Phosphatase yihX [Shigella flexneri 2002017]
glucose-1-phosphatase( domain architecture ID 10013243)
glucose-1-phosphatase similar to Escherichia coli alpha-D-glucose 1-phosphate phosphatase YihX that catalyzes the dephosphorylation of alpha-D-glucose 1-phosphate (Glc1P) and, to a lesser extent, of other sugar phosphates
List of domain hits
Name | Accession | Description | Interval | E-value | ||||
PRK09456 | PRK09456 | ?-D-glucose-1-phosphatase; Provisional |
1-199 | 4.44e-159 | ||||
?-D-glucose-1-phosphatase; Provisional : Pssm-ID: 181872 [Multi-domain] Cd Length: 199 Bit Score: 436.78 E-value: 4.44e-159
|
||||||||
Name | Accession | Description | Interval | E-value | ||||
PRK09456 | PRK09456 | ?-D-glucose-1-phosphatase; Provisional |
1-199 | 4.44e-159 | ||||
?-D-glucose-1-phosphatase; Provisional Pssm-ID: 181872 [Multi-domain] Cd Length: 199 Bit Score: 436.78 E-value: 4.44e-159
|
||||||||
HAD_sEH-N_like | cd02603 | N-terminal lipase phosphatase domain of human soluble epoxide hydrolase, Escherichia coli YihX ... |
4-189 | 1.08e-70 | ||||
N-terminal lipase phosphatase domain of human soluble epoxide hydrolase, Escherichia coli YihX/HAD4 alpha-D-glucose 1-phosphate phosphatase, and related domains, may be inactive; This family includes the N-terminal phosphatase domain of human soluble epoxide hydrolase (sEH). sEH is a bifunctional enzyme with two distinct enzyme activities, the C-terminal domain has epoxide hydrolysis activity and the N-terminal domain (Ntermphos), which belongs to this family, has lipid phosphatase activity. The latter prefers mono-phosphate esters, and lysophosphatidic acids (LPAs) are the best natural substrates found to date. In addition this family includes Gallus gallus sEH and Xenopus sEH which appears to lack phosphatase activity, and Escherichia coli YihX/HAD4 which selectively hydrolyzes alpha-Glucose-1-P, phosphatase, has significant phosphatase activity against pyridoxal phosphate, and has low beta phosphoglucomutase activity. This family belongs to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. Pssm-ID: 319790 [Multi-domain] Cd Length: 195 Bit Score: 212.98 E-value: 1.08e-70
|
||||||||
HAD-SF-IA-v3 | TIGR01509 | haloacid dehalogenase superfamily, subfamily IA, variant 3 with third motif having DD or ED; ... |
4-184 | 4.63e-48 | ||||
haloacid dehalogenase superfamily, subfamily IA, variant 3 with third motif having DD or ED; This model represents part of one structural subfamily of the Haloacid Dehalogenase (HAD) superfamily of aspartate-nucleophile hydrolases. The superfamily is defined by the presence of three short catalytic motifs. The subfamilies are defined based on the location and the observed or predicted fold of a so-called "capping domain", or the absence of such a domain. Subfamily I consists of sequences in which the capping domain is found in between the first and second catalytic motifs. Subfamily II consists of sequences in which the capping domain is found between the second and third motifs. Subfamily III sequences have no capping domain in either of these positions. The Subfamily IA and IB capping domains are predicted by PSI-PRED to consist of an alpha helical bundle. Subfamily I encompasses such a wide region of sequence space (the sequences are highly divergent) that representing it with a single model is impossible, resulting in an overly broad description which allows in many unrelated sequences. Subfamily IA and IB are separated based on an aparrent phylogenetic bifurcation. Subfamily IA is still too broad to model, but cannot