Undernutrition and stage of gestation influence fetal adipose tissue gene expression

J Mol Endocrinol. 2015 Jun;54(3):263-75. doi: 10.1530/JME-15-0048. Epub 2015 Apr 27.

Abstract

Low birthweight is a risk factor for neonatal mortality and adverse metabolic health, both of which are associated with inadequate prenatal adipose tissue development. In the present study, we investigated the impact of maternal undernutrition on the expression of genes that regulate fetal perirenal adipose tissue (PAT) development and function at gestation days 89 and 130 (term=145 days). Singleton fetuses were taken from adolescent ewes that were either fed control (C) intake to maintain adiposity throughout pregnancy or were undernourished (UN) to maintain conception weight but deplete maternal reserves (n=7/group). Fetal weight was independent of maternal intake at day 89, but by day 130, fetuses from UN dams were 17% lighter and had lower PAT mass that contained fewer unilocular adipocytes. Relative PAT expression of IGF1, IGF2, IGF2R and peroxisome proliferator-activated receptor gamma (PPARG) mRNA was lower in UN than in controls, predominantly at day 89. Independent of maternal nutrition, PAT gene expression of PPARG, glycerol-3-phosphate dehydrogenase, hormone sensitive lipase, leptin, uncoupling protein 1 and prolactin receptor increased, whereas IGF1, IGF2, IGF1R and IGF2R decreased between days 89 and 130. Fatty acid synthase and lipoprotein lipase (LPL) mRNAs were not influenced by nutrition or stage of pregnancy. Females had greater LPL and leptin mRNA than males, and LPL, leptin and PPARG mRNAs were decreased in UN at day 89 in females only. PAT gene expression correlations with PAT mass were stronger at day 89 than they were at day 130. These data suggest that the key genes that regulate adipose tissue development and function are active beginning in mid-gestation, at which point they are sensitive to maternal undernutrition: this leads to reduced fetal adiposity by late pregnancy.

Keywords: adipose tissue; fetal; gene expression; sheep; undernutrition.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adiposity
  • Animals
  • Fatty Acids, Nonesterified / blood
  • Female
  • Fetus / metabolism*
  • Gene Expression
  • Gene Expression Regulation, Developmental
  • Gestational Age
  • Intra-Abdominal Fat / metabolism*
  • Male
  • Malnutrition / genetics*
  • Malnutrition / metabolism
  • Pregnancy
  • Sheep

Substances

  • Fatty Acids, Nonesterified