A Ventral Prefrontal-Amygdala Neural System in Bipolar Disorder: A View from Neuroimaging Research

Acta Neuropsychiatr. 2009 Sep 23;21(6):228-238.

Abstract

In the past decade, neuroimaging research has identified key components in the neural system that underlies bipolar disorder (BD). The ventral prefrontal cortex (VPFC) and amygdala are highly interconnected structures that jointly play a central role in emotional regulation. Numerous research groups have reported prominent structural and functional abnormalities within the VPFC and amygdala supporting their essential role in a neural system underlying the emotional dysregulation that is a core feature of BD. Findings in BD also include those in brain regions interconnected with the VPFC and amygdala, including the ventral striatum, hippocampus, and the cerebellum. Abnormalities in these regions may contribute to symptoms that reflect disruption in functions subserved by these structures, including motivational, mnemonic and psychomotor functions.This article will first review leads from behavioral neurology that implicated these neural system abnormalities in BD. It will then review findings from structural imaging and functional imaging studies to support the presence of abnormalities within these neural system components in BD. It will also review new findings from studies using diffusion tensor imaging (DTI) that provide increasing evidence of abnormalities in the connections between these neural system components in BD. Emerging data supporting differences in this neural system during adolescence, as well as potential beneficial effects of treatment on structure and function will also be presented. Finally, the article will discuss the implications for future investigations, including those for early identification and treatment of BD.