McyA, partial [Anabaena sp. A7]
condensation domain-containing protein( domain architecture ID 1562932)
condensation (C) domain-containing protein catalyzes peptide bond formation; the C domain is found in non-ribosomal peptide synthetases (NRPSs), modular multidomain enzymes that catalyze the biosynthesis of diverse peptides with a wide variety of activities
List of domain hits
Name | Accession | Description | Interval | E-value | |||
C_NRPS-like super family | cl40425 | Condensation domain of nonribosomal peptide synthetases (NRPSs); Condensation (C) domains of ... |
1-99 | 9.49e-37 | |||
Condensation domain of nonribosomal peptide synthetases (NRPSs); Condensation (C) domains of nonribosomal peptide synthetases (NRPSs) catalyze peptide bond formation within (usually) large multi-modular enzymatic complexes. NRPS can use a large variety of acyl monomers (approximately 500 different possible monomer substrates as opposed to the 20 standard amino acids in ribosomal protein synthesis) to construct bioactive secondary metabolites of 2 to 18 units long, with various activities such as antibiotic, antifungal, antitumor and immunosuppression. There are various subtypes of C-domains such as the LCL-type which catalyzes peptide bond formation between two L-amino acids, the DCL-type which links an L-amino acid to the D-amino acid at the end of a growing peptide, starter C-domains which acylate the first amino acid with a beta-hydroxy carboxylic acid, and heterocyclization (Cyc) domains which catalyze both peptide bond formation and cyclization of Cys, Ser, or Thr residues. Typically, an NRPS module consists of an adenylation domain, a peptidyl carrier protein (PCP) domain (also known as thiolation (T) domain) and a C-domain. NRPS modules may also include specialized domains such as the terminal-module thioesterase (Te) domain that releases the product via hydrolysis or macrocyclization and any of various C-domain family members such as the epimerization (E) domain, the ester-bond forming C-domain, dual E/C (epimerization and condensation) domains, and the X-domain. C-domains typically have a conserved HHxxxD motif at the active site; mutations in this motif can abolish or diminish condensation activity. The actual alignment was detected with superfamily member cd19536: Pssm-ID: 394795 [Multi-domain] Cd Length: 419 Bit Score: 127.95 E-value: 9.49e-37
|
|||||||
Name | Accession | Description | Interval | E-value | |||
DCL_NRPS-like | cd19536 | DCL-type Condensation domains of nonribosomal peptide synthetases (NRPSs), such as terminal ... |
1-99 | 9.49e-37 | |||
DCL-type Condensation domains of nonribosomal peptide synthetases (NRPSs), such as terminal fungal CT domains and Dual Epimerization/Condensation (E/C) domains; Condensation (C) domains of nonribosomal peptide synthetases (NRPSs) catalyze peptide bond formation within (usually) large multi-modular enzymatic complexes. NRPS can use a large variety of acyl monomers (approximately 500 different possible monomer substrates as opposed to the 20 standard amino acids in ribosomal protein synthesis) to construct bioactive secondary metabolites of 2 to 18 units long (with various activities such as antibiotic, antifungal, antitumor and immunosuppression). There are various subtypes of C-domains such as the LCL-type which catalyzes peptide bond formation between two L-amino acids, the DCL-type [D-specific for the peptidyl donor and L-specific for the aminoacyl acceptor ((D)C(L))], which links an L-amino acid to the D-amino acid at the end of a growing peptide, starter C-domains which acylate the first amino acid with a beta-hydroxy carboxylic acid, and heterocyclization (Cyc) domains which catalyze both peptide bond formation and cyclization of Cys, Ser, or Thr residues. Typically, an NRPS module consists of an adenylation domain, a peptidyl carrier protein (PCP) domain (also known as thiolation (T) domain) and a C-domain. NRPS modules may also include specialized domains such as the terminal-module thioesterase (Te) domain that releases the product via hydrolysis or macrocyclization and any of various C-domain family members such as the epimerization (E) domain, the ester-bond forming C-domain, dual E/C (epimerization and condensation) domains, and the X-domain. C-domains typically have a conserved HHxxxD motif at the active site; mutations in this motif can abolish or diminish condensation activity. Pssm-ID: 380459 [Multi-domain] Cd Length: 419 Bit Score: 127.95 E-value: 9.49e-37
