Measurement of the point spread function in MRI using constant time imaging

Magn Reson Med. 1997 Nov;38(5):733-40. doi: 10.1002/mrm.1910380509.

Abstract

The point spread function is a fundamental property of magnetic resonance imaging methods that affects image quality and spatial resolution. The point spread function is difficult to measure precisely in magnetic resonance even with the use of carefully designed phantoms, and it is difficult to calculate this function for complex sequences such as echo-planar imaging. This report describes a method that measures the point spread function with high spatial resolution at each pixel in samples of uniform intensity distribution. This method uses additional phase encoding gradients before the echo-planar acquisition that are constant in length but vary in amplitude. The additional gradients are applied to image the contents within each individual voxel. This method has been used to measure the point spread function for echo-planar imaging to demonstrate the effects of limited k-space sampling and transverse relaxation, as well as the effects of object motion. By considering the displacement of the point spread function, local distortions due to susceptibility and chemical shift effects have been quantified and corrected. The method allows rapid assessment of the point spread function in echo-planar imaging, in vivo, and may also be applied to other rapid imaging sequences that can be modified to include these additional phase encoding gradients.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Brain / anatomy & histology
  • Echo-Planar Imaging / methods*
  • Humans
  • Magnetic Resonance Imaging / methods*
  • Phantoms, Imaging