Continuous electroencephalogram monitoring in the intensive care unit

Anesth Analg. 2009 Aug;109(2):506-23. doi: 10.1213/ane.0b013e3181a9d8b5.

Abstract

Because of recent technical advances, it is now possible to record and monitor the continuous digital electroencephalogram (EEG) of many critically ill patients simultaneously. Continuous EEG monitoring (cEEG) provides dynamic information about brain function that permits early detection of changes in neurologic status, which is especially useful when the clinical examination is limited. Nonconvulsive seizures are common in comatose critically ill patients and can have multiple negative effects on the injured brain. The majority of seizures in these patients cannot be detected without cEEG. cEEG monitoring is most commonly used to detect and guide treatment of nonconvulsive seizures, including after convulsive status epilepticus. In addition, cEEG is used to guide management of pharmacological coma for treatment of increased intracranial pressure. An emerging application for cEEG is to detect new or worsening brain ischemia in patients at high risk, especially those with subarachnoid hemorrhage. Improving quantitative EEG software is helping to make it feasible for cEEG (using full scalp coverage) to provide continuous information about changes in brain function in real time at the bedside and to alert clinicians to any acute brain event, including seizures, ischemia, increasing intracranial pressure, hemorrhage, and even systemic abnormalities affecting the brain, such as hypoxia, hypotension, acidosis, and others. Monitoring using only a few electrodes or using full scalp coverage, but without expert review of the raw EEG, must be done with extreme caution as false positives and false negatives are common. Intracranial EEG recording is being performed in a few centers to better detect seizures, ischemia, and peri-injury depolarizations, all of which may contribute to secondary injury. When cEEG is combined with individualized, physiologically driven decision making via multimodality brain monitoring, intensivists can identify when the brain is at risk for injury or when neuronal injury is already occurring and intervene before there is permanent damage. The exact role and cost-effectiveness of cEEG at the current time remains unclear, but we believe it has significant potential to improve neurologic outcomes in a variety of settings.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Brain / physiology
  • Brain Ischemia / diagnosis
  • Cost-Benefit Analysis
  • Critical Care / methods*
  • Critical Illness
  • Electroencephalography / methods*
  • Electroencephalography / trends
  • Humans
  • Intensive Care Units*
  • Monitoring, Physiologic / methods*
  • Monitoring, Physiologic / trends
  • Prognosis
  • Seizures / diagnosis
  • Status Epilepticus / diagnosis