Impact of direct greenhouse gas emissions on the carbon footprint of water reclamation processes employing nitrification-denitrification

Sci Total Environ. 2015 Feb 1:505:1166-73. doi: 10.1016/j.scitotenv.2014.10.060. Epub 2014 Nov 14.

Abstract

Water reclamation has the potential to reduce water supply demands from aquifers and more energy-intensive water production methods (e.g., seawater desalination). However, water reclamation via biological nitrification-denitrification is also associated with the direct emission of the greenhouse gases (GHGs) CO₂, N₂O, and CH₄. We quantified these direct emissions from the nitrification-denitrification reactors of a water reclamation plant in Southern California, and measured the (14)C content of the CO₂ to distinguish between short- and long-lived carbon. The total emissions were 1.5 (±0.2) g-fossil CO₂ m(-3) of wastewater treated, 0.5 (±0.1) g-CO₂-eq of CH₄ m(-3), and 1.8 (±0.5) g-CO₂-eq of N₂O m(-3), for a total of 3.9 (±0.5) g-CO₂-eqm(-3). This demonstrated that water reclamation can be a source of GHGs from long lived carbon, and thus a candidate for GHG reduction credit. From the (14)C measurements, we found that between 11.4% and 15.1% of the CO₂ directly emitted was derived from fossil sources, which challenges past assumptions that the direct CO₂ emissions from water reclamation contain only modern carbon. A comparison of our direct emission measurements with estimates of indirect emissions from several water production methods, however, showed that the direct emissions from water reclamation constitute only a small fraction of the plant's total GHG footprint.

Keywords: Carbon footprint; Direct emissions; Fossil carbon; Greenhouse gases; Radiocarbon; Water reclamation.