|
|||||||
EntF | COG1020 | EntF, seryl-AMP synthase component of non-ribosomal peptide synthetase [Secondary metabolites ... |
2-99 | 3.22e-17 | |||
EntF, seryl-AMP synthase component of non-ribosomal peptide synthetase [Secondary metabolites biosynthesis, transport and catabolism]; Pssm-ID: 440643 [Multi-domain] Cd Length: 1329 Bit Score: 74.89 E-value: 3.22e-17
|
|||||||
Condensation | pfam00668 | Condensation domain; This domain is found in many multi-domain enzymes which synthesize ... |
2-99 | 4.34e-14 | |||
Condensation domain; This domain is found in many multi-domain enzymes which synthesize peptide antibiotics. This domain catalyzes a condensation reaction to form peptide bonds in non- ribosomal peptide biosynthesis. It is usually found to the carboxy side of a phosphopantetheine binding domain (pfam00550). It has been shown that mutations in the HHXXXDG motif abolish activity suggesting this is part of the active site. Pssm-ID: 395541 [Multi-domain] Cd Length: 454 Bit Score: 65.82 E-value: 4.34e-14
|
|||||||
PRK12316 | PRK12316 | peptide synthase; Provisional |
2-99 | 1.41e-05 | |||
peptide synthase; Provisional Pssm-ID: 237054 [Multi-domain] Cd Length: 5163 Bit Score: 41.87 E-value: 1.41e-05
|
|||||||
Name | Accession | Description | Interval | E-value | |||
DCL_NRPS-like | cd19536 | DCL-type Condensation domains of nonribosomal peptide synthetases (NRPSs), such as terminal ... |
1-99 | 9.49e-37 | |||
DCL-type Condensation domains of nonribosomal peptide synthetases (NRPSs), such as terminal fungal CT domains and Dual Epimerization/Condensation (E/C) domains; Condensation (C) domains of nonribosomal peptide synthetases (NRPSs) catalyze peptide bond formation within (usually) large multi-modular enzymatic complexes. NRPS can use a large variety of acyl monomers (approximately 500 different possible monomer substrates as opposed to the 20 standard amino acids in ribosomal protein synthesis) to construct bioactive secondary metabolites of 2 to 18 units long (with various activities such as antibiotic, antifungal, antitumor and immunosuppression). There are various subtypes of C-domains such as the LCL-type which catalyzes peptide bond formation between two L-amino acids, the DCL-type [D-specific for the peptidyl donor and L-specific for the aminoacyl acceptor ((D)C(L))], which links an L-amino acid to the D-amino acid at the end of a growing peptide, starter C-domains which acylate the first amino acid with a beta-hydroxy carboxylic acid, and heterocyclization (Cyc) domains which catalyze both peptide bond formation and cyclization of Cys, Ser, or Thr residues. Typically, an NRPS module consists of an adenylation domain, a peptidyl carrier protein (PCP) domain (also known as thiolation (T) domain) and a C-domain. NRPS modules may also include specialized domains such as the terminal-module thioesterase (Te) domain that releases the product via hydrolysis or macrocyclization and any of various C-domain family members such as the epimerization (E) domain, the ester-bond forming C-domain, dual E/C (epimerization and condensation) domains, and the X-domain. C-domains typically have a conserved HHxxxD motif at the active site; mutations in this motif can abolish or diminish condensation activity. Pssm-ID: 380459 [Multi-domain] Cd Length: 419 Bit Score: 127.95 E-value: 9.49e-37
|
|||||||
EntF | COG1020 | EntF, seryl-AMP synthase component of non-ribosomal peptide synthetase [Secondary metabolites ... |
2-99 | 3.22e-17 | |||
EntF, seryl-AMP synthase component of non-ribosomal peptide synthetase [Secondary metabolites biosynthesis, transport and catabolism]; Pssm-ID: 440643 [Multi-domain] Cd Length: 1329 Bit Score: 74.89 E-value: 3.22e-17
