Dendritic branching of olfactory bulb mitral and tufted cells: regulation by TrkB

PLoS One. 2009 Aug 25;4(8):e6729. doi: 10.1371/journal.pone.0006729.

Abstract

Background: Projection neurons of mammalian olfactory bulb (OB), mitral and tufted cells, have dendrites whose morphologies are specifically differentiated for efficient odor information processing. The apical dendrite extends radially and arborizes in single glomerulus where it receives primary input from olfactory sensory neurons that express the same odor receptor. The lateral dendrites extend horizontally in the external plexiform layer and make reciprocal dendrodendritic synapses with granule cells, which moderate mitral/tufted cell activity. The molecular mechanisms regulating dendritic development of mitral/tufted cells is one of the unsolved important problems in the olfactory system. Here, we focused on TrkB receptors to test the hypothesis that neurotrophin-mediate mechanisms contributed to dendritic differentiation of OB mitral/tufted cells.

Principal findings: With immunohistochemical analysis, we found that the TrkB neurotrophin receptor is expressed by both apical and lateral dendrites of mitral/tufted cells and that expression is evident during the early postnatal days when these dendrites exhibit their most robust growth and differentiation. To examine the effect of TrkB activation on mitral/tufted cell dendritic development, we cultured OB neurons. When BDNF or NT4 were introduced into the cultures, there was a significant increase in the number of primary neurites and branching points among the mitral/tufted cells. Moreover, BDNF facilitated filopodial extension along the neurites of mitral/tufted cells.

Significance: In this report, we show for the first time that TrkB activation stimulates the dendritic branching of mitral/tufted cells in developing OB. This suggests that arborization of the apical dendrite in a glomerulus is under the tight regulation of TrkB activation.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Dendrites*
  • Immunohistochemistry
  • Mice
  • Olfactory Bulb / cytology
  • Olfactory Bulb / growth & development*
  • Receptor, trkB / physiology*

Substances

  • Receptor, trkB