Connexin37 deficiency alters organic bone matrix, cortical bone geometry, and increases Wnt/β-catenin signaling

Bone. 2017 Apr:97:105-113. doi: 10.1016/j.bone.2017.01.010. Epub 2017 Jan 16.

Abstract

Deletion of connexin (Cx) 37 in mice leads to increased cancellous bone mass due to defective osteoclast differentiation. Paradoxically; however, Cx37-deficient mice exhibit reduced cortical thickness accompanied by higher bone strength, suggesting a contribution of Cx37 to bone matrix composition. Thus, we investigated whether global deletion of Cx37 alters the composition of organic bone extracellular matrix. Five-month-old Cx37-/- mice exhibited increased marrow cavity area, and periosteal and endocortical bone surface resulting in higher total area in tibia compared to Cx37+/+ control mice. Deletion of Cx37 increased genes involved in collagen maturation (loxl3 and loxl4) and glycosaminoglycans- (chsy1, chpf and has3) proteoglycans- associated genes (biglycan and decorin). In addition, expression of type II collagen assessed by immunostaining was increased by 82% whereas collagen maturity by picrosirius-polarizarion tended to be reduced (p=0.071). Expression of glycosaminoglycans by histochemistry was decreased, whereas immunostaining revealed that biglycan was unchanged and decorin was slightly increased in Cx37-/- bone sections. Consistent with these in vivo findings, MLO-Y4 osteocytic cells silenced for Cx37 gene exhibited increased mRNA levels for collagen synthesis (col1a1 and col3a1) and collagen maturation (lox, loxl1 and loxl2 genes). Furthermore, mechanistic studies showed Wnt/β-catenin activation in MLO-Y4 osteocytic cells, L5 vertebra, and authentic calvaria-derived osteocytes isolated by fluorescent-activated cell sorter. Our findings demonstrate that altered profile of the bone matrix components in Cx37-deficient mice acts in favor of higher resistance to fracture in long bones.

Keywords: Bone; Collagen; Connexin 37; Glycosaminoglycans; Osteocytes; Wnt/β-catenin signaling.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Biomechanical Phenomena
  • Bone Matrix / metabolism*
  • Collagen / biosynthesis
  • Connexins / deficiency*
  • Connexins / metabolism
  • Cortical Bone / metabolism*
  • Cortical Bone / pathology
  • Extracellular Matrix / metabolism
  • Female
  • Gap Junction alpha-4 Protein
  • Gene Deletion
  • Gene Expression Profiling
  • Gene Expression Regulation
  • Glycosaminoglycans / metabolism
  • Male
  • Mice
  • Osteocytes / metabolism
  • Tibia / metabolism
  • Wnt Signaling Pathway*

Substances

  • Connexins
  • Glycosaminoglycans
  • Collagen