|
|||||||
Condensation | pfam00668 | Condensation domain; This domain is found in many multi-domain enzymes which synthesize ... |
2-99 | 4.34e-14 | |||
Condensation domain; This domain is found in many multi-domain enzymes which synthesize peptide antibiotics. This domain catalyzes a condensation reaction to form peptide bonds in non- ribosomal peptide biosynthesis. It is usually found to the carboxy side of a phosphopantetheine binding domain (pfam00550). It has been shown that mutations in the HHXXXDG motif abolish activity suggesting this is part of the active site. Pssm-ID: 395541 [Multi-domain] Cd Length: 454 Bit Score: 65.82 E-value: 4.34e-14
|
|||||||
DCL_NRPS | cd19543 | DCL-type Condensation domain of nonribosomal peptide synthetases (NRPSs), which catalyzes the ... |
11-99 | 1.19e-12 | |||
DCL-type Condensation domain of nonribosomal peptide synthetases (NRPSs), which catalyzes the condensation between a D-aminoacyl/peptidyl-PCP donor and a L-aminoacyl-PCP acceptor; The DCL-type Condensation (C) domain catalyzes the condensation between a D-aminoacyl/peptidyl-PCP donor and a L-aminoacyl-PCP acceptor. This domain is D-specific for the peptidyl donor and L-specific for the aminoacyl acceptor ((D)C(L)); this is in contrast with the standard LCL domains which catalyze peptide bond formation between two L-amino acids, and the restriction of ribosomes to use only L-amino acids. C domains of nonribosomal peptide synthetases (NRPSs) catalyze peptide bond formation within (usually) large multi-modular enzymatic complexes. NRPS can use a large variety of acyl monomers (approximately 500 different possible monomer substrates as opposed to the 20 standard amino acids in ribosomal protein synthesis) to construct bioactive secondary metabolites of 2 to 18 units long (with various activities such as antibiotic, antifungal, antitumor and immunosuppression). There are various subtypes of C-domains in addition to the LCL- and DCL-types such as starter C-domains which acylate the first amino acid with a beta-hydroxy carboxylic acid, and heterocyclization (Cyc) domains which catalyze both peptide bond formation and cyclization of Cys, Ser, or Thr residues. Typically, an NRPS module consists of an adenylation domain, a peptidyl carrier protein (PCP) domain (also known as thiolation (T) domain) and a C-domain. NRPS modules may also include specialized domains such as the terminal-module thioesterase (Te) domain that releases the product via hydrolysis or macrocyclization and any of various C-domain family members such as the epimerization (E) domain, the ester-bond forming C-domain, dual E/C (epimerization and condensation) domains, and the X-domain. C-domains typically have a conserved HHxxxD motif at the active site; mutations in this motif can abolish or diminish condensation activity. Pssm-ID: 380465 [Multi-domain] Cd Length: 423 Bit Score: 61.84 E-value: 1.19e-12
|
|||||||
E-C_NRPS | cd19544 | Dual Epimerization/Condensation (E/C) domains of nonribosomal peptide synthetases (NRPSs); ... |
10-64 | 9.89e-10 | |||
Dual Epimerization/Condensation (E/C) domains of nonribosomal peptide synthetases (NRPSs); Dual function Epimerization/Condensation (E/C) domains have both an epimerization and a DCL condensation activity. Dual E/C domains first epimerize the substrate amino acid to produce a D-configuration, then catalyze the condensation between the D-aminoacyl/peptidyl-PCP donor and a L-aminoacyl-PCP acceptor. They are D-specific for the peptidyl donor and L-specific for the aminoacyl acceptor ((D)C(L)); this is in contrast with the standard LCL domains which catalyze peptide bond formation between two L-amino acids, and the restriction of ribosomes to use only L-amino acids. These Dual E/C domains contain an extended His-motif (HHx(N)GD) near the N-terminus of the domain in addition to the standard Condensation (C) domain active site motif (HHxxxD). C domains of nonribosomal peptide synthetases (NRPSs) catalyze peptide bond formation within (usually) large multi-modular enzymatic