be further subdivided into large chunks based on phylogenetic trees. Of the three motifs defining the HAD superfamily, the third has three variant forms: (1) hhhhsDxxx(x)D, (2) hhhhssxxx(x)D and (3) hhhhDDxxx(x)s where _s_ refers to a small amino acid and _h_ to a hydrophobic one. All three of these variants are found in subfamily IA. Individual models were made based on seeds exhibiting only one of the variants each. Variant 3 (this model) is found in the enzymes beta-phosphoglucomutase (TIGR01990) and deoxyglucose-6-phosphatase, while many other enzymes of subfamily IA exhibit this variant as well as variant 1 (TIGR01549). These three variant models were created with the knowledge that there will be overlap among them - this is by design and serves the purpose of eliminating the overlap with models of more distantly related HAD subfamilies caused by an overly broad single model. [Unknown function, Enzymes of unknown specificity] Pssm-ID: 273662 [Multi-domain] Cd Length: 178 Bit Score: 154.89 E-value: 4.63e-48
|
||||||||
YigB | COG1011 | FMN and 5-amino-6-(5-phospho-D-ribitylamino)uracil phosphatase YigB, HAD superfamily ... |
1-193 | 1.78e-40 | ||||
FMN and 5-amino-6-(5-phospho-D-ribitylamino)uracil phosphatase YigB, HAD superfamily (riboflavin biosynthesis) [Coenzyme transport and metabolism]; Pssm-ID: 440635 [Multi-domain] Cd Length: 220 Bit Score: 137.08 E-value: 1.78e-40
|
||||||||
Hydrolase | pfam00702 | haloacid dehalogenase-like hydrolase; This family is structurally different from the alpha ... |
2-178 | 1.99e-14 | ||||
haloacid dehalogenase-like hydrolase; This family is structurally different from the alpha/beta hydrolase family (pfam00561). This family includes L-2-haloacid dehalogenase, epoxide hydrolases and phosphatases. The structure of the family consists of two domains. One is an inserted four helix bundle, which is the least well conserved region of the alignment, between residues 16 and 96 of Swiss:P24069. The rest of the fold is composed of the core alpha/beta domain. Those members with the characteriztic DxD triad at the N-terminus are probably phosphatidylglycerolphosphate (PGP) phosphatases involved in cardiolipin biosynthesis in the mitochondria. Pssm-ID: 459910 [Multi-domain] Cd Length: 191 Bit Score: 68.38 E-value: 1.99e-14
|
||||||||
Name | Accession | Description | Interval | E-value | ||||
PRK09456 | PRK09456 | ?-D-glucose-1-phosphatase; Provisional |
1-199 | 4.44e-159 | ||||
?-D-glucose-1-phosphatase; Provisional Pssm-ID: 181872 [Multi-domain] Cd Length: 199 Bit Score: 436.78 E-value: 4.44e-159
|
||||||||
HAD_sEH-N_like | cd02603 | N-terminal lipase phosphatase domain of human soluble epoxide hydrolase, Escherichia coli YihX ... |
4-189 | 1.08e-70 | ||||
N-terminal lipase phosphatase domain of human soluble epoxide hydrolase, Escherichia coli YihX/HAD4 alpha-D-glucose 1-phosphate phosphatase, and related domains, may be inactive; This family includes the N-terminal phosphatase domain of human soluble epoxide hydrolase (sEH). sEH is a bifunctional enzyme with two distinct enzyme activities, the C-terminal domain has epoxide hydrolysis activity and the N-terminal domain (Ntermphos), which belongs to this family, has lipid phosphatase activity. The latter prefers mono-phosphate esters, and lysophosphatidic acids (LPAs) are the best natural substrates found to date. In addition this family includes Gallus gallus sEH and Xenopus sEH which appears to lack phosphatase activity, and Escherichia coli YihX/HAD4 which selectively hydrolyzes alpha-Glucose-1-P, phosphatase, has significant phosphatase activity against pyridoxal phosphate, and has low beta phosphoglucomutase activity. This family belongs to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. Pssm-ID: 319790 [Multi-domain] Cd Length: 195 Bit Score: 212.98 E-value: 1.08e-70
