Fractal analysis of spontaneous fluctuations of the BOLD signal in rat brain

Neuroimage. 2011 Oct 15;58(4):1060-9. doi: 10.1016/j.neuroimage.2011.06.082. Epub 2011 Jul 12.

Abstract

Analysis of task-evoked fMRI data ignores low frequency fluctuations (LFF) of the resting-state the BOLD signal, yet LFF of the spontaneous BOLD signal is crucial for analysis of resting-state connectivity maps. We characterized the LFF of resting-state BOLD signal at 11.7T in α-chloralose and domitor anesthetized rat brain and modeled the spontaneous signal as a scale-free (i.e., fractal) distribution of amplitude power (|A|²) across a frequency range (f) compatible with an |A(f)|² ∝ 1/f(β) model where β is the scaling exponent (or spectral index). We compared β values from somatosensory forelimb area (S1FL), cingulate cortex (CG), and caudate putamen (CPu). With α-chloralose, S1FL and CG β values dropped from ~0.7 at in vivo to ~0.1 at post mortem (p<0.0002), whereas CPu β values dropped from ~0.3 at in vivo to ~0.1 at post mortem (p<0.002). With domitor, cortical (S1FL, CG) β values were slightly higher than with α-chloralose, while subcortical (CPu) β values were similar with α-chloralose. Although cortical and subcortical β values with both anesthetics were significantly different in vivo (p<0.002), at post mortem β values in these regions were not significantly different and approached zero (i.e., range of -0.1 to 0.2). Since a water phantom devoid of susceptibility gradients had a β value of zero (i.e., random), we conclude that deoxyhemoglobin present in voxels post-sacrifice still impacts tissue water diffusion. These results suggest that in the anesthetized rat brain the LFF of BOLD signal at 11.7T follow a general 1/f(β) model of fractality where β is a variable responding to physiology. We describe typical experimental pitfalls which may elude detection of fractality in the resting-state BOLD signal.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Anesthesia, General
  • Animals
  • Brain Chemistry / physiology*
  • Cerebrovascular Circulation / physiology
  • Fractals*
  • Hemoglobins / metabolism
  • Image Processing, Computer-Assisted / methods
  • Magnetic Resonance Imaging
  • Male
  • Nonlinear Dynamics
  • Oxygen / blood*
  • Phantoms, Imaging
  • Postmortem Changes
  • Rats
  • Rats, Sprague-Dawley

Substances

  • Hemoglobins
  • deoxyhemoglobin
  • Oxygen