complexes. NRPS can use a large variety of acyl monomers (approximately 500 different possible monomer substrates as opposed to the 20 standard amino acids in ribosomal protein synthesis) to construct bioactive secondary metabolites of 2 to 18 units long (with various activities such as antibiotic, antifungal, antitumor and immunosuppression). There are various subtypes of C-domains, these include the DCL-type, LCL-type, starter C-domains which acylate the first amino acid with a beta-hydroxy carboxylic acid, and heterocyclization (Cyc) domains which catalyze both peptide bond formation and cyclization of Cys, Ser, or Thr residues. Typically, an NRPS module consists of an adenylation domain, a peptidyl carrier protein (PCP) domain (also known as thiolation (T) domain) and a C-domain. NRPS modules may also include specialized domains such as the terminal-module thioesterase (Te) domain that releases the product via hydrolysis or macrocyclization and any of various C-domain family members such as the epimerization (E) domain, the ester-bond forming C-domain, dual E/C domains, and the X-domain. Pssm-ID: 380466 [Multi-domain] Cd Length: 413 Bit Score: 53.60 E-value: 9.89e-10
|
|||||||
CT_NRPS-like | cd19542 | Terminal Condensation (CT)-like domains of nonribosomal peptide synthetases (NRPSs); Unlike ... |
2-99 | 3.97e-09 | |||
Terminal Condensation (CT)-like domains of nonribosomal peptide synthetases (NRPSs); Unlike bacterial NRPS, which typically have specialized terminal thioesterase (TE) domains to cyclize peptide products, many fungal NRPSs employ a terminal condensation-like (CT) domain to produce macrocyclic peptidyl products (e.g. cyclosporine and echinocandin). Domains in this subfamily (which includes both terminal and non-terminal domains) typically have a non-canonical conserved [SN]HxxxDx(14)Y motif at their active site compared to the standard Condensation (C) domain active site motif (HHxxxD). C-domains of NRPSs catalyze peptide bond formation within (usually) large multi-modular enzymatic complexes. NRPS can use a large variety of acyl monomers (approximately 500 different possible monomer substrates as opposed to the 20 standard amino acids in ribosomal protein synthesis) to construct bioactive secondary metabolites of 2 to 18 units long (with various activities such as antibiotic, antifungal, antitumor and immunosuppression). There are various subtypes of C-domains such as the LCL-type which catalyzes peptide bond formation between two L-amino acids, the DCL-type which links an L-amino acid to the D-amino acid at the end of a growing peptide, starter C-domains which acylate the first amino acid with a beta-hydroxy carboxylic acid, and heterocyclization (Cyc) domains which catalyze both peptide bond formation and cyclization of Cys, Ser, or Thr residues. Typically, an NRPS module consists of an adenylation domain, a peptidyl carrier protein (PCP) domain (also known as thiolation (T) domain) and a C-domain. NRPS modules may also include specialized domains such as the terminal-module thioesterase (Te) domain that releases the product via hydrolysis or macrocyclization and any of various C-domain family members such as the epimerization (E) domain, the ester-bond forming C-domain, dual E/C (epimerization and condensation) domains, and the X-domain. Pssm-ID: 380464 [Multi-domain] Cd Length: 401 Bit Score: 51.92 E-value: 3.97e-09
|
|||||||
SgcC5_NRPS-like | cd19539 | SgcC5 is a non-ribosomal peptide synthetase (NRPS) condensation enzyme with ester- and amide- ... |
2-99 | 1.29e-08 | |||
