Assessment of patient selection criteria for quantitative imaging with respiratory-gated positron emission tomography

J Med Imaging (Bellingham). 2014 Jul;1(2):026001. doi: 10.1117/1.JMI.1.2.026001. Epub 2014 Sep 24.

Abstract

The objective of this investigation was to propose techniques for determining which patients are likely to benefit from quantitative respiratory-gated imaging by correlating respiratory patterns to changes in positron emission tomography (PET) metrics. Twenty-six lung and liver cancer patients underwent PET/computed tomography exams with recorded chest/abdominal displacements. Static and adaptive amplitude-gated [[Formula: see text]]fluoro-D-glucose (FDG) PET images were generated from list-mode acquisitions. Patients were grouped by respiratory pattern, lesion location, or degree of lesion attachment to anatomical structures. Respiratory pattern metrics were calculated during time intervals corresponding to PET field of views over lesions of interest. FDG PET images were quantified by lesion maximum standardized uptake value ([Formula: see text]). Relative changes in [Formula: see text] between static and gated PET images were tested for association to respiratory pattern metrics. Lower lung lesions and liver lesions had significantly higher changes in [Formula: see text] than upper lung lesions (14 versus 3%, [Formula: see text]). Correlation was highest ([Formula: see text], [Formula: see text], [Formula: see text]) between changes in [Formula: see text] and nonstandard respiratory pattern metrics. Lesion location had a significant impact on changes in PET quantification due to respiratory gating. Respiratory pattern metrics were correlated to changes in [Formula: see text], though sample size limited statistical power. Validation in larger cohorts may enable selection of patients prior to acquisition who would benefit from respiratory-gated PET imaging.

Keywords: 2-deoxy-2-[[18F]fluoro-D-glucose; patient selection; positron emission tomography/computed tomography; respiratory gating.