|
||||||||
HAD-SF-IA-v3 | TIGR01509 | haloacid dehalogenase superfamily, subfamily IA, variant 3 with third motif having DD or ED; ... |
4-184 | 4.63e-48 | ||||
haloacid dehalogenase superfamily, subfamily IA, variant 3 with third motif having DD or ED; This model represents part of one structural subfamily of the Haloacid Dehalogenase (HAD) superfamily of aspartate-nucleophile hydrolases. The superfamily is defined by the presence of three short catalytic motifs. The subfamilies are defined based on the location and the observed or predicted fold of a so-called "capping domain", or the absence of such a domain. Subfamily I consists of sequences in which the capping domain is found in between the first and second catalytic motifs. Subfamily II consists of sequences in which the capping domain is found between the second and third motifs. Subfamily III sequences have no capping domain in either of these positions. The Subfamily IA and IB capping domains are predicted by PSI-PRED to consist of an alpha helical bundle. Subfamily I encompasses such a wide region of sequence space (the sequences are highly divergent) that representing it with a single model is impossible, resulting in an overly broad description which allows in many unrelated sequences. Subfamily IA and IB are separated based on an aparrent phylogenetic bifurcation. Subfamily IA is still too broad to model, but cannot be further subdivided into large chunks based on phylogenetic trees. Of the three motifs defining the HAD superfamily, the third has three variant forms: (1) hhhhsDxxx(x)D, (2) hhhhssxxx(x)D and (3) hhhhDDxxx(x)s where _s_ refers to a small amino acid and _h_ to a hydrophobic one. All three of these variants are found in subfamily IA. Individual models were made based on seeds exhibiting only one of the variants each. Variant 3 (this model) is found in the enzymes beta-phosphoglucomutase (TIGR01990) and deoxyglucose-6-phosphatase, while many other enzymes of subfamily IA exhibit this variant as well as variant 1 (TIGR01549). These three variant models were created with the knowledge that there will be overlap among them - this is by design and serves the purpose of eliminating the overlap with models of more distantly related HAD subfamilies caused by an overly broad single model. [Unknown function, Enzymes of unknown specificity] Pssm-ID: 273662 [Multi-domain] Cd Length: 178 Bit Score: 154.89 E-value: 4.63e-48
|
||||||||
YigB | COG1011 | FMN and 5-amino-6-(5-phospho-D-ribitylamino)uracil phosphatase YigB, HAD superfamily ... |
1-193 | 1.78e-40 | ||||
FMN and 5-amino-6-(5-phospho-D-ribitylamino)uracil phosphatase YigB, HAD superfamily (riboflavin biosynthesis) [Coenzyme transport and metabolism]; Pssm-ID: 440635 [Multi-domain] Cd Length: 220 Bit Score: 137.08 E-value: 1.78e-40
|
||||||||
HAD-1A3-hyp | TIGR02247 | epoxide hydrolase N-terminal domain-like phosphatase; This model represents a small clade of ... |
4-198 | 2.65e-21 | ||||
