunit contains an N-terminal Rieske domain with an [2Fe-2S] cluster and a C-terminal catalytic domain with a mononuclear Fe(II) binding site. The Rieske [2Fe-2S] cluster accepts electrons from a reductase or ferredoxin component and transfers them to the mononuclear iron for catalysis. Cao is closely related to several other plant RO's including Tic 55, a 55 kDa protein associated with protein transport through the inner chloroplast membrane; Ptc 52, a novel 52 kDa protein isolated from chloroplasts; and LLS1/Pao (Lethal-leaf spot 1/pheophorbide a oxygenase). Pssm-ID: 239829 [Multi-domain] Cd Length: 129 Bit Score: 78.30 E-value: 2.19e-17
|
||||||||||
Rieske_RO_Alpha_PaO | cd03480 | Rieske non-heme iron oxygenase (RO) family, Pheophorbide a oxygenase (PaO) subfamily, ... |
24-138 | 7.26e-17 | ||||||
Rieske non-heme iron oxygenase (RO) family, Pheophorbide a oxygenase (PaO) subfamily, N-terminal Rieske domain of the oxygenase alpha subunit; composed of the oxygenase alpha subunits of a small subfamily of enzymes found in plants as well as oxygenic cyanobacterial photosynthesizers including LLS1 (lethal leaf spot 1, also known as PaO) and ACD1 (accelerated cell death 1). ROs comprise a large class of aromatic ring-hydroxylating dioxygenases that enable microorganisms to tolerate and utilize aromatic compounds for growth. The oxygenase alpha subunit contains an N-terminal Rieske domain with an [2Fe-2S] cluster and a C-terminal catalytic domain with a mononuclear Fe(II) binding site. The Rieske [2Fe-2S] cluster accepts electrons from a reductase or ferredoxin component and transfers them to the mononuclear iron for catalysis. PaO expression increases upon physical wounding of plant leaves and is thought to catalyze a key step in chlorophyll degradation. The Arabidopsis-accelerated cell death gene ACD1 is involved in oxygenation of PaO. Pssm-ID: 239562 [Multi-domain] Cd Length: 138 Bit Score: 76.98 E-value: 7.26e-17
|
||||||||||
Rieske_RO_Alpha_Tic55 | cd04338 | Tic55 is a 55kDa LLS1-related non-heme iron oxygenase associated with protein transport ... |
24-143 | 7.37e-15 | ||||||
Tic55 is a 55kDa LLS1-related non-heme iron oxygenase associated with protein transport through the plant inner chloroplast membrane. This domain represents the N-terminal Rieske domain of the Tic55 oxygenase alpha subunit. Tic55 is closely related to the oxygenase alpha subunits of a small subfamily of enzymes found in plants as well as oxygenic cyanobacterial photosynthesizers including LLS1 (lethal leaf spot 1, also known as PaO), Ptc52, and ACD1 (accelerated cell death 1). ROs comprise a large class of aromatic ring-hydroxylating dioxygenases that enable microorganisms to tolerate and utilize aromatic compounds for growth. The oxygenase alpha subunit contains an N-terminal Rieske domain with an [2Fe-2S] cluster and a C-terminal catalytic domain with a mononuclear Fe(II) binding site. The Rieske [2Fe-2S] cluster accepts electrons from a reductase or ferredoxin component and transfers them to the mononuclear iron for catalysis. Pssm-ID: 239830 [Multi-domain] Cd Length: 134 Bit Score: 71.02 E-value: 7.37e-15
|
||||||||||
LigXa_C | pfam19301 | LigXa C-terminal domain like; This entry represents the C-terminal domain of a Rieske ... |
135-356 | 1.48e-14 | ||||||
LigXa C-terminal domain like; This entry represents the C-terminal domain of a Rieske oxygenase enzyme. This entry includes the 5,5'-dehydrodivanillate O-demethylase three-component monooxygenase which is composed of an oxygenase (LigXa) in this entry, a ferredoxin (LigXc) and a ferredoxin reductase (LigXd). Pssm-ID: 437133 Cd Length: 303 Bit Score: 74.00 E-value: 1.48e-14
|
||||||||||
PLN02518 | PLN02518 | pheophorbide a oxygenase |
24-136 | 2.42e-14 | ||||||
pheophorbide a oxygenase Pssm-ID: 215283 [Multi-domain] Cd Length: 539 Bit Score: 74.90 E-value: 2.42e-14
|
||||||||||
Rieske_RO_Alpha_PrnD | cd03537 | This alignment model represents the N-terminal rieske domain of the oxygenase alpha subunit of ... |
37-146 | 2.83e-13 | ||||||
