Reduced release probability prevents vesicle depletion and transmission failure at dynamin mutant synapses

Proc Natl Acad Sci U S A. 2012 Feb 21;109(8):E515-23. doi: 10.1073/pnas.1121626109. Epub 2012 Jan 30.

Abstract

Endocytic recycling of synaptic vesicles after exocytosis is critical for nervous system function. At synapses of cultured neurons that lack the two "neuronal" dynamins, dynamin 1 and 3, smaller excitatory postsynaptic currents are observed due to an impairment of the fission reaction of endocytosis that results in an accumulation of arrested clathrin-coated pits and a greatly reduced synaptic vesicle number. Surprisingly, despite a smaller readily releasable vesicle pool and fewer docked vesicles, a strong facilitation, which correlated with lower vesicle release probability, was observed upon action potential stimulation at such synapses. Furthermore, although network activity in mutant cultures was lower, Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) activity was unexpectedly increased, consistent with the previous report of an enhanced state of synapsin 1 phosphorylation at CaMKII-dependent sites in such neurons. These changes were partially reversed by overnight silencing of synaptic activity with tetrodotoxin, a treatment that allows progression of arrested endocytic pits to synaptic vesicles. Facilitation was also counteracted by CaMKII inhibition. These findings reveal a mechanism aimed at preventing synaptic transmission failure due to vesicle depletion when recycling vesicle traffic is backed up by a defect in dynamin-dependent endocytosis and provide new insight into the coupling between endocytosis and exocytosis.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Calcium-Calmodulin-Dependent Protein Kinase Type 2 / metabolism
  • Cerebral Cortex / pathology
  • Dynamins / metabolism*
  • Mice
  • Mice, Knockout
  • Mutation / genetics*
  • Neurons / metabolism
  • Synaptic Transmission / physiology*
  • Synaptic Vesicles / enzymology
  • Synaptic Vesicles / metabolism*
  • Synaptic Vesicles / ultrastructure
  • Up-Regulation

Substances

  • Calcium-Calmodulin-Dependent Protein Kinase Type 2
  • Dynamins