The cerebellum and initiation of movement: the stretch reflex

Yale J Biol Med. 1987 Mar-Apr;60(2):123-31.

Abstract

Studies of the stretch reflex in decerebrate cats indicate a phase advance of peak sinusoidal tension in steady-state cycles between 0.1 and 10 Hz. This phase advance is reduced in acute and chronic cerebellectomy, as shown in previous investigations. Also, the augmentation of muscle peak tension in initial sinusoidal stretch cycles at 0.5-5 Hz has been found to be reduced during the time of reflex and motor instability in the several months following cerebellar ablation. This report shows the increased amplitude and phase lead of integrated electromyographic activity in initiating sinusoidal stretch cycles in the decerebrate cat. These reflex aspects are demonstrated in relation to the discharge of neurons in the dorsal spinocerebellar tract and of cerebellar cortical Purkinje cells in initial sinusoidal cycles. The intensity and phase advance of the discharge in dorsal spinocerebellar tract neurons is altered little, but these features are usually increased in Purkinje cells during initial stretches compared to continuous cycling. In terms of overall motor control, these findings are compatible with concepts of movement control, modulated by the cerebellum, in which the discharge of antagonist motor neurons is regulated in concert with that of agonist muscles upon initiation and termination of movement.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Action Potentials
  • Animals
  • Cerebellum / physiology*
  • Decerebrate State
  • Movement*
  • Muscles / innervation*
  • Periodicity
  • Reflex, Stretch*