epoxide hydrolase N-terminal domain-like phosphatase; This model represents a small clade of sequences including C. elegans and mammalian sequences as well as a small number of bacteria. In eukaryotes, this domain exists as an N-terminal fusion to the soluble epoxide hydrolase enzyme and has recently been shown to be an active phosphatase, although the nature of the biological substrate is unclear. These appear to be members of the haloacid dehalogenase (HAD) superfamily of aspartate-nucleophile hydrolases by general homology and the conservation of all of the recognized catalytic motifs (although the first motif is unusual in the replacement of the more common aspartate with glycine...). The variable domain is found in between motifs 1 and 2, indicating membership in subfamily I and phylogeny and prediction of the alpha helical nature of the variable domain (by PSI-PRED) indicate membership in subfamily IA. Pssm-ID: 274054 [Multi-domain] Cd Length: 211 Bit Score: 87.19 E-value: 2.65e-21
|
||||||||
Hydrolase | pfam00702 | haloacid dehalogenase-like hydrolase; This family is structurally different from the alpha ... |
2-178 | 1.99e-14 | ||||
haloacid dehalogenase-like hydrolase; This family is structurally different from the alpha/beta hydrolase family (pfam00561). This family includes L-2-haloacid dehalogenase, epoxide hydrolases and phosphatases. The structure of the family consists of two domains. One is an inserted four helix bundle, which is the least well conserved region of the alignment, between residues 16 and 96 of Swiss:P24069. The rest of the fold is composed of the core alpha/beta domain. Those members with the characteriztic DxD triad at the N-terminus are probably phosphatidylglycerolphosphate (PGP) phosphatases involved in cardiolipin biosynthesis in the mitochondria. Pssm-ID: 459910 [Multi-domain] Cd Length: 191 Bit Score: 68.38 E-value: 1.99e-14
|
||||||||
HAD_like | cd01427 | Haloacid dehalogenase-like hydrolases; The haloacid dehalogenase-like (HAD) superfamily ... |
89-184 | 9.55e-14 | ||||
Haloacid dehalogenase-like hydrolases; The haloacid dehalogenase-like (HAD) superfamily includes L-2-haloacid dehalogenase, epoxide hydrolase, phosphoserine phosphatase, phosphomannomutase, phosphoglycolate phosphatase, P-type ATPase, and many others. This superfamily includes a variety of enzymes that catalyze the cleavage of substrate C-Cl, P-C, and P-OP bonds via nucleophilic substitution pathways. All of which use a nucleophilic aspartate in their phosphoryl transfer reaction. They catalyze nucleophilic substitution reactions at phosphorus or carbon centers, using a conserved Asp carboxylate in covalent catalysis. All members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. Members of this superfamily are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. Pssm-ID: 319763 [Multi-domain] Cd Length: 106 Bit Score: 64.34 E-value: 9.55e-14
|
||||||||
Gph | COG0546 | Phosphoglycolate phosphatase, HAD superfamily [Energy production and conversion]; |
2-184 | 2.52e-11 | ||||
Phosphoglycolate phosphatase, HAD superfamily [Energy production and conversion]; Pssm-ID: 440312 [Multi-domain] Cd Length: 214 Bit Score: 60.33 E-value: 2.52e-11
|
||||||||
HAD_L2-DEX | cd02588 | L-2-haloacid dehalogenase; L-2-Haloacid dehalogenase catalyzes the hydrolytic dehalogenation ... |
47-193 | 1.19e-10 | ||||
L-2-haloacid dehalogenase; L-2-Haloacid dehalogenase catalyzes the hydrolytic dehalogenation of L-2-haloacids to produce the corresponding D-2-hydroxyacids with an inversion of the C2-configuration. 2-haloacid dehalogenases are of interest for their potential to degrade recalcitrant halogenated environmental pollutants and their use in the synthesis of industrial chemicals. This family belongs to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. Pssm-ID: 319787 [Multi-domain] Cd Length: 216 Bit Score: 58.43 E-value: 1.19e-10
