Development of spike-wave seizures in C3H/HeJ mice

Epilepsy Res. 2009 Jul;85(1):53-9. doi: 10.1016/j.eplepsyres.2009.01.007. Epub 2009 May 5.

Abstract

C3H/HeJ mice have been reported to have relatively early onset of spike-wave discharges (SWD), and a defective AMPA receptor subunit Gria4 as the genetic cause. We investigated the time course of SWD development through serial EEG recordings in C3H/HeJ mice to better characterize this model. We found that at immature postnatal ages of 5-15 days, rare SWD-like events were observed at an average rate of 3 per hour, and with relatively broad spikes, irregular rhythm, slow frequency (5-6 Hz), and short duration (mean 1.75 s). This was followed by a transitional period of increasing SWD incidence, which then stabilized in mature animals at age 26-62 days, with SWD at an average rate of 45 per hour, narrower spike morphology, regular rhythm, higher frequency (7-8 Hz), and longer duration (mean 3.40s). This sequence of maturational changes in SWD development suggests that effects of early intervention could be tested in C3H/HeJ mice over the course of a few weeks, rather than a few months as in rats, greatly facilitating future research on anti-epileptogenesis.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Age Factors
  • Animals
  • Animals, Newborn
  • Disease Models, Animal*
  • Electroencephalography*
  • Mice
  • Mice, Inbred C3H
  • Seizures / physiopathology*