Dynamic changes in complexes of IRE1α, PERK, and ATF6α during endoplasmic reticulum stress

Mol Biol Cell. 2018 Jun 1;29(11):1376-1388. doi: 10.1091/mbc.E17-10-0594. Epub 2018 Apr 10.

Abstract

The endoplasmic reticulum (ER) localized unfolded protein response (UPR) sensors, IRE1α, PERK, and ATF6α, are activated by the accumulation of misfolded proteins in the ER. It is unclear how the endogenous UPR sensors are regulated by both ER stress and the ER luminal chaperone BiP, which is a negative regulator of UPR sensors. Here we simultaneously examined the changes in the endogenous complexes of UPR sensors by blue native PAGE immunoblotting in unstressed and stressed cells. We found that all three UPR sensors exist as preformed complexes even in unstressed cells. While PERK complexes shift to large complexes, ATF6α complexes are reduced to smaller complexes on ER stress. In contrast, IRE1α complexes were not significantly increased in size on ER stress, unless IRE1α is overexpressed. Surprisingly, depletion of BiP had little impact on the endogenous complexes of UPR sensors. In addition, overexpression of BiP did not significantly affect UPR complexes, but suppressed ER stress mediated activation of IRE1α, ATF6α and, to a lesser extent, PERK. Furthermore, we captured the interaction between IRE1α and misfolded secretory proteins in cells, which suggests that the binding of unfolded proteins to preformed complexes of UPR sensors may be crucial for activation.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Activating Transcription Factor 6 / metabolism*
  • Endoplasmic Reticulum Chaperone BiP
  • Endoplasmic Reticulum Stress*
  • Endoribonucleases / metabolism*
  • HEK293 Cells
  • Heat-Shock Proteins
  • Humans
  • Multiprotein Complexes / metabolism*
  • Mutation / genetics
  • Protein Binding
  • Protein Folding
  • Protein Multimerization
  • Protein Serine-Threonine Kinases / metabolism*
  • Unfolded Protein Response
  • alpha 1-Antitrypsin / metabolism
  • eIF-2 Kinase / metabolism*

Substances

  • ATF6 protein, human
  • Activating Transcription Factor 6
  • Endoplasmic Reticulum Chaperone BiP
  • Heat-Shock Proteins
  • Multiprotein Complexes
  • alpha 1-Antitrypsin
  • ERN1 protein, human
  • PERK kinase
  • Protein Serine-Threonine Kinases
  • eIF-2 Kinase
  • Endoribonucleases