Human telomeres are hypersensitive to UV-induced DNA Damage and refractory to repair

PLoS Genet. 2010 Apr 29;6(4):e1000926. doi: 10.1371/journal.pgen.1000926.

Abstract

Telomeric repeats preserve genome integrity by stabilizing chromosomes, a function that appears to be important for both cancer and aging. In view of this critical role in genomic integrity, the telomere's own integrity should be of paramount importance to the cell. Ultraviolet light (UV), the preeminent risk factor in skin cancer development, induces mainly cyclobutane pyrimidine dimers (CPD) which are both mutagenic and lethal. The human telomeric repeat unit (5'TTAGGG/CCCTAA3') is nearly optimal for acquiring UV-induced CPD, which form at dipyrimidine sites. We developed a ChIP-based technique, immunoprecipitation of DNA damage (IPoD), to simultaneously study DNA damage and repair in the telomere and in the coding regions of p53, 28S rDNA, and mitochondrial DNA. We find that human telomeres in vivo are 7-fold hypersensitive to UV-induced DNA damage. In double-stranded oligonucleotides, this hypersensitivity is a property of both telomeric and non-telomeric repeats; in a series of telomeric repeat oligonucleotides, a phase change conferring UV-sensitivity occurs above 4 repeats. Furthermore, CPD removal in the telomere is almost absent, matching the rate in mitochondria known to lack nucleotide excision repair. Cells containing persistent high levels of telomeric CPDs nevertheless proliferate, and chronic UV irradiation of cells does not accelerate telomere shortening. Telomeres are therefore unique in at least three respects: their biophysical UV sensitivity, their prevention of excision repair, and their tolerance of unrepaired lesions. Utilizing a lesion-tolerance strategy rather than repair would prevent double-strand breaks at closely-opposed excision repair sites on opposite strands of a damage-hypersensitive repeat.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • DNA / radiation effects*
  • DNA Damage*
  • DNA Repair*
  • Female
  • Humans
  • Telomere / metabolism*
  • Telomere / radiation effects*
  • Ultraviolet Rays / adverse effects*

Substances

  • DNA