Surface point mutations that significantly alter the structure and stability of a protein's denatured state

Protein Sci. 1996 Oct;5(10):2009-19. doi: 10.1002/pro.5560051007.

Abstract

Significantly different m values (1.9-2.7 kcal mol-1 M-1) were observed for point mutations at a single, solvent-exposed site (T53) in a variant of the B1 domain of streptococcal Protein G using guanidine hydrochloride (GuHCl) as a denaturant. This report focuses on elucidating the energetic and structural implications of these m-value differences in two Protein G mutants, containing Ala and Thr at position 53. These two proteins are representative of the high (m+) and low (m-) m-value mutants studied. Differential scanning calorimetry revealed no evidence of equilibrium intermediates. A comparison of GuHCl denaturation monitored by fluorescence and circular dichroism showed that secondary and tertiary structure denatured concomitantly. The rates of folding (286 S-1 for the m+ mutant and 952 S-1 for the m- mutant) and the rates of unfolding (11 S-1 for m+ mutant and 3 S-1 for the m- mutant) were significantly different, as determined by stopped-flow fluorescence. The relative solvation free energies of the transition states were identical for the two proteins (alpha ++ = 0.3). Small-angle X-ray scattering showed that the radius of gyration of the denatured state (Rgd) of the m+ mutant did not change with increasing denaturant concentrations (Rgd approximately 23 A); whereas, the Rgd of the m- mutant increased from approximately 17 A to 23 A with increasing denaturant concentration. The results indicate that the mutations exert significant effects in both the native and GuHCl-induced denatured state of these two proteins.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Bacterial Proteins / chemistry*
  • Bacterial Proteins / genetics
  • Calorimetry
  • Circular Dichroism
  • Fluorometry
  • Guanidine
  • Guanidines
  • Hot Temperature
  • Models, Molecular
  • Point Mutation*
  • Protein Conformation*
  • Protein Denaturation*
  • Protein Structure, Secondary
  • Protein Structure, Tertiary
  • X-Ray Diffraction

Substances

  • Bacterial Proteins
  • Guanidines
  • IgG Fc-binding protein, Streptococcus
  • Guanidine