Effect of secretion on intracellular pH regulation in isolated rat bile duct epithelial cells

J Clin Invest. 1993 Sep;92(3):1314-25. doi: 10.1172/JCI116705.

Abstract

The effects of secretin on ion transport mechanisms involved in regulation of intracellular pH (pHi) and HCO3- excretion were characterized in bile duct epithelial (BDE) cells isolated from normal rat liver. pHi was measured with 2,7-bis(carboxy-ethyl)-5(6)-carboxy-fluorescein-acetomethylester (BCECF-AM) using a microfluorimetric method. Basal pHi of BDE was 7.04 +/- 0.06 in Hepes and 7.16 +/- 0.10 in KRB and was unaffected by secretin (50-200 nM). Recovery rates from an acid load in Hepes or in KRB media (with and without amiloride) were also not altered by secretin, indicating that Na+/H+ exchange and Na+/HCO3- cotransport were not affected by this hormone. After acute Cl- removal, pHi rose 0.24 +/- 0.08 pHU at a maximal rate of 0.125 +/- 0.06 pHU/min (H+ flux rates = 6.02 +/- 3.27 mM/min) and recovered after Cl- readmission (0.188 +/- 0.08 pHU/min; H+ flux rates = 11.82 +/- 5.34 mM/min). Pretreatment with 1 mM DIDS inhibited the effects of Cl- removal, while valinomycin, which induces cell depolarization, enhanced these effects, probably by stimulating electrogenic HCO3- influx. Secretin significantly increased both the maximal rate of alkalinization after Cl- removal (P < 0.012) and of pHi recovery after Cl- readmission (P < 0.025), indicating stimulation of Cl-/HCO3- exchange activity. These findings were reproduced with N6,2'-O-Dibutyryladenosine-3',5'-cyclic monophosphate (DBcAMP). The Cl- channel blocker 5-nitro-2'-(3-phenylpropylamino)-benzoate (NPPB, 10 microM) significantly decreased the effects of secretin and DBcAMP on the pHi changes promoted by acute Cl- removal/readmission. These findings establish that secretin stimulates the activity of the Cl-/HCO3- exchanger in BDE cells, probably by activating Cl- channels via the intracellular messenger cAMP. This in turn depolarizes the cell, stimulating electrogenic Na+/HCO3- symport. The cell depolarization induced by Cl- channel activation should enhance HCO3- entrance through electrogenic Na+/HCO3- symport, which in turn stimulates the Cl-/HCO3- exchange. These mechanisms could account for secretin stimulated bicarbonate secretion in bile.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Bicarbonates / metabolism
  • Bile Ducts / physiology*
  • Biological Transport / drug effects
  • Bucladesine / pharmacology
  • Chloride Channels
  • Chlorides / metabolism
  • Cytoplasm / physiology
  • Epithelium / physiology
  • Hydrogen-Ion Concentration*
  • Male
  • Membrane Proteins / antagonists & inhibitors
  • Nitrobenzoates / pharmacology
  • Rats
  • Rats, Sprague-Dawley
  • Secretin / pharmacology*

Substances

  • Bicarbonates
  • Chloride Channels
  • Chlorides
  • Membrane Proteins
  • Nitrobenzoates
  • Secretin
  • 5-nitro-2-(3-phenylpropylamino)benzoic acid
  • Bucladesine