SgcC5 is a non-ribosomal peptide synthetase (NRPS) condensation enzyme with ester- and amide- bond forming activity and similar C-domains of modular NRPSs; SgcC5 is a free-standing NRPS condensation enzyme (rather than a modular NRPS), which catalyzes the condensation between the SgcC2-tethered (S)-3-chloro-5-hydroxy-beta-tyrosine and (R)-1phenyl-1,2-ethanediol, forming an ester bond, during the synthesis of the chromoprotein enediyne antitumor antibiotic C-1027. It has some acceptor substrate promiscuity as it has been shown to also catalyze the formation of an amide bond between SgcC2-tethered (S)-3-chloro-5-hydroxy-beta-tyrosine and a mimic of the enediyne core acceptor substrate having an amine at its C-2 position. This subfamily also includes similar C-domains of modular NRPSs such as Penicillium chrysogenum N-(5-amino-5-carboxypentanoyl)-L-cysteinyl-D-valine synthase PCBAB. Condensation (C) domains of NRPSs normally catalyze peptide bond formation within (usually) large multi-modular enzymatic complexes. NRPS can use a large variety of acyl monomers (approximately 500 different possible monomer substrates as opposed to the 20 standard amino acids in ribosomal protein synthesis) to construct bioactive secondary metabolites of 2 to 18 units long (with various activities such as antibiotic, antifungal, antitumor and immunosuppression). There are various subtypes of C-domains such as the LCL-type which catalyzes peptide bond formation between two L-amino acids, the DCL-type which links an L-amino acid to the D-amino acid at the end of a growing peptide, starter C-domains which acylate the first amino acid with a beta-hydroxy carboxylic acid, and heterocyclization (Cyc) domains which catalyze both peptide bond formation and cyclization of Cys, Ser, or Thr residues. Typically, an NRPS module consists of an adenylation domain, a peptidyl carrier protein (PCP) domain (also known as thiolation (T) domain) and a C-domain. NRPS modules may also include specialized domains such as the terminal-module thioesterase (Te) domain that releases the product via hydrolysis or macrocyclization and any of various C-domain family members such as the epimerization (E) domain, the ester-bond forming C-domain, dual E/C (epimerization and condensation) domains, and the X-domain. C-domains typically have a conserved HHxxxD motif at the active site; mutations in this motif can abolish or diminish condensation activity. Pssm-ID: 380462 [Multi-domain] Cd Length: 427 Bit Score: 50.46 E-value: 1.29e-08
|
|||||||
C_NRPS-like | cd19066 | Condensation domain of nonribosomal peptide synthetases (NRPSs); Condensation (C) domains of ... |
3-99 | 4.46e-07 | |||
Condensation domain of nonribosomal peptide synthetases (NRPSs); Condensation (C) domains of nonribosomal peptide synthetases (NRPSs) catalyze peptide bond formation within (usually) large multi-modular enzymatic complexes. NRPS can use a large variety of acyl monomers (approximately 500 different possible monomer substrates as opposed to the 20 standard amino acids in ribosomal protein synthesis) to construct bioactive secondary metabolites of 2 to 18 units long, with various activities such as antibiotic, antifungal, antitumor and immunosuppression. There are various subtypes of C-domains such as the LCL-type which catalyzes peptide bond formation between two L-amino acids, the DCL-type which links an L-amino acid to the D-amino acid at the end of a growing peptide, starter C-domains which acylate the first amino acid with a beta-hydroxy carboxylic acid, and heterocyclization (Cyc) domains which catalyze both peptide bond formation and cyclization of Cys, Ser, or Thr residues. Typically, an NRPS module consists of an adenylation domain, a peptidyl carrier protein (PCP) domain (also known as thiolation (T) domain) and a C-domain. NRPS modules may also include specialized domains such as the terminal-module thioesterase (Te) domain that releases the product via hydrolysis or macrocyclization and any of various C-domain family members such as the epimerization (E) domain, the ester-bond forming C-domain, dual E/C (epimerization and condensation) domains, and the X-domain. C-domains typically have a conserved HHxxxD motif at the active site; mutations in this motif can abolish or diminish condensation activity. Pssm-ID: 380453 [Multi-domain] Cd Length: 427 Bit Score: 45.86 E-value: 4.46e-07
|
|||||||
C_PKS-NRPS | cd19532 | Condensation domain of hybrid polyketide synthetase/nonribosomal peptide synthetases (PKS ... |
5-64 | 3.12e-06 | |||
