A Pillar/Perfusion Plate Enhances Cell Growth, Reproducibility, Throughput, and User Friendliness in Dynamic 3D Cell Culture.
ACS Biomater Sci Eng.
2024 May 13;10(5):3478-3488. doi: 10.1021/acsbiomaterials.4c00179. Epub 2024 May 2. PubMed PMID:
38695610.
Mesenchymal stem cells aligned and stretched in self-assembling peptide hydrogels.
Heliyon.
2024 Jan 15;10(1):e23953. doi: 10.1016/j.heliyon.2023.e23953. eCollection 2024 Jan 15. PubMed PMID:
38234902; PubMed Central PMCID:
PMC10792194.
Biocompatible Co-P Metallic Glasses with Superior Degradation Tolerance in Physiological Environments.
ACS Appl Bio Mater.
2024 Jan 15;7(1):238-245. doi: 10.1021/acsabm.3c00844. Epub 2023 Dec 28. PubMed PMID:
38153976.
Surface Nanostructures Enhanced Biocompatibility and Osteoinductivity of Laser-Additively Manufactured CoCrMo Alloys.
ACS Omega.
2023 Dec 19;8(50):47658-47666. doi: 10.1021/acsomega.3c04305. eCollection 2023 Dec 19. PubMed PMID:
38144145; PubMed Central PMCID:
PMC10734289.
Nanofibrous Membrane Promotes and Sustains Vascular Endothelial Barrier Function.
ACS Appl Bio Mater.
2023 Nov 20;6(11):4988-4997. doi: 10.1021/acsabm.3c00668. Epub 2023 Oct 20. PubMed PMID:
37862245.
Detergent-Based Decellularization for Anisotropic Cardiac-Specific Extracellular Matrix Scaffold Generation.
Biomimetics (Basel).
2023 Nov 17;8(7). doi: 10.3390/biomimetics8070551. PubMed PMID:
37999192; PubMed Central PMCID:
PMC10669368.
Nanotopographical Cues Tune the Therapeutic Potential of Extracellular Vesicles for the Treatment of Aged Skeletal Muscle Injuries.
ACS Nano.
2023 Oct 24;17(20):19640-19651. doi: 10.1021/acsnano.3c02269. Epub 2023 Oct 5. PubMed PMID:
37797946; PubMed Central PMCID:
PMC10603813.
Biomimetic Human Lung Alveolar Interstitium Chip with Extended Longevity.
ACS Appl Mater Interfaces.
2023 Aug 2;15(30):36888-36898. doi: 10.1021/acsami.3c04091. Epub 2023 Jul 18. PubMed PMID:
37463843.
Harnessing nanofiber alignment and pore size to promote stem cell self-renewal and differentiation.
Colloid and Interface Science Communications. 2023 July; 56:100734.
Nanoparticle targeting of mechanically modulated glycocalyx.
bioRxiv.
2023 Feb 27;. doi: 10.1101/2023.02.27.529887. PubMed PMID:
36909503; PubMed Central PMCID:
PMC10002687.
Dissecting Physical and Biochemical Effects in Nanotopographical Regulation of Cell Behavior.
ACS Nano.
2023 Feb 14;17(3):2124-2133. doi: 10.1021/acsnano.2c08075. Epub 2023 Jan 20. PubMed PMID:
36668987.
Dimensionality-Dependent Mechanical Stretch Regulation of Cell Behavior.
ACS Appl Mater Interfaces.
2022 Apr 20;14(15):17081-17092. doi: 10.1021/acsami.2c01266. Epub 2022 Apr 5. PubMed PMID:
35380801.
Bioengineering Systems for Modulating Notch Signaling in Cardiovascular Development, Disease, and Regeneration.
J Cardiovasc Dev Dis.
2021 Sep 30;8(10). doi: 10.3390/jcdd8100125. Review. PubMed PMID:
34677194; PubMed Central PMCID:
PMC8541010.
Biomechanical properties of acellular scar ECM during the acute to chronic stages of myocardial infarction.
J Mech Behav Biomed Mater.
2021 Apr;116:104342. doi: 10.1016/j.jmbbm.2021.104342. Epub 2021 Jan 22. PubMed PMID:
33516128; PubMed Central PMCID:
PMC8245054.
Piezo1 plays a role in optic nerve head astrocyte reactivity.
Exp Eye Res.
2021 Mar;204:108445. doi: 10.1016/j.exer.2021.108445. Epub 2021 Jan 16. PubMed PMID:
33465396; PubMed Central PMCID:
PMC7946740.
In-vitro biomineralization and biocompatibility of friction stir additively manufactured AZ31B magnesium alloy-hydroxyapatite composites.
Bioact Mater.
