Photoelectrochemical Cells Utilizing Tunable Corroles

ACS Appl Mater Interfaces. 2015 Jul 29;7(29):16124-30. doi: 10.1021/acsami.5b05050. Epub 2015 Jul 14.

Abstract

Organic dyes with their wide range of molecular structures and spectroscopic features show great promise for solar energy applications. Corroles, structural analogues to porphyrins, are highly fluorescent molecules with tunable properties. We have synthesized a series of structurally similar corroles chelating gallium and phosphorus, along with a β-chlorinated phosphorus corrole, and determined their photophysical and electrochemical properties. The electrochemical potentials to oxidize the corroles range from 0.78 V vs NHE for the gallium corrole to 1.42 V for the β-octachlorinated phosphorus corrole. We are interested in developing photosensitizers for water oxidation on a metal oxide-based photoanode, so the corroles were modified to contain a meso-phenyl-COOH substituent for binding to metal oxide surfaces. The ability of these corrole dyes to act as photosensitizers was assessed by comparing the corroles in a model dye sensitized solar cell design. Transient absorption spectroscopy was utilized to analyze recombination dynamics and determine the kinetics of iodide oxidation. The most efficient photoelectrochemical cell was achieved for the phosphorus corrole P-2 with electrochemical properties and kinetics suitable for both photoinduced electron injection into TiO2 and oxidation of iodide. This structure-function study highlights the wide window for tuning corrole electrochemical potentials while still maintaining desirable photophysical properties, important variables when designing dyes for applications in photoelectrochemical water-oxidation cells.

Keywords: corroles; electrochemistry; molecular design; nanosecond transient absorption spectroscopy; photoelectrochemical cells.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.