The Spermatophore in Glossina morsitans morsitans: Insights into Male Contributions to Reproduction

Sci Rep. 2016 Feb 5:6:20334. doi: 10.1038/srep20334.

Abstract

Male Seminal Fluid Proteins (SFPs) transferred during copulation modulate female reproductive physiology and behavior, impacting sperm storage/use, ovulation, oviposition, and remating receptivity. These capabilities make them ideal targets for developing novel methods of insect disease vector control. Little is known about the nature of SFPs in the viviparous tsetse flies (Diptera: Glossinidae), vectors of Human and Animal African trypanosomiasis. In tsetse, male ejaculate is assembled into a capsule-like spermatophore structure visible post-copulation in the female uterus. We applied high-throughput approaches to uncover the composition of the spermatophore in Glossina morsitans morsitans. We found that both male accessory glands and testes contribute to its formation. The male accessory glands produce a small number of abundant novel proteins with yet unknown functions, in addition to enzyme inhibitors and peptidase regulators. The testes contribute sperm in addition to a diverse array of less abundant proteins associated with binding, oxidoreductase/transferase activities, cytoskeletal and lipid/carbohydrate transporter functions. Proteins encoded by female-biased genes are also found in the spermatophore. About half of the proteins display sequence conservation relative to other Diptera, and low similarity to SFPs from other studied species, possibly reflecting both their fast evolutionary pace and the divergent nature of tsetse's viviparous biology.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Chromatography, High Pressure Liquid
  • Comparative Genomic Hybridization
  • Databases, Protein
  • Female
  • Gene Expression Regulation
  • Insect Proteins / metabolism
  • Male
  • Proteome / analysis
  • Reproduction / physiology*
  • Spermatogonia / metabolism*
  • Tandem Mass Spectrometry
  • Tsetse Flies / metabolism*
  • Uterus / metabolism

Substances

  • Insect Proteins
  • Proteome