Condensation domain of hybrid polyketide synthetase/nonribosomal peptide synthetases (PKS/NRPSs); Condensation (C) domains of nonribosomal peptide synthetases (NRPSs) catalyze peptide bond formation within (usually) large multi-modular enzymatic complexes. Hybrid PKS/NRPS create polymers containing both polyketide and amide linkages. C-domains typically have a conserved HHxxxD motif at the active site; mutations in this motif can abolish or diminish condensation activity. Most members of this subfamily have the typical C-domain HHxxxD motif, a few such as Monascus pilosus lovastatin nonaketide synthase MokA have a non-canonical HRxxxD motif in the C-domain and are unable to catalyze amide-bond formation. NRPS can use a large variety of acyl monomers (approximately 500 different possible monomer substrates as opposed to the 20 standard amino acids in ribosomal protein synthesis) to construct bioactive secondary metabolites of 2 to 18 units long (with various activities such as antibiotic, antifungal, antitumor and immunosuppression). There are various subtypes of C-domains such as the LCL-type which catalyzes peptide bond formation between two L-amino acids, the DCL-type which links an L-amino acid to the D-amino acid at the end of a growing peptide, starter C-domains which acylate the first amino acid with a beta-hydroxy carboxylic acid, and heterocyclization (Cyc) domains which catalyze both peptide bond formation and cyclization of Cys, Ser, or Thr residues. Typically, an NRPS module consists of an adenylation domain, a peptidyl carrier protein (PCP) domain (also known as thiolation (T) domain) and a C-domain. NRPS modules may also include specialized domains such as the terminal-module thioesterase (Te) domain that releases the product via hydrolysis or macrocyclization and any of various C-domain family members such as the epimerization (E) domain, the ester-bond forming C-domain, dual E/C (epimerization and condensation) domains, and the X-domain. Pssm-ID: 380455 [Multi-domain] Cd Length: 421 Bit Score: 43.60 E-value: 3.12e-06
|
|||||||
starter-C_NRPS | cd19533 | Starter Condensation domains, found in the first module of nonribosomal peptide synthetases ... |
2-82 | 7.28e-06 | |||
Starter Condensation domains, found in the first module of nonribosomal peptide synthetases (NRPSs); Condensation (C) domains of nonribosomal peptide synthetases (NRPSs) catalyze peptide bond formation within (usually) large multi-modular enzymatic complexes. While standard C-domains catalyze peptide bond formation between two amino acids, an initial, ('starter') C-domain may instead acylate an amino acid with a fatty acid. NRPS can use a large variety of acyl monomers (approximately 500 different possible monomer substrates as opposed to the 20 standard amino acids in ribosomal protein synthesis) to construct bioactive secondary metabolites of 2 to 18 units long (with various activities such as antibiotic, antifungal, antitumor and immunosuppression). There are various subtypes of C-domains such as the LCL-type which catalyzes peptide bond formation between two L-amino acids, the DCL-type which links an L-amino acid to the D-amino acid at the end of a growing peptide, starter C-domains which acylate the first amino acid with a beta-hydroxy carboxylic acid, and heterocyclization (Cyc) domains which catalyze both peptide bond formation and cyclization of Cys, Ser, or Thr residues. Typically, an NRPS module consists of an adenylation domain, a peptidyl carrier protein (PCP) domain (also known as thiolation (T) domain) and a C-domain. NRPS modules may also include specialized domains such as the terminal-module thioesterase (Te) domain that releases the product via hydrolysis or macrocyclization and any of various C-domain family members such as the epimerization (E) domain, the ester-bond forming C-domain, dual E/C (epimerization and condensation) domains, and the X-domain. C-domains typically have a conserved HHxxxD motif at the active site; mutations in this motif can abolish or diminish condensation activity. Pssm-ID: 380456 [Multi-domain] Cd Length: 419 Bit Score: 42.74 E-value: 7.28e-06
