Plexina2 and CRMP2 Signaling Complex Is Activated by Nogo-A-Liganded Ngr1 to Restrict Corticospinal Axon Sprouting after Trauma

J Neurosci. 2019 Apr 24;39(17):3204-3216. doi: 10.1523/JNEUROSCI.2996-18.2019. Epub 2019 Feb 25.

Abstract

After brain or spinal cord trauma, interaction of Nogo-A with neuronal NgR1 limits regenerative axonal sprouting and functional recovery. Cellular signaling by lipid-anchored NgR1 requires a coreceptor but the relevant partner in vivo is not clear. Here, we examined proteins enriched in NgR1 immunoprecipitates by Nogo-A exposure, identifying CRMP2, a cytosolic protein implicated in axon growth inhibition by Semaphorin/Plexin complexes. The Nogo-A-induced association of NgR1 with CRMP2 requires PlexinA2 as a coreceptor. Non-neuronal cells expressing both NgR1 and PlexinA2, but not either protein alone, contract upon Nogo-A exposure. Inhibition of cortical axon regeneration by Nogo-A depends on a NgR1/PlexinA2 genetic interaction because double-heterozygous NgR1+/-, PlexinA2+/- neurons, but not single-heterozygote neurons, are rescued from Nogo-A inhibition. NgR1 and PlexinA2 also interact genetically in vivo to restrict corticospinal sprouting in mouse cervical spinal cord after unilateral pyramidotomy. Greater post-injury sprouting in NgR1+/-, PlexinA2+/- mice supports enhanced neurological recovery of a mixed female and male double-heterozygous cohort. Thus, a NgR1/PlexinA2/CRMP2 ternary complex limits neural repair after adult mammalian CNS trauma.SIGNIFICANCE STATEMENT Several decades of molecular research have suggested that developmental regulation of axon growth is distinct in most regards from titration of axonal regenerative growth after adult CNS trauma. Among adult CNS pathways, the oligodendrocyte Nogo-A inhibition of growth through NgR1 is thought to have little molecular relationship to axonal guidance mechanisms active embryonically. Here, biochemical analysis of NgR1 function uncovered a physical complex with CRMP cytoplasmic mediators, and this led to appreciation of a role for PlexinA2 in concert with NgR1 after adult trauma. The data extend molecular understanding of neural repair after CNS trauma and link it to developmental processes.

Keywords: CRMP; Nogo receptor; Plexin; corticospinal; plasticity; pyramidotomy.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Axons / metabolism*
  • COS Cells
  • Chlorocebus aethiops
  • Intercellular Signaling Peptides and Proteins / genetics
  • Intercellular Signaling Peptides and Proteins / metabolism*
  • Mice
  • Mice, Knockout
  • Motor Activity / physiology
  • Nerve Regeneration / physiology*
  • Nerve Tissue Proteins / genetics
  • Nerve Tissue Proteins / metabolism*
  • Neurons / metabolism*
  • Nogo Proteins / genetics
  • Nogo Proteins / metabolism*
  • Nogo Receptor 1 / metabolism*
  • Pyramidal Tracts / injuries
  • Pyramidal Tracts / metabolism*
  • Receptors, Cell Surface / genetics
  • Receptors, Cell Surface / metabolism*
  • Recovery of Function / physiology
  • Spinal Cord Injuries / metabolism

Substances

  • Intercellular Signaling Peptides and Proteins
  • Nerve Tissue Proteins
  • Nogo Proteins
  • Nogo Receptor 1
  • Plxna2 protein, mouse
  • Receptors, Cell Surface
  • collapsin response mediator protein-2