Clinical implementation of enhanced dynamic wedges into the Pinnacle treatment planning system: Monte Carlo validation and patient-specific QA

Phys Med Biol. 2009 Jan 21;54(2):447-65. doi: 10.1088/0031-9155/54/2/018. Epub 2008 Dec 19.

Abstract

The goal of this work is to present a systematic Monte Carlo validation study on the clinical implementation of the enhanced dynamic wedges (EDWs) into the Pinnacle(3) (Philips Medical Systems, Fitchburg, WI) treatment planning system (TPS) and QA procedures for patient plan verification treated with EDWs. Modeling of EDW beams in the Pinnacle(3) TPS, which employs a collapsed-cone convolution superposition (CCCS) dose model, was based on a combination of measured open-beam data and the 'Golden Segmented Treatment Table' (GSTT) provided by Varian for each photon beam energy. To validate EDW models, dose profiles of 6 and 10 MV photon beams from a Clinac 2100 C/D were measured in virtual water at depths from near-surface to 30 cm for a wide range of field sizes and wedge angles using the Profiler 2 (Sun Nuclear Corporation, Melbourne, FL) diode array system. The EDW output factors (EDWOFs) for square fields from 4 to 20 cm wide were measured in virtual water using a small-volume Farmer-type ionization chamber placed at a depth of 10 cm on the central axis. Furthermore, the 6 and 10 MV photon beams emerging from the treatment head of Clinac 2100 C/D were fully modeled and the central-axis depth doses, the off-axis dose profiles and the output factors in water for open and dynamically wedged fields were calculated using the Monte Carlo (MC) package EGS4. Our results have shown that (1) both the central-axis depth doses and the off-axis dose profiles of various EDWs computed with the CCCS dose model and MC simulations showed good agreement with the measurements to within 2%/2 mm; (2) measured EDWOFs used for monitor-unit calculation in Pinnacle(3) TPS agreed well with the CCCS and MC predictions within 2%; (3) all the EDW fields satisfied our validation criteria of 1% relative dose difference and 2 mm distance-to-agreement (DTA) with 99-100% passing rate in routine patient treatment plan verification using MapCheck 2D diode array.

Publication types

  • Validation Study

MeSH terms

  • Biophysical Phenomena
  • Humans
  • Models, Theoretical
  • Monte Carlo Method
  • Particle Accelerators
  • Phantoms, Imaging
  • Quality Assurance, Health Care
  • Radiotherapy Planning, Computer-Assisted / methods*
  • Radiotherapy Planning, Computer-Assisted / standards
  • Radiotherapy Planning, Computer-Assisted / statistics & numerical data
  • Radiotherapy, Conformal / methods
  • Radiotherapy, Conformal / standards
  • Radiotherapy, Conformal / statistics & numerical data
  • Radiotherapy, High-Energy / methods
  • Radiotherapy, High-Energy / standards
  • Radiotherapy, High-Energy / statistics & numerical data
  • Scattering, Radiation