|
|||||||
beta-lac_NRPS | cd19547 | Condensation domain of nonribosomal peptide synthetases (NRPSs) similar to Nocardia uniformis ... |
6-53 | 1.03e-05 | |||
Condensation domain of nonribosomal peptide synthetases (NRPSs) similar to Nocardia uniformis NocB which exhibits an unusual cyclization to form beta-lactam rings in pro-nocardicin G synthesis; Nocardia uniformis NRPS NocB acts centrally in the biosynthesis of the nocardicin monocyclic beta-lactam antibiotics. Along with another NRPS NocA, it mediates an unusual cyclization to form beta-lactam rings in the synthesis of the beta-lactam-containing pentapeptide pro-nocardicin G. This small subfamily is related to DCL-type Condensation (C) domains, which catalyze condensation between a D-aminoacyl/peptidyl-PCP donor and a L-aminoacyl-PCP acceptor. NRPSs catalyze peptide bond formation within (usually) large multi-modular enzymatic complexes. NRPS can use a large variety of acyl monomers (approximately 500 different possible monomer substrates as opposed to the 20 standard amino acids in ribosomal protein synthesis) to construct bioactive secondary metabolites of 2 to 18 units long (with various activities such as antibiotic, antifungal, antitumor and immunosuppression). There are various subtypes of C-domains such as the LCL-type which catalyzes peptide bond formation between two L-amino acids, the DCL-type which links an L-amino acid to the D-amino acid at the end of a growing peptide, starter C-domains which acylate the first amino acid with a beta-hydroxy carboxylic acid, and heterocyclization (Cyc) domains which catalyze both peptide bond formation and cyclization of Cys, Ser, or Thr residues. Typically, an NRPS module consists of an adenylation domain, a peptidyl carrier protein (PCP) domain (also known as thiolation (T) domain) and a C-domain. NRPS modules may also include specialized domains such as the terminal-module thioesterase (Te) domain that releases the product via hydrolysis or macrocyclization and any of various C-domain family members such as the epimerization (E) domain, the ester-bond forming C-domain, dual E/C (epimerization and condensation) domains, and the X-domain. C-domains typically have a conserved HHxxxD motif at the active site; domains belonging to this subfamily have an HHHxxxD motif at the active site. Pssm-ID: 380469 [Multi-domain] Cd Length: 422 Bit Score: 42.30 E-value: 1.03e-05
|
|||||||
PRK12316 | PRK12316 | peptide synthase; Provisional |
2-99 | 1.41e-05 | |||
peptide synthase; Provisional Pssm-ID: 237054 [Multi-domain] Cd Length: 5163 Bit Score: 41.87 E-value: 1.41e-05
|
|||||||
LCL_NRPS-like | cd19531 | LCL-type Condensation (C) domain of non-ribosomal peptide synthetases(NRPSs) and similar ... |
3-64 | 1.73e-05 | |||
LCL-type Condensation (C) domain of non-ribosomal peptide synthetases(NRPSs) and similar domains including the C-domain of SgcC5, a free-standing NRPS with both ester- and amide- bond forming activity; LCL-type Condensation (C) domains catalyze peptide bond formation between two L-amino acids, ((L)C(L)). C-domains of NRPSs catalyze peptide bond formation within (usually) large multi-modular enzymatic complexes. NRPS can use a large variety of acyl monomers (approximately 500 different possible monomer substrates as opposed to the 20 standard amino acids in ribosomal protein synthesis) to construct bioactive secondary metabolites of 2 to 18 units long (with various activities such as antibiotic, antifungal, antitumor and immunosuppression). In addition to the LCL-type, there are various subtypes of C-domains such as the DCL-type which links an L-amino acid to the D-amino acid at the end of a growing peptide, starter C-domains which acylate the first amino acid with a beta-hydroxy carboxylic acid, and heterocyclization (Cyc) domains which catalyze both peptide bond formation and cyclization of Cys, Ser, or Thr residues. Typically, an NRPS module consists of an adenylation domain, a peptidyl carrier protein (PCP) domain (also known as thiolation (T) domain) and a C-domain. NRPS modules may also include