Directed flow of charged particles at midrapidity relative to the spectator plane in Pb-Pb collisions at √(s(NN))=2.76 TeV

Phys Rev Lett. 2013 Dec 6;111(23):232302. doi: 10.1103/PhysRevLett.111.232302. Epub 2013 Dec 6.

Abstract

The directed flow of charged particles at midrapidity is measured in Pb-Pb collisions at √(s(NN))=2.76 TeV relative to the collision symmetry plane defined by the spectator nucleons. A negative slope of the rapidity-odd directed flow component with approximately 3 times smaller magnitude than found at the highest RHIC energy is observed. This suggests a smaller longitudinal tilt of the initial system and disfavors the strong fireball rotation predicted for the LHC energies. The rapidity-even directed flow component is measured for the first time with spectators and found to be independent of pseudorapidity with a sign change at transverse momenta p(T) between 1.2 and 1.7 GeV/c. Combined with the observation of a vanishing rapidity-even p(T) shift along the spectator deflection this is strong evidence for dipolelike initial density fluctuations in the overlap zone of the nuclei. Similar trends in the rapidity-even directed flow and the estimate from two-particle correlations at midrapidity, which is larger by about a factor of 40, indicate a weak correlation between fluctuating participant and spectator symmetry planes. These observations open new possibilities for investigation of the initial conditions in heavy-ion collisions with spectator nucleons.