Effects of Ca2+ agonists on cytosolic Ca2+ in isolated hepatocytes and on bile secretion in the isolated perfused rat liver

Hepatology. 1992 Jan;15(1):107-16. doi: 10.1002/hep.1840150119.

Abstract

The effects of increases in cytosolic Ca2+ on hepatocyte bile secretion are unknown. A number of agents that alter levels of cytosolic Ca2+ in the hepatocyte also produce hepatic vasoconstriction and activate protein kinase C, which complicates interpretations of their effects on bile secretion. To better understand the role of cytosolic Ca2+ in bile secretion, we examined the effect of the Ca2+ ionophore A23187 (0.1 mumol/L), the Ca2+ agonist vasopressin (10 nmol/L) and the Ca(2+)-mobilizing agent, 2,5-di(tert-butyl)-1,4-benzohydroquinone (25 mumol/L) on cytosolic Ca2+ in isolated hepatocytes and on bile flow in the isolated perfused rat liver, using vasodilators and inhibitors of protein kinase C and Ca2+ influx. Single-pass perfused livers were used, and cytosolic Ca2+ was measured by luminescent photometry in isolated hepatocytes loaded with the Ca(2+)-sensitive photoprotein aequorin. After A23187 perfusion, a sustained 74% +/- 10% (mean +/- S.D.) decrease in bile flow and a sustained 271% +/- 50% increase in perfusion pressure was observed. Simultaneous pretreatment with the vasodilator papaverine (25 mumol/L) and the protein kinase C inhibitor H-7 (50 mumol/L) abolished the pressure increase but not the decrease in bile flow, whereas pretreatment with Ni2+ (25 mumol/L) to block the influx of extracellular Ca2+ markedly reduced both the pressure increase and the decrease in bile flow. Vasopressin produced a transient (mean = 6 min) 75% +/- 4% decrease in bile flow and a sustained 7% +/- 4% increase in perfusion pressure. Pretreatment with H-7 alone corrected the vasopressin-induced pressure increase but also failed to eliminate the decrease in bile flow, whereas pretreatment with Ni2+ decreased the magnitude of the decrease by two-thirds without affecting the increase in perfusion pressure, 2,5'-di(tert-butyl)-1,4-benzohydroquinone produced a transient 65% +/- 20% decrease in bile flow and a transient 56% +/- 15% increase in perfusion pressure. In isolated hepatocytes, bromo-A23187, the nonfluorescent form of the ionophore, produced a sustained 56% +/- 32% increase in the cytosolic Ca2+ signal, whereas vasopressin resulted in a transient 241% +/- 75% increase and 2,5-di(tert-butyl)-1,4-benzohydroquinone resulted in a sustained 149% +/- 66% increase. The ionophore-induced increase in Ca2+ was abolished completely by pretreatment of the hepatocytes with Ni2+, whereas the vasopressin-induced increase was reduced by 38%.(ABSTRACT TRUNCATED AT 400 WORDS)

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Aequorin
  • Animals
  • Bile / metabolism*
  • Calcimycin / pharmacology
  • Calcium / metabolism
  • Calcium / physiology*
  • Cell Separation
  • Cytosol / metabolism*
  • Hydroquinones / pharmacology
  • In Vitro Techniques
  • Liver / cytology
  • Liver / metabolism*
  • Male
  • Pressure
  • Rats
  • Rats, Inbred Strains
  • Vasopressins / pharmacology

Substances

  • Hydroquinones
  • Vasopressins
  • 2,5-di-tert-butylhydroquinone
  • Calcimycin
  • Aequorin
  • Calcium