|
||||||||
HAD_Neu5Ac-Pase_like | cd04305 | human N-acetylneuraminate-9-phosphate phosphatase, Escherichia coli house-cleaning phosphatase ... |
85-182 | 1.69e-10 | ||||
human N-acetylneuraminate-9-phosphate phosphatase, Escherichia coli house-cleaning phosphatase YjjG, and related phosphatases; N-acetylneuraminate-9- phosphatase (Neu5Ac-9-Pase; E.C. 3.1.3.29) catalyzes the dephosphorylation of N-acylneuraminate 9-phosphate during the synthesis of N-acetylneuraminate; Escherichia coli nucleotide phosphatase YjjG has a broad pyrimidine nucleotide activity spectrum and functions as an in vivo house-cleaning phosphatase for noncanonical pyrimidine nucleotides. This family belongs to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. Pssm-ID: 319800 [Multi-domain] Cd Length: 109 Bit Score: 55.63 E-value: 1.69e-10
|
||||||||
HAD-SF-IA-v1 | TIGR01549 | haloacid dehalogenase superfamily, subfamily IA, variant 1 with third motif having Dx(3-4)D or ... |
2-178 | 2.76e-10 | ||||
haloacid dehalogenase superfamily, subfamily IA, variant 1 with third motif having Dx(3-4)D or Dx(3-4)E; This model represents part of one structural subfamily of the Haloacid Dehalogenase (HAD) superfamily of aspartate-nucleophile hydrolases. The superfamily is defined by the presence of three short catalytic motifs. The subfamilies are defined based on the location and the observed or predicted fold of a so-called "capping domain", or the absence of such a domain. Subfamily I consists of sequences in which the capping domain is found in between the first and second catalytic motifs. Subfamily II consists of sequences in which the capping domain is found between the second and third motifs. Subfamily III sequences have no capping domain in either of these positions.The Subfamily IA and IB capping domains are predicted by PSI-PRED to consist of an alpha helical bundle. Subfamily I encompasses such a wide region of sequence space (the sequences are highly divergent) that representing it with a single model is impossible, resulting in an overly broad description which allows in many unrelated sequences. Subfamily IA and IB are separated based on an aparrent phylogenetic bifurcation. Subfamily IA is still too broad to model, but cannot be further subdivided into large chunks based on phylogenetic trees. Of the three motifs defining the HAD superfamily, the third has three variant forms: (1) hhhhsDxxx(x)(D/E), (2) hhhhssxxx(x)D and (3) hhhhDDxxx(x)s where _s_ refers to a small amino acid and _h_ to a hydrophobic one. All three of these variants are found in subfamily IA. Individual models were made based on seeds exhibiting only one of the variants each. Variant 1 (this model) is found in the enzymes phosphoglycolate phosphatase (TIGR01449) and enolase-phosphatase. These three variant models (see also TIGR01493 and TIGR01509) were created withthe knowledge that there will be overlap among them - this is by design and serves the purpose of eliminating the overlap with models of more distantly relatedHAD subfamilies caused by an overly broad single model. [Unknown function, Enzymes of unknown specificity] Pssm-ID: 273686 [Multi-domain] Cd Length: 164 Bit Score: 56.64 E-value: 2.76e-10
|
||||||||
YcjU | COG0637 | Beta-phosphoglucomutase, HAD superfamily [Carbohydrate transport and metabolism]; |
4-197 | 6.52e-09 | ||||
Beta-phosphoglucomutase, HAD superfamily [Carbohydrate transport and metabolism]; Pssm-ID: 440402 [Multi-domain] Cd Length: 208 Bit Score: 53.29 E-value: 6.52e-09
|
||||||||
