The power of hard-sphere models: explaining side-chain dihedral angle distributions of Thr and Val

Biophys J. 2012 May 16;102(10):2345-52. doi: 10.1016/j.bpj.2012.01.061. Epub 2012 May 15.

Abstract

The energy functions used to predict protein structures typically include both molecular-mechanics and knowledge-based terms. In contrast, our approach is to develop robust physics- and geometry-based methods. Here, we investigate to what extent simple hard-sphere models can be used to predict side-chain conformations. The distributions of the side-chain dihedral angle χ(1) of Val and Thr in proteins of known structure show distinctive features: Val side chains predominantly adopt χ(1) = 180°, whereas Thr side chains typically adopt χ(1) = 60° and 300° (i.e., χ(1) = ±60° or g- and g(+) configurations). Several hypotheses have been proposed to explain these differences, including interresidue steric clashes and hydrogen-bonding interactions. In contrast, we show that the observed side-chain dihedral angle distributions for both Val and Thr can be explained using only local steric interactions in a dipeptide mimetic. Our results emphasize the power of simple physical approaches and their importance for future advances in protein engineering and design.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Databases, Protein
  • Dipeptides / chemistry
  • Models, Molecular*
  • Protein Structure, Secondary
  • Threonine / chemistry*
  • Valine / chemistry*

Substances

  • Dipeptides
  • Threonine
  • Valine