This alignment model represents the N-terminal rieske domain of the oxygenase alpha subunit of aminopyrrolnitrin oxygenase (PrnD). PrnD is a novel Rieske N-oxygenase that catalyzes the final step in the pyrrolnitrin biosynthetic pathway, the oxidation of the amino group in aminopyrrolnitrin to a nitro group, forming the antibiotic pyrrolnitrin. The biosynthesis of pyrrolnitrin is one of the best examples of enzyme-catalyzed arylamine oxidation. Although arylamine oxygenases are widely distributed within the microbial world and used in a variety of metabolic reactions, PrnD represents one of only two known examples of arylamine oxygenases or N-oxygenases involved in arylnitro group formation, the other being AurF involved in aureothin biosynthesis. Pssm-ID: 239611 [Multi-domain] Cd Length: 123 Bit Score: 66.11 E-value: 2.83e-13
|
||||||||||
NirD | COG2146 | Ferredoxin subunit of nitrite reductase or a ring-hydroxylating dioxygenase [Inorganic ion ... |
27-134 | 1.72e-12 | ||||||
Ferredoxin subunit of nitrite reductase or a ring-hydroxylating dioxygenase [Inorganic ion transport and metabolism, Secondary metabolites biosynthesis, transport and catabolism]; Pssm-ID: 441749 [Multi-domain] Cd Length: 103 Bit Score: 63.32 E-value: 1.72e-12
|
||||||||||
Rieske_RO_Alpha_OMO_CARDO | cd03548 | Rieske non-heme iron oxygenase (RO) family, 2-Oxoquinoline 8-monooxygenase (OMO) and Carbazole ... |
23-138 | 1.90e-11 | ||||||
Rieske non-heme iron oxygenase (RO) family, 2-Oxoquinoline 8-monooxygenase (OMO) and Carbazole 1,9a-dioxygenase (CARDO) subfamily, N-terminal Rieske domain of the oxygenase alpha subunit; ROs comprise a large class of aromatic ring-hydroxylating dioxygenases that enable microorganisms to tolerate and utilize aromatic compounds for growth. The oxygenase alpha subunit contains an N-terminal Rieske domain with an [2Fe-2S] cluster and a C-terminal catalytic domain with a mononuclear Fe(II) binding site. The Rieske [2Fe-2S] cluster accepts electrons from a reductase or ferredoxin component and transfers them to the mononuclear iron for catalysis. OMO catalyzes the NADH-dependent oxidation of the N-heterocyclic aromatic compound 2-oxoquinoline to 8-hydroxy-2-oxoquinoline, the second step in the bacterial degradation of quinoline. OMO consists of a reductase component (OMR) and an oxygenase component (OMO) that together function to shuttle electrons from the reduced pyridine nucleotide to the active site of OMO, where O2 activation and 2-oxoquinoline hydroxylation occurs. CARDO, which contains oxygenase (CARDO-O), ferredoxin (CARDO-F) and ferredoxin reductase (CARDO-R) components, catalyzes the dihydroxylation at the C1 and C9a positions of carbazole. The oxygenase component of OMO and CARDO contain only alpha subunits arranged in a trimeric structure. Pssm-ID: 239617 [Multi-domain] Cd Length: 136 Bit Score: 61.28 E-value: 1.90e-11
|
||||||||||
Rieske_RO_Alpha_KSH | cd03531 | The alignment model represents the N-terminal rieske iron-sulfur domain of KshA, the oxygenase ... |
27-139 | 4.52e-11 | ||||||
The alignment model represents the N-terminal rieske iron-sulfur domain of KshA, the oxygenase component of 3-ketosteroid 9-alpha-hydroxylase (KSH). The terminal oxygenase component of KSH is a key enzyme in the microbial steroid degradation pathway, catalyzing the 9 alpha-hydroxylation of 4-androstene-3,17-dione (AD) and 1,4-androstadiene-3,17-dione (ADD). KSH is a two-component class IA monooxygenase, with terminal oxygenase (KshA) and oxygenase reductase (KshB) components. KSH activity has been found in many actino- and proteo- bacterial genera including Rhodococcus, Nocardia, Arthrobacter, Mycobacterium, and Burkholderia. Pssm-ID: 239607 [Multi-domain] Cd Length: 115 Bit Score: 59.73 E-value: 4.52e-11
|
||||||||||
Rieske | cd03467 | Rieske domain; a [2Fe-2S] cluster binding domain commonly found in Rieske non-heme iron ... |
27-104 | 1.77e-10 | ||||||
Rieske domain; a [2Fe-2S] cluster binding domain commonly found in Rieske non-heme iron oxygenase (RO) systems such as naphthalene and biphenyl dioxygenases, as well as in plant/cyanobacterial chloroplast b6f and mitochondrial cytochrome bc(1) complexes. The Rieske domain can be divided into two subdomains, with an incomplete six-stranded, antiparallel beta-barrel at one end, and an iron-sulfur cluster binding subdomain at the other. The Rieske iron-sulfur center contains a [2Fe-2S] cluster, which is involved in electron transfer, and is liganded to two histidine and two cysteine residues present in conserved sequences called Rieske motifs. In RO systems, the N-terminal Rieske domain of the alpha subunit acts as an electron shuttle that accepts electrons from a reductase or ferredoxin component and transfers them to the mononuclear iron in the alpha subunit C-terminal domain to be used for catalysis. Pssm-ID: 239550 [Multi-domain] Cd Length: 98 Bit Score: 57.50 E-value: 1.77e-10