HAD_dREG-2_like | cd16415 | uncharacterized family of the haloacid dehalogenase-like superfamily, similar to ... |
89-193 | 7.54e-09 | ||||
uncharacterized family of the haloacid dehalogenase-like superfamily, similar to uncharacterized Drosophila melanogaster rhythmically expressed gene 2 protein and human haloacid dehalogenase-like hydrolase domain-containing protein 3; The haloacid dehalogenase-like (HAD) hydrolases are a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members include 2-L-haloalkanoic acid dehalogenase (C-Cl bond hydrolysis), azetidine hydrolase (C-N bond hydrolysis); phosphonoacetaldehyde hydrolase (C-P bond hydrolysis), phosphoserine phosphatase and phosphomannomutase (CO-P bond hydrolysis), P-type ATPases (PO-P bond hydrolysis) and many others. Members are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. Pssm-ID: 319852 [Multi-domain] Cd Length: 128 Bit Score: 51.91 E-value: 7.54e-09
|
||||||||
HAD_type_II | TIGR01428 | 2-haloalkanoic acid dehalogenase, type II; Catalyzes the hydrolytic dehalogenation of small ... |
87-184 | 1.78e-08 | ||||
2-haloalkanoic acid dehalogenase, type II; Catalyzes the hydrolytic dehalogenation of small L-2-haloalkanoic acids to yield the corresponding D-2-hydroxyalkanoic acids. Belongs to the Haloacid Dehalogenase (HAD) superfamily of aspartate-nucleophile hydrolases (pfam00702), class (subfamily) I. Note that the Type I HAD enzymes have not yet been fully characterized, but clearly utilize a substantially different catalytic mechanism and are thus unlikely to be related. Pssm-ID: 130495 [Multi-domain] Cd Length: 198 Bit Score: 51.96 E-value: 1.78e-08
|
||||||||
HAD_BPGM-like | cd07505 | beta-phosphoglucomutase-like family of the haloacid dehalogenase-like (HAD) hydrolase ... |
69-186 | 7.55e-08 | ||||
beta-phosphoglucomutase-like family of the haloacid dehalogenase-like (HAD) hydrolase superfamily; This family represents the beta-phosphoglucomutase-like family of the haloacid dehalogenase-like (HAD) hydrolase superfamily. Family members include Lactococcus lactis beta-PGM, a mutase which catalyzes the interconversion of beta-D-glucose 1-phosphate (G1P) and D-glucose 6-phosphate (G6P), Saccharomyces cerevisiae phosphatases GPP1 and GPP2 that dephosphorylate DL-glycerol-3-phosphate and DOG1 and DOG2 that dephosphorylate 2-deoxyglucose-6-phosphate, and Escherichia coli 6-phosphogluconate phosphatase YieH. It belongs to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. Pssm-ID: 319808 [Multi-domain] Cd Length: 143 Bit Score: 49.54 E-value: 7.55e-08
|
||||||||
HAD_2 | pfam13419 | Haloacid dehalogenase-like hydrolase; |
82-184 | 5.26e-07 | ||||
Haloacid dehalogenase-like hydrolase; Pssm-ID: 404323 [Multi-domain] Cd Length: 178 Bit Score: 47.58 E-value: 5.26e-07
|
||||||||
HAD-SF-IIIA | TIGR01662 | HAD-superfamily hydrolase, subfamily IIIA; This subfamily falls within the Haloacid ... |
85-184 | 5.58e-07 | ||||
HAD-superfamily hydrolase, subfamily IIIA; This subfamily falls within the Haloacid Dehalogenase (HAD) superfamily of aspartate-nucleophile hydrolases. The Class III subfamilies are characterized by the lack of any domains located between either between the first and second conserved catalytic motifs (as in the Class I subfamilies, TIGR01493, TIGR01509, TIGR01488 and TIGR01494) or between the second and third conserved catalytic motifs (as in the Class II subfamilies, TIGR01460 and TIGR01484) of the superfamily domain. The IIIA subfamily contains five major clades: histidinol-phosphatase (TIGR01261) and histidinol-phosphatase-related