specialized domains such as the terminal-module thioesterase (Te) domain that releases the product via hydrolysis or macrocyclization and any of various C-domain family members such as the epimerization (E) domain, the ester-bond forming C-domain, dual E/C (epimerization and condensation) domains, and the X-domain. Streptomyces globisporus SgcC5 is a free-standing NRPS condensation enzyme (rather than a modular NRPS), which catalyzes the condensation between the SgcC2-tethered (S)-3-chloro-5-hydroxy-beta-tyrosine and (R)-1phenyl-1,2-ethanediol, forming an ester bond, during the synthesis of the chromoprotein enediyne antitumor antibiotic C-1027. It has some acceptor substrate promiscuity as it has been shown to also catalyze the formation of an amide bond between SgcC2-tethered (S)-3-chloro-5-hydroxy-beta-tyrosine and a mimic of the enediyne core acceptor substrate having an amine at its C-2 position. C-domains typically have a conserved HHxxxD motif at the active site; mutations in this motif can abolish or diminish condensation activity. An HHxx[SAG]DGxSx(6)[ED] motif is characteristic of LCL-type C-domains. Pssm-ID: 380454 [Multi-domain] Cd Length: 427 Bit Score: 41.57 E-value: 1.73e-05
|
|||||||
PRK05691 | PRK05691 | peptide synthase; Validated |
6-99 | 4.69e-05 | |||
peptide synthase; Validated Pssm-ID: 235564 [Multi-domain] Cd Length: 4334 Bit Score: 40.54 E-value: 4.69e-05
|
|||||||
C_PKS-NRPS_PksJ-like | cd20484 | Condensation domain of hybrid polyketide synthetase/nonribosomal peptide synthetases (PKS ... |
2-99 | 2.79e-04 | |||
Condensation domain of hybrid polyketide synthetase/nonribosomal peptide synthetases (PKS/NRPSs), similar to Bacillus subtilis PksJ; Condensation (C) domains of nonribosomal peptide synthetases (NRPSs) catalyze peptide bond formation within (usually) large multi-modular enzymatic complexes. Hybrid PKS/NRPS create polymers containing both polyketide and amide linkages. C-domains typically have a conserved HHxxxD motif at the active site; mutations in this motif can abolish or diminish condensation activity. Members of this subfamily have the typical C-domain HHxxxD motif. PksJ is involved in some intermediate steps for the synthesis of the antibiotic polyketide bacillaene which is important in secondary metabolism. NRPS can use a large variety of acyl monomers (approximately 500 different possible monomer substrates as opposed to the 20 standard amino acids in ribosomal protein synthesis) to construct bioactive secondary metabolites of 2 to 18 units long (with various activities such as antibiotic, antifungal, antitumor and immunosuppression). There are various subtypes of C-domains such as the LCL-type which catalyzes peptide bond formation between two L-amino acids, the DCL-type which links an L-amino acid to the D-amino acid at the end of a growing peptide, starter C-domains which acylate the first amino acid with a beta-hydroxy carboxylic acid, and heterocyclization (Cyc) domains which catalyze both peptide bond formation and cyclization of Cys, Ser, or Thr residues. Typically, an NRPS module consists of an adenylation domain, a peptidyl carrier protein (PCP) domain (also known as thiolation (T) domain) and a C-domain. NRPS modules may also include specialized domains such as the terminal-module thioesterase (Te) domain that releases the product via hydrolysis or macrocyclization and any of various C-domain family members such as the epimerization (E) domain, the ester-bond forming C-domain, dual E/C (epimerization and condensation) domains, and the X-domain. Pssm-ID: 380472 [Multi-domain] Cd Length: 430 Bit Score: 38.07 E-value: 2.79e-04
|
|||||||
PRK12467 | PRK12467 | peptide synthase; Provisional |
37-99 | 1.42e-03 | |||
peptide synthase; Provisional Pssm-ID: 237108 [Multi-domain] Cd Length: 3956 Bit Score: 36.29 E-value: 1.42e-03
|
|||||||
PRK12316 | PRK12316 | peptide synthase; Provisional |
2-99 | 1.43e-03 | |||
peptide synthase; Provisional Pssm-ID: 237054 [Multi-domain] Cd Length: 5163 Bit Score: 36.09 E-value: 1.43e-03
|
|||||||
Blast search parameters | ||||
|