Response of rat heart and skeletal muscle protein in vivo to insulin and amino acid infusion

Am J Physiol. 1993 Jun;264(6 Pt 1):E958-65. doi: 10.1152/ajpendo.1993.264.6.E958.

Abstract

Whether insulin, at physiological concentrations, stimulates net muscle protein synthesis in vivo remains unresolved. To examine this, we infused either saline, insulin (2.8 mU.kg-1.min-1, euglycemic clamp), an amino acid solution, or insulin plus amino acids for 4 h into awake overnight-fasted rats. Heart and skeletal muscle protein synthesis was measured by either a continuous tracer infusion method, using L-[1-14C]leucine, L-[2,5-3H]leucine, or L-[ring-2,6-3H]phenylalanine or by injection of L-[ring-2,6-3H]phenylalanine with a pool-flooding bolus of unlabeled phenylalanine. In heart, synthesis rates obtained using the arterial plasma specific activity of [3H]phenylalanine administered as either a tracer infusion or flooding bolus were comparable in saline-treated rats (range 10.9 +/- 1.2 to 12.2 +/- 0.9%/day) and were not affected by infusion of insulin or amino acids. Estimates using continuous infusion of L-[1-14C]leucine were significantly lower (P < 0.001), except when unlabeled amino acids were given also. In skeletal muscle, rates estimated using the flooding bolus (6.7 +/- 0.8%/day) were also not affected by insulin or amino acids. Estimates using continuous infusion of [3H]leucine (2.6 +/- 0.3%/day) or [3H]phenylalanine (2.8 +/- 1.0%/day) were lower and were still lower using [14C]leucine (1.6 +/- 0.6%/day), but increased toward those estimated with the flooding bolus during amino acid infusion. We conclude that, in heart muscle of the mature rat in vivo, neither insulin nor amino acids affect protein synthesis.(ABSTRACT TRUNCATED AT 250 WORDS)

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Glucose / metabolism
  • Insulin / metabolism
  • Insulin / pharmacology*
  • Leucine / metabolism
  • Leucine / pharmacology*
  • Male
  • Muscle Proteins / metabolism*
  • Muscles / metabolism*
  • Myocardium / metabolism*
  • Osmolar Concentration
  • Phenylalanine / metabolism
  • Phenylalanine / pharmacology*
  • Rats
  • Rats, Sprague-Dawley

Substances

  • Insulin
  • Muscle Proteins
  • Phenylalanine
  • Leucine
  • Glucose