Actin Mechanics and Fragmentation

J Biol Chem. 2015 Jul 10;290(28):17137-44. doi: 10.1074/jbc.R115.636472. Epub 2015 May 8.

Abstract

Cell physiological processes require the regulation and coordination of both mechanical and dynamical properties of the actin cytoskeleton. Here we review recent advances in understanding the mechanical properties and stability of actin filaments and how these properties are manifested at larger (network) length scales. We discuss how forces can influence local biochemical interactions, resulting in the formation of mechanically sensitive dynamic steady states. Understanding the regulation of such force-activated chemistries and dynamic steady states reflects an important challenge for future work that will provide valuable insights as to how the actin cytoskeleton engenders mechanoresponsiveness of living cells.

Keywords: actin; biophysics; cell motility; cofilin; cytoskeleton; persistence length; rheology; severing; strain; stress.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Review

MeSH terms

  • Actin Cytoskeleton / chemistry*
  • Actin Cytoskeleton / metabolism*
  • Actin Cytoskeleton / ultrastructure
  • Actins / chemistry*
  • Actins / metabolism*
  • Animals
  • Biomechanical Phenomena
  • Humans
  • Models, Molecular
  • Protein Structure, Tertiary

Substances

  • Actins