protein (TIGR00213) which together form a subfamily (TIGR01656), DNA 3'-phosphatase (TIGR01663, TIGR01664), YqeG (TIGR01668) and YrbI (TIGR01670). In the case of histidinol phosphatase and PNK-3'-phosphatase, this model represents a domain of a bifunctional system. In the histidinol phosphatase HisB, a C-terminal domain is an imidazoleglycerol-phosphate dehydratase which catalyzes a related step in histidine biosynthesis. In PNK-3'-phosphatase, N- and C-terminal domains constitute the polynucleotide kinase and DNA-binding components of the enzyme. [Unknown function, Enzymes of unknown specificity] Pssm-ID: 273742 [Multi-domain] Cd Length: 135 Bit Score: 47.01 E-value: 5.58e-07
|
||||||||
HAD_CbbY-like | cd07528 | subfamily of beta-phosphoglucomutase-like family, similar to Rhodobacter sphaeroides ... |
83-183 | 7.08e-06 | ||||
subfamily of beta-phosphoglucomutase-like family, similar to Rhodobacter sphaeroides xylulose-1,5-bisphosphate phosphatase CbbY; This family includes Rhodobacter sphaeroides and Arabidopsis thaliana xylulose-1,5-bisphosphate phosphatase CbbY which convert xylulose-1,5-bisphosphate (a potent inhibitor of Ribulose-1,5-bisphosphate carboxylase/oxygenase, Rubisco), to the non-inhibitory compound xylulose-5-phosphate. It belongs to the beta-phosphoglucomutase-like family whose other members include Lactococcus lactis beta-PGM, a mutase which catalyzes the interconversion of beta-D-glucose 1-phosphate (G1P) and D-glucose 6-phosphate (G6P), Saccharomyces cerevisiae phosphatases GPP1 and GPP2 that dephosphorylate DL-glycerol-3-phosphate and DOG1 and DOG2 that dephosphorylate 2-deoxyglucose-6-phosphate, and Escherichia coli 6-phosphogluconate phosphatase YieH. This family belongs to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. Pssm-ID: 319830 [Multi-domain] Cd Length: 199 Bit Score: 44.68 E-value: 7.08e-06
|
||||||||
NagD | COG0647 | Ribonucleotide monophosphatase NagD, HAD superfamily [Nucleotide transport and metabolism]; |
76-169 | 7.43e-06 | ||||
Ribonucleotide monophosphatase NagD, HAD superfamily [Nucleotide transport and metabolism]; Pssm-ID: 440412 [Multi-domain] Cd Length: 259 Bit Score: 45.10 E-value: 7.43e-06
|
||||||||
HAD_BsYqeG-like | cd16416 | Uncharacterized family of the the haloacid dehalogenase-like superfamily, similar to the ... |
87-184 | 6.48e-05 | ||||
Uncharacterized family of the the haloacid dehalogenase-like superfamily, similar to the uncharacterized protein Bacillus subtilis YqeG; The haloacid dehalogenase-like (HAD) hydrolases are a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members include 2-L-haloalkanoic acid dehalogenase (C-Cl bond hydrolysis), azetidine hydrolase (C-N bond hydrolysis); phosphonoacetaldehyde hydrolase (C-P bond hydrolysis), phosphoserine phosphatase and phosphomannomutase (CO-P bond hydrolysis), P-type ATPases (PO-P bond hydrolysis) and many others. Members are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. Pssm-ID: 319853 [Multi-domain] Cd Length: 108 Bit Score: 40.71 E-value: 6.48e-05
|
||||||||
Hydrolase_like | pfam13242 | HAD-hyrolase-like; |
139-185 | 6.82e-05 | ||||
HAD-hyrolase-like; Pssm-ID: 433056 [Multi-domain] Cd Length: 75 Bit Score: 39.91 E-value: 6.82e-05
|
||||||||
Acid_PPase | pfam12689 | Acid Phosphatase; This family contains phosphatase enzymes and other proteins of the HAD ... |
83-186 | 6.84e-05 | ||||
Acid Phosphatase; This family contains phosphatase enzymes and other proteins of the HAD superfamily. It includes MDP-1 which is a eukaryotic magnesium-dependent acid phosphatase. Pssm-ID: 372256 Cd Length: 169 Bit Score: 41.44 E-value: 6.84e-05
