Epigenetic and Epitranscriptomic Factors Make a Mark on Hematopoietic Stem Cell Development

Curr Stem Cell Rep. 2018 Mar;4(1):22-32. Epub 2018 Feb 3.

Abstract

Purpose of the review: Blood specification is a highly dynamic process, whereby committed hemogenic endothelial cells (ECs) progressively transdifferentiate into multipotent, self-renewing hematopoietic stem cells (HSCs). Massive changes in gene expression must occur to switch cell identity, however the factors that mediate such an effect were a mystery until recently. This review summarizes the higher-order mechanisms involved in endothelial to hematopoietic reprogramming identified thus far.

Recent findings: Accumulating evidence from mouse and zebrafish studies reveal that numerous chromatin-modifying (epigenetic) and RNA-modifying (epitranscriptomic) factors are required for the formation of HSCs from hemogenic endothelium. These genes function throughout the endothelial-hematopoietic transition, suggesting a dynamic interplay between 'epi'-machineries.

Summary: Epigenetic and epitranscriptomic regulation are key mechanisms for reshaping global EC gene expression patterns to those that support HSC production. Future studies that capture modification dynamics should bring us closer to a complete understanding of how HSCs transition from hemogenic endothelium at the molecular level.

Keywords: HSC production; chromatin modification; endothelial to hematopoietic transition; hemogenic endothelium; m6A methylation; transdifferentiation.