Decreased VMAT2 in the pancreas of humans with type 2 diabetes mellitus measured in vivo by PET imaging

Diabetologia. 2018 Dec;61(12):2598-2607. doi: 10.1007/s00125-018-4624-0. Epub 2018 May 2.

Abstract

Aims/hypothesis: The progressive loss of beta cell function is part of the natural history of type 2 diabetes. Autopsy studies suggest that this is, in part, due to loss of beta cell mass (BCM), but this has not been confirmed in vivo. Non-invasive methods to quantify BCM may contribute to a better understanding of type 2 diabetes pathophysiology and the development of therapeutic strategies. In humans, the localisation of vesicular monoamine transporter type 2 (VMAT2) in beta cells and pancreatic polypeptide cells, with minimal expression in other exocrine or endocrine pancreatic cells, has led to its development as a measure of BCM. We used the VMAT2 tracer [18F]fluoropropyl-(+)-dihydrotetrabenazine to quantify BCM in humans with impaired glucose tolerance (prediabetes) or type 2 diabetes, and in healthy obese volunteers (HOV).

Methods: Dynamic positron emission tomography (PET) data were obtained for 4 h with metabolite-corrected arterial blood measurement in 16 HOV, five prediabetic and 17 type 2 diabetic participants. Eleven participants (six HOV and five with type 2 diabetes) underwent two abdominal PET/computed tomography (CT) scans for the assessment of test-retest variability. Standardised uptake value ratio (SUVR) was calculated in pancreatic subregions (head, body and tail), with the spleen as a reference region to determine non-specific tracer uptake at 3-4 h. The outcome measure SUVR minus 1 (SUVR-1) accounts for non-specific tracer uptake. Functional beta cell capacity was assessed by C-peptide release following standard (arginine stimulus test [AST]) and acute insulin response to the glucose-enhanced AST (AIRargMAX). Pearson correlation analysis was performed between the binding variables and the C-peptide AUC post-AST and post-AIRargMAX.

Results: Absolute test-retest variability (aTRV) was ≤15% for all regions. Variability and overlap of SUVR-1 was measured in all groups; HOV and participants with prediabetes and with type 2 diabetes. SUVR-1 showed significant positive correlations with AIRargMAX (all groups) in all pancreas subregions (whole pancreas p = 0.009 and pancreas head p = 0.009; body p = 0.019 and tail p = 0.023). SUVR-1 inversely correlated with HbA1c (all groups) in the whole pancreas (p = 0.033) and pancreas head (p = 0.008). SUVR-1 also inversely correlated with years since diagnosis of type 2 diabetes in the pancreas head (p = 0.049) and pancreas tail (p = 0.035).

Conclusions/interpretation: The observed correlations of VMAT2 density in the pancreas and pancreas regions with years since diagnosis of type 2 diabetes, glycaemic control and beta cell function suggest that loss of BCM contributes to deficient insulin secretion in humans with type 2 diabetes.

Keywords: Beta cell mass; PET imaging; Pancreas; Type 2 diabetes; VMAT2.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Diabetes Mellitus, Type 2 / metabolism*
  • Female
  • Humans
  • Insulin-Secreting Cells / metabolism
  • Magnetic Resonance Imaging
  • Male
  • Middle Aged
  • Pancreas / metabolism*
  • Positron-Emission Tomography / methods*
  • Vesicular Monoamine Transport Proteins / metabolism*

Substances

  • SLC18A2 protein, human
  • Vesicular Monoamine Transport Proteins