Novel approaches for bioinformatic analysis of salivary RNA sequencing data for development

Bioinformatics. 2018 Jan 1;34(1):1-8. doi: 10.1093/bioinformatics/btx504.

Abstract

Motivation: Analysis of RNA sequencing (RNA-Seq) data in human saliva is challenging. Lack of standardization and unification of the bioinformatic procedures undermines saliva's diagnostic potential. Thus, it motivated us to perform this study.

Results: We applied principal pipelines for bioinformatic analysis of small RNA-Seq data of saliva of 98 healthy Korean volunteers including either direct or indirect mapping of the reads to the human genome using Bowtie1. Analysis of alignments to exogenous genomes by another pipeline revealed that almost all of the reads map to bacterial genomes. Thus, salivary exRNA has fundamental properties that warrant the design of unique additional steps while performing the bioinformatic analysis. Our pipelines can serve as potential guidelines for processing of RNA-Seq data of human saliva.

Availability and implementation: Processing and analysis results of the experimental data generated by the exceRpt (v4.6.3) small RNA-seq pipeline (github.gersteinlab.org/exceRpt) are available from exRNA atlas (exrna-atlas.org). Alignment to exogenous genomes and their quantification results were used in this paper for the analyses of small RNAs of exogenous origin.

Contact: dtww@ucla.edu.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Computational Biology / methods*
  • High-Throughput Nucleotide Sequencing / methods
  • Humans
  • RNA
  • Saliva / chemistry
  • Sequence Analysis, RNA / methods*
  • Software*

Substances

  • RNA