Analysis of Heritability and Genetic Architecture of Pancreatic Cancer: A PanC4 Study

Cancer Epidemiol Biomarkers Prev. 2019 Jul;28(7):1238-1245. doi: 10.1158/1055-9965.EPI-18-1235. Epub 2019 Apr 23.

Abstract

Background: Pancreatic cancer is the fourth-leading cause of cancer death in both men and women in the United States. The currently identified common susceptibility loci account for a small fraction of estimated heritability. We sought to estimate overall heritability of pancreatic cancer and partition the heritability by variant frequencies and functional annotations.

Methods: Analysis using the genome-based restricted maximum likelihood method (GREML) was conducted on Pancreatic Cancer Case-Control Consortium (PanC4) genome-wide association study (GWAS) data from 3,568 pancreatic cancer cases and 3,363 controls of European Ancestry.

Results: Applying linkage disequilibrium- and minor allele frequency-stratified GREML (GREML-LDMS) method to imputed GWAS data, we estimated the overall heritability of pancreatic cancer to be 21.2% (SE = 4.8%). Across the functional groups (intronic, intergenic, coding, and regulatory variants), intronic variants account for most of the estimated heritability (12.4%). Previously identified GWAS loci explained 4.1% of the total phenotypic variation of pancreatic cancer. Mutations in hereditary pancreatic cancer susceptibility genes are present in 4% to 10% of patients with pancreatic cancer, yet our GREML-LDMS results suggested these regions explain only 0.4% of total phenotypic variance for pancreatic cancer.

Conclusions: Although higher than previous studies, our estimated 21.2% overall heritability may still be downwardly biased due to the inherent limitation that the contribution of rare variants in genes with a substantive overall impact on disease are not captured when applying these commonly used methods to imputed GWAS data.

Impact: Our work demonstrated the importance of rare and common variants in pancreatic cancer risk.

Publication types

  • Multicenter Study
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Female
  • Humans
  • Male
  • Middle Aged
  • Pancreatic Neoplasms / genetics*
  • Pancreatic Neoplasms / pathology