|
||||||||||
PLN00095 | PLN00095 | chlorophyllide a oxygenase; Provisional |
24-150 | 3.27e-10 | ||||||
chlorophyllide a oxygenase; Provisional Pssm-ID: 165668 [Multi-domain] Cd Length: 394 Bit Score: 61.62 E-value: 3.27e-10
|
||||||||||
Rieske_RO_ferredoxin | cd03528 | Rieske non-heme iron oxygenase (RO) family, Rieske ferredoxin component; composed of the ... |
27-134 | 4.15e-05 | ||||||
Rieske non-heme iron oxygenase (RO) family, Rieske ferredoxin component; composed of the Rieske ferredoxin component of some three-component RO systems including biphenyl dioxygenase (BPDO) and carbazole 1,9a-dioxygenase (CARDO). The RO family comprise a large class of aromatic ring-hydroxylating dioxygenases found predominantly in microorganisms. These enzymes enable microorganisms to tolerate and even exclusively utilize aromatic compounds for growth. ROs consist of two or three components: reductase, oxygenase, and ferredoxin (in some cases) components. The ferredoxin component contains either a plant-type or Rieske-type [2Fe-2S] cluster. The Rieske ferredoxin component in this family carries an electron from the RO reductase component to the terminal RO oxygenase component. BPDO degrades biphenyls and polychlorinated biphenyls. BPDO ferredoxin (BphF) has structural features consistent with a minimal and perhaps archetypical Rieske protein in that the insertions that give other Rieske proteins unique structural features are missing. CARDO catalyzes dihydroxylation at the C1 and C9a positions of carbazole. Rieske ferredoxins are found as subunits of membrane oxidase complexes, cis-dihydrodiol-forming aromatic dioxygenases, bacterial assimilatory nitrite reductases, and arsenite oxidase. Rieske ferredoxins are also found as soluble electron carriers in bacterial dioxygenase and monooxygenase complexes. Pssm-ID: 239604 [Multi-domain] Cd Length: 98 Bit Score: 42.09 E-value: 4.15e-05
|
||||||||||
nirD_assim_sml | TIGR02378 | nitrite reductase [NAD(P)H], small subunit; This model describes NirD, the small subunit of ... |
27-134 | 4.73e-05 | ||||||
nitrite reductase [NAD(P)H], small subunit; This model describes NirD, the small subunit of nitrite reductase [NAD(P)H] (the assimilatory nitrite reductase), which associates with NirB, the large subunit (TIGR02374). In a few bacteria such as Klebsiella pneumoniae and in Fungi, the two regions are fused. [Central intermediary metabolism, Nitrogen metabolism] Pssm-ID: 131431 [Multi-domain] Cd Length: 105 Bit Score: 42.30 E-value: 4.73e-05
|
||||||||||
Rieske_RO_Alpha_BPDO_like | cd03472 | Rieske non-heme iron oxygenase (RO) family, Biphenyl dioxygenase (BPDO)-like subfamily, ... |
25-135 | 2.24e-03 | ||||||
Rieske non-heme iron oxygenase (RO) family, Biphenyl dioxygenase (BPDO)-like subfamily, N-terminal Rieske domain of the oxygenase alpha subunit; composed of the oxygenase alpha subunits of BPDO and similar proteins including cumene dioxygenase (CumDO), nitrobenzene dioxygenase (NBDO), alkylbenzene dioxygenase (AkbDO) and dibenzofuran 4,4a-dioxygenase (DFDO). ROs comprise a large class of aromatic ring-hydroxylating dioxygenases that enable microorganisms to tolerate and utilize aromatic compounds for growth. The oxygenase alpha subunit contains an N-terminal Rieske domain with an [2Fe-2S] cluster and a C-terminal catalytic domain with a mononuclear Fe(II) binding site. The Rieske [2Fe-2S] cluster accepts electrons from a reductase or ferredoxin component and transfers them to the mononuclear iron for catalysis. BPDO degrades biphenyls and polychlorinated biphenyls (PCB's) while CumDO degrades cumene (isopropylbenzene), an aromatic hydrocarbon that is intermediate in size between ethylbenzene and biphenyl. NBDO catalyzes the initial reaction in nitrobenzene degradation, oxidizing the aromatic rings of mono- and dinitrotoluenes to form catechol and nitrite. NBDO belongs to the naphthalene subfamily of ROs. AkbDO is involved in alkylbenzene catabolism, converting o-xylene to 2,3- and 3,4-dimethylphenol and ethylbenzene to cis-dihydrodiol. DFDO is involved in dibenzofuran degradation. Pssm-ID: 239554 [Multi-domain] Cd Length: 128 Bit Score: 37.90 E-value: 2.24e-03
|
||||||||||
Blast search parameters | ||||
|