2020 Dec;5(4):891-901. doi: 10.1016/j.bioactmat.2020.06.009. eCollection 2020 Dec. PubMed PMID:
32637752; PubMed Central PMCID:
PMC7332469.
Microphysiological Systems: Design, Fabrication, and Applications.
ACS Biomater Sci Eng.
2020 Jun 8;6(6):3231-3257. doi: 10.1021/acsbiomaterials.9b01667. Epub 2020 May 10. PubMed PMID:
33204830; PubMed Central PMCID:
PMC7668566.
Enhanced cytocompatibility and antibacterial property of zinc phosphate coating on biodegradable zinc materials.
Acta Biomater.
2019 Oct 15;98:174-185. doi: 10.1016/j.actbio.2019.03.055. Epub 2019 Mar 29. PubMed PMID:
30930304; PubMed Central PMCID:
PMC6766429.
Substrate Stiffness-Dependent Carbon Nanotube-Induced Lung Fibrogenesis.
Nano Lett.
2019 Aug 14;19(8):5443-5451. doi: 10.1021/acs.nanolett.9b01943. Epub 2019 Aug 5. PubMed PMID:
31369708; PubMed Central PMCID:
PMC6724206.
Predicting Nanotube Fibrogenicity through Stem Cell-Mediated Fibroblast Focus and Spheroid Formation.
Nano Lett.
2018 Oct 10;18(10):6500-6508. doi: 10.1021/acs.nanolett.8b03032. Epub 2018 Sep 19. PubMed PMID:
30211561; PubMed Central PMCID:
PMC6298034.
Microfluidic platforms with nanoscale features.
In:
Borenstein JT, Tandon V, Tao SL, Charest JL, editors.
Microfluidic Cell Culture Systems
second ed. Amsterdam, Netherlands: Elsevier; 2018. Chapter 3; p.65-90. 396p.
Potential Toxicity and Underlying Mechanisms Associated with Pulmonary Exposure to Iron Oxide Nanoparticles: Conflicting Literature and Unclear Risk.
Nanomaterials (Basel).
2017 Oct 6;7(10). doi: 10.3390/nano7100307. Review. PubMed PMID:
28984829; PubMed Central PMCID:
PMC5666472.
Decellularization Strategies for Regenerative Medicine: From Processing Techniques to Applications.
Biomed Res Int.
2017;2017:9831534. doi: 10.1155/2017/9831534. Epub 2017 Apr 30. Review. PubMed PMID:
28540307; PubMed Central PMCID:
PMC5429943.
Mesothelin promotes epithelial-to-mesenchymal transition and tumorigenicity of human lung cancer and mesothelioma cells.
Mol Cancer.
2017 Mar 14;16(1):63. doi: 10.1186/s12943-017-0633-8. PubMed PMID:
28288645; PubMed Central PMCID:
PMC5348784.
Carbon Nanotubes Induced Fibrogenesis on Nanostructured Substrates.
Environ Sci Nano.
2017 Mar 1;4(3):689-699. doi: 10.1039/C6EN00402D. Epub 2017 Jan 30. PubMed PMID:
28944063; PubMed Central PMCID:
PMC5608452.
Biophysical Regulation of Cell Behavior-Cross Talk between Substrate Stiffness and Nanotopography.
Engineering (Beijing).
2017 Feb;3(1):36-54. doi: 10.1016/J.ENG.2017.01.014. Epub 2017 Feb 21. PubMed PMID:
29071164; PubMed Central PMCID:
PMC5653318.
Expanding Nanopatterned Substrates Using Stitch Technique for Nanotopographical Modulation of Cell Behavior.
J Vis Exp.
2016 Dec 8;(118). doi: 10.3791/54840. PubMed PMID:
28060299; PubMed Central PMCID:
PMC5226385.
Nanotopography promoted neuronal differentiation of human induced pluripotent stem cells.
Colloids Surf B Biointerfaces.
2016 Dec 1;148:49-58. doi: 10.1016/j.colsurfb.2016.08.041. Epub 2016 Aug 24. PubMed PMID:
27591570.
Nanotopographical Modulation of Cell Function through Nuclear Deformation.
ACS Appl Mater Interfaces.
2016 Mar 2;8(8):5082-92. doi: 10.1021/acsami.5b10531. Epub 2016 Feb 16. PubMed PMID:
26844365; PubMed Central PMCID:
PMC4804753.
Three-Dimensional Microfluidic Tri-Culture Model of the Bone Marrow Microenvironment for Study of Acute Lymphoblastic Leukemia.
PLoS One.
2015;10(10):e0140506. doi: 10.1371/journal.pone.0140506. eCollection 2015. PubMed PMID:
26488876; PubMed Central PMCID:
PMC4619215.