|
||||||||
HAD_5NT | cd02604 | haloacid dehalogenase (HAD)-like 5'-nucleotidases similar to Saccharomyces cerevisiae Phm8p ... |
141-184 | 1.23e-04 | ||||
haloacid dehalogenase (HAD)-like 5'-nucleotidases similar to Saccharomyces cerevisiae Phm8p and Sdt1p; This family includes Saccharomyces cerevisiae Phm8p (phosphate metabolism protein 8) and Sdt1p (Suppressor of disruption of TFIIS). Phm8p participates in the ribose salvage pathway, it catalyzes the dephosphorylation of nucleotide monophosphates to nucleosides, its preferred substrates are nucleotide monophosphates AMP, GMP, CMP, and UMP. Phm8p is also a lysophosphatidic acid phosphatase, dephosphorylating lysophosphatidic acids (LPAs) to monoacylglycerol in response to phosphate starvation. Sdt1p is a pyrimidine and pyridine-specific 5'-nucleotidase; it is an NMN/NaMN 5'-nucleotidases involved in the production of nicotinamide riboside and nicotinic acid riboside, and is a pyrimidine 5'-nucleotidase with high specificity for UMP and CMP. This family belongs to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. Pssm-ID: 319791 [Multi-domain] Cd Length: 182 Bit Score: 41.08 E-value: 1.23e-04
|
||||||||
PRK14988 | PRK14988 | GMP/IMP nucleotidase; Provisional |
83-179 | 2.17e-04 | ||||
GMP/IMP nucleotidase; Provisional Pssm-ID: 237882 [Multi-domain] Cd Length: 224 Bit Score: 40.47 E-value: 2.17e-04
|
||||||||
HAD_MDP-1_like | cd07501 | eukaryotic hypothetical phosphotyrosine phosphatase MDP-1 and related phosphatases, similar to ... |
83-184 | 2.25e-04 | ||||
eukaryotic hypothetical phosphotyrosine phosphatase MDP-1 and related phosphatases, similar to Bacillus cereus phosphonoacetaldehyde hydrolase and Streptomyces FkbH; This family includes eukaryotic magnesium-dependent phosphatase-1 (MDP-1) which is most likely a phosphotyrosine phosphatase catalyzing the dephosphorylation of tyrosine-phosphorylated proteins, Bacillus cereus phosphonoacetaldehyde hydrolase (phosphonatase)which catalyzes the hydrolysis of phosphonoacetaldehyde to acetaldehyde and phosphate using Mg(II) as cofactor, and sequences annotated as FkbH including BafAIV an FkbH-like protein from Streptomyces griseus encoded in ORF12 of the bafilomycin synthesis gene cluster. This family belongs to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. Pssm-ID: 319804 [Multi-domain] Cd Length: 129 Bit Score: 39.64 E-value: 2.25e-04
|
||||||||
SerB | COG0560 | Phosphoserine phosphatase [Amino acid transport and metabolism]; Phosphoserine phosphatase is ... |
2-111 | 8.66e-04 | ||||
Phosphoserine phosphatase [Amino acid transport and metabolism]; Phosphoserine phosphatase is part of the Pathway/BioSystem: Serine biosynthesis Pssm-ID: 440326 [Multi-domain] Cd Length: 221 Bit Score: 38.66 E-value: 8.66e-04
|
||||||||
HAD_5NT | cd04302 | haloacid dehalogenase (HAD)-like 5'-nucleotidases similar to the Pseudomonas aeruginosa PA0065; ... |
87-184 | 1.22e-03 | ||||
haloacid dehalogenase (HAD)-like 5'-nucleotidases similar to the Pseudomonas aeruginosa PA0065; 5'-nucleotidases dephosphorylate nucleoside 5'-monophosphates to nucleosides and inorganic phosphate. Purified Pseudomonas aeruginosa PA0065 displayed high activity toward 5'-UMP and 5'-IMP, significant activity against 5'-XMP and 5'-TMP, and low activity against 5'-CMP. This family belongs to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. Pssm-ID: 319798 [Multi-domain] Cd Length: 209 Bit Score: 38.34 E-value: 1.22e-03
|
||||||||
Blast search parameters | ||||
|