Human rickettsial pathogen modulates arthropod organic anion transporting polypeptide and tryptophan pathway for its survival in ticks

Sci Rep. 2017 Oct 16;7(1):13256. doi: 10.1038/s41598-017-13559-x.

Abstract

The black-legged tick Ixodes scapularis transmits the human anaplasmosis agent, Anaplasma phagocytophilum. In this study, we show that A. phagocytophilum specifically up-regulates I. scapularis organic anion transporting polypeptide, isoatp4056 and kynurenine amino transferase (kat), a gene involved in the production of tryptophan metabolite xanthurenic acid (XA), for its survival in ticks. RNAi analysis revealed that knockdown of isoatp4056 expression had no effect on A. phagocytophilum acquisition from the murine host but affected the bacterial survival in tick cells. Knockdown of the expression of kat mRNA alone or in combination with isoatp4056 mRNA significantly affected A. phagocytophilum survival and isoatp4056 expression in tick cells. Exogenous addition of XA induces isoatp4056 expression and A. phagocytophilum burden in both tick salivary glands and tick cells. Electrophoretic mobility shift assays provide further evidence that A. phagocytophilum and XA influences isoatp4056 expression. Collectively, this study provides important novel information in understanding the interplay between molecular pathways manipulated by a rickettsial pathogen to survive in its arthropod vector.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Anaplasma phagocytophilum / metabolism
  • Animals
  • Arthropods / metabolism*
  • Arthropods / pathogenicity*
  • Humans
  • Mice
  • Organic Anion Transporters / genetics
  • Organic Anion Transporters / metabolism*
  • Peptides / metabolism*
  • RNA Interference
  • RNA, Messenger / genetics
  • RNA, Messenger / metabolism
  • Salivary Glands / metabolism
  • Ticks / parasitology
  • Transaminases / genetics
  • Transaminases / metabolism*
  • Tryptophan / metabolism*

Substances

  • Organic Anion Transporters
  • Peptides
  • RNA, Messenger
  • Tryptophan
  • Transaminases
  • kynurenine-oxoglutarate transaminase