Nanotopography alters nuclear protein expression, proliferation and differentiation of human mesenchymal stem/stromal cells.
PLoS One.
2014;9(12):e114698. doi: 10.1371/journal.pone.0114698. eCollection 2014. PubMed PMID:
25521962; PubMed Central PMCID:
PMC4270691.
Luciferase reporter cells as a platform to detect SMAD-dependent collagen production.
J Biosci Bioeng.
2014 Dec;118(6):732-5. doi: 10.1016/j.jbiosc.2014.05.021. Epub 2014 Jun 25. PubMed PMID:
24974090; PubMed Central PMCID:
PMC4253305.
Induction of stemlike cells with fibrogenic properties by carbon nanotubes and its role in fibrogenesis.
Nano Lett.
2014 Jun 11;14(6):3110-6. doi: 10.1021/nl5002026. Epub 2014 May 30. PubMed PMID:
24873662; PubMed Central PMCID:
PMC4055043.
Nanotopographical modulation of cell phenotype and function.
Nano LIFE. 2013 March; 03(01):1340003. doi: 10.1142/S1793984413400035.
Effects of topographical and mechanical property alterations induced by oxygen plasma modification on stem cell behavior.
ACS Nano.
2012 Oct 23;6(10):8591-8. doi: 10.1021/nn301713d. Epub 2012 Sep 20. PubMed PMID:
22970773.
Nanotopography as modulator of human mesenchymal stem cell function.
Biomaterials.
2012 Jul;33(20):4998-5003. doi: 10.1016/j.biomaterials.2012.03.053. Epub 2012 Apr 18. PubMed PMID:
22516607; PubMed Central PMCID:
PMC3732316.
Engineering of a microfluidic cell culture platform embedded with nanoscale features.
Lab Chip.
2011 May 7;11(9):1638-46. doi: 10.1039/c0lc00736f. Epub 2011 Mar 25. PubMed PMID:
21442110.
Nanoscale surfacing for regenerative medicine.
Wiley Interdiscip Rev Nanomed Nanobiotechnol.
2010 Sep-Oct;2(5):478-95. doi: 10.1002/wnan.74. Review. PubMed PMID:
20803682.
Low oxygen tension and synthetic nanogratings improve the uniformity and stemness of human mesenchymal stem cell layer.
Mol Ther.
2010 May;18(5):1010-8. doi: 10.1038/mt.2010.21. Epub 2010 Feb 23. PubMed PMID:
20179678; PubMed Central PMCID:
PMC2890122.
Analysis of polystyrene surface properties on thin film bonding under carbon dioxide pressure using nanoparticle embedding technique.
Journal of Polymer Science: Part B: Polymer Physics. 2009 May; 47:1535-1542. doi: 10.1002/polb.21756.
Bioassembly of three-dimensional embryonic stem cell-scaffold complexes using compressed gases.
Biotechnol Prog.
2009 Mar-Apr;25(2):535-42. doi: 10.1002/btpr.151. PubMed PMID:
19334083.
Lab-on-a-chip design-build project with a nanotechnology component in a freshman engineering course.
Chemical Engineering Education. 2008; 42(4):185-192.
New valve and bonding designs for microfluidic biochips containing proteins.
Anal Chem.
2007 Feb 1;79(3):994-1001. doi: 10.1021/ac0615798. PubMed PMID:
17263327.
Low pressure carbon dioxide enhanced polymer chain mobility below the bulk glass transition temperature.
Macromolecules. 2007; 40(4):1108-1111. doi: 10.1021/ma061492o.
Low temperature fusion of polymeric nanostructures using carbon dioxide.
Advanced Materials. 2007; 19(2):251-254. doi: 10.1002/adma.200601481.
Assembly of three-dimensional polymeric constructs containing cells/biomolecules using carbon dioxide.
J Am Chem Soc.
2006 Nov 1;128(43):14040-1. doi: 10.1021/ja066157u. PubMed PMID:
17061882.
Subcritical CO2 assisted polymer nanofabrication at low temperatures.
The Journal of Vacuum Science and Technology B. 2005 December; 23(6):3202-3204. doi: 10.1116/1.2134714.
Fabrication of well-defined PLGA scaffolds using novel microembossing and carbon dioxide bonding.
Biomaterials.
2005 May;26(15):2585-94. doi: 10.1016/j.biomaterials.2004.07.046. PubMed PMID:
15585261.
Polymeric nanonozzle array fabricated by sacrificial template imprinting.
Advanced Materials. 2005 April; 17(9):1182-1186. doi: 10.1002/adma.200401117.
Subcritical CO2 assisted polymer surface engineering at low temperatures.
Materials Research Society Symposium Proceedings. 2005; 843:43-48. doi: 10.1557/PROC